O solích kyseliny jodisté (VIII) Jodistany vápenaté a barnaté

M. DRÁTOVSKÝ, Z. TERNBACH

Katedra anorganické chemie Přírodovědecké fakulty Karlovy university, Praha

Byly prostudovány trojné systémy: $CaO - J_2O_7 - H_2O$ a BaO $- J_2O_7 - H_2O$ při 30 °C. Bylo dokázáno, že kromě již známých jodistanů vápenatých a barnatých existují tři soli, o jejichž existenci v tuhém stavu není v literatuře zmínek: $Ca(JO_4)_2 \cdot 6H_2O$, $Ca_3(JO_5)_2 \cdot 9H_2O$ a Ba $(JO_4)_2 \cdot 6H_2O$.

Tato práce navazuje na systematické studium solí kyseliny jodisté a látek s formálně šestimocným jodem [1—8]. Látka s formálně šestimocným jodem vzniká také při tepelném rozkladu jodistanu vápenatého $Ca_2J_2O_9$. 9H₂O [5]. a podle předběžných výsledků i při tepelném rozkladu jodistanu barnatého $Ba_2J_2O_9$. 6H₂O. Aby bylo možno zjistit, zda jsou tyto produkty chemickými individui nebo směsmi jodičnanu a jodistanu, je třeba uskutečnit průzkum odpovídajících fázových diagramů.

Experimentální část a výsledky

Použité chemikálie

Pro studium uvedených trojných izotermických soustav byly použity jako výchozí látky hydroxid barnatý $Ba(OH)_2 \cdot 8H_2O$, jodistan barnatý $Ba_3(JO_5)_2 \cdot 2H_2O$, kysličník vápenatý, jodistan vápenatý $Ca_2J_2O_9$ 9 H_2O a kyselina jodistá H_5JO_6 . Byl použit běžný hydroxid barnatý čistoty p. a. Kyselina jodistá byla připravována stejně jako v předchozích pracích [4].

Jodistan barnatý uvedeného složení je meziproduktem pro přípravu kyseliny jodisté [9] a získá se konverzí pevného dihydrojodistanu sodného ve vodné suspenzi mírně okyselené kyselinou dusičnou s roztokem dusičnanu barnatého.

Jodistan vápenatý byl připravován tak, že k roztoku jodistanu sodného $Na_2H_3JO_6$ ve zředěné kyselině dusičné byl přidán roztok dusičnanu vápenatého a tento výsledný roztok byl za stálého míchání postupně neutralizován hydroxidem sodným na metyloranž. Vyloučený jodistan vápenatý byl po promytí odsát, vysušen při 50 °C a analyzován.

Kysličník vápenatý byl získán vyžíháním čerstvě sráženého uhličitanu vápenatého v elektrické pícce. Úplnost vyžíhání byla kontrolována váhovým úbytkem. Analýzy výchozích preparátů jsou uvedeny v tab. 1.

Analýzy

Vápník a baryum byly stanovovány vážkově. Ve vodě nerozpustný jodistan vápenatý byl převeden několikanásobným odkouřením s kyselinou chlorovodíkovou na chlorid vápenatý, ten pak rozpuštěn ve vodě, srážen jako oxalát a vážen jako síran. Jodistan

Tabulka 1

Analýzy výchozích látek (nalezená množství jsou průměrem nejméně dvou stanovení)

	% O _A	% J	% Ca, Ba	$\% H_2O$	
$\operatorname{Ba}_3(\operatorname{JO}_5)_2$. $2\operatorname{H}_2\operatorname{O}$	12,41 12,99	28,44 29,46	47,70 47,81	4,50 4,18	nalezeno vypočteno
$Ca_2J_2O_9$. $9H_2O$	17,41 17,49	40,60 39,67	12,23 12,53	26,12 25,30	nalezeno vypočteno
$H_5 JO_6$	24,21 24,56	55,01 55,67	_	20,78 19,76	nalezeno vypočteno
CaO		_	71,19 71,48		nalezeno vypočteno

barnatý byl rozpuštěn ve zředěné kyselině dusičné a srážen i vážen jako síran. Jod i aktivní kyslík byly stanovovány jako v předchozích pracích [1-8]. Voda byla dopočítávána do 100 %.

Měření rozpustnosti v trojných soustavách

Z technických důvodů se rozpustnost stanovovala v každé trojné soustavě odděleně pro kyselou a alkalickou oblast; byla tedy sledována rozpustnost ve čtyřech soustavách:

kysličník vápenatý—jodistan vápenatý—voda	=	soustava	Ι
jodistan vápenatý—kyselina jodistá—voda	=	soustava	II
hydroxid barnatý—jodistan barnatý—voda	=	soustava	III
jodistan barnatý—kyselina jodistá—voda	=	soustava	IV

Měření bylo prováděno při stálé teplotě 30,0 \pm 0,2 °C za stálého míchání v odměrných baňkách (500 ml baňka s objemem roztoku 300 ml pro soustavy I a III a 100 ml baňka s objemem roztoku asi 45 ml pro soustavy II a IV). Vzorky byly připravovány tak, že vodné roztoky jedné komponenty, jejichž koncentrace stoupala od velmi zředěných až po nasycené, byly syceny druhou komponentou až do vyloučení tuhé fáze. Při tom byly vzorky soustav I a III chráněny před vlivem vzdušného kysličníku uhličitého tak, že byly připravovány v proudu čistého dusíku, a rovněž odebírání vzorků k analýzám bylo prováděno v dusíkové atmosféře. Ustavení rovnováhy bylo kontrolováno analýzou kapalné fáze. Rovnováhy mezi tuhou a kapalnou fází bylo dosaženo během několika dnů. Po dosažení rovnováhy byla rozpustnost zjišťována stanovením aktivního kyslíku a kovu v kapalné fázi. Složení kapalné fáze bylo graficky znázorněno v diagramu rozpustnosti. Vzhledem k tomu, že rozpustnosti zkoumaných sloučenin se navzájem značně liší, není výhodné zobrazovat diagram rozpustnosti ve tvaru rovnostranného nebo pravoúhlého rovnoramenného trojúhelníka, nýbrž je výhodnější nanášet do pravoúhlého souřadného systému páté odmocniny koncentrací komponent, protože průběh křivky rozpustnosti je potom mnohem názornější. Tento způsob zobrazování rozpustnosti v trojných soustavách byl popsán v jiné práci [10].

Rentgenometrie

Ke kvalitativní identifikaci sloučenin bylo použito Debye—Scherrerovy práškové metody. Rentgenogramy jednotlivých preparátů byly snímány na přístroji zn. Mikrometa s kobaltovou anodou. Vzorky preparátů byly nalepovány na skleněnou tyčinku; průměr komůrky byl 57,3 mm. Získané snímky byly proměřovány vizuálně na měřicím stolku a intenzity čar byly odhadovány a číslovány od 4 (maximální) do 1 (minimální).

Rozpustnost v trojné soustavě CaO-J₂O₇-H₂O

Nalezené hodnoty rozpustností při 30 °C jsou uvedeny v tab. 2. Průběh křivky roz-

Tabulka 2

223	Složení fáze					
$\operatorname{Bod}_{\check{c}}$	kap	alné	tuhé		Sloučenina v tuhé fázi	
0.	% CaO	$\% J_2O_7$	% O _A	%·Ca		
A	0.152			54.03	Ca(OH).	
ĩ	0.108	0.00018	0.001	53,95	04(011/2	
2	0.099	0.00024	0.100	53.01	Ca(OH).	
3	0.085	0,00030	15,99	17,35	$Ca_{o}(JO_{r})_{o}$, $9H_{o}O$	
4	0.078	0.00041	16,08	17,39		
5	0.031	0,001	16,06	17,25		
6	0,005	0,002	16,12	17,20		
7	0,002	0,005	16,10	17,32		
8	0,046	0,099	16,01	17,32		
9	0,193	0,400	16,07	17,28	$Ca_3(JO_5)_2$. 9H ₂ O	
10	0,193	0,405	17,48	12,48	Ca ₂ J ₂ O ₂ . 9H ₂ O	
11	0,121	0,470	17,35	12,45	220 2	
12	0,340	4,80	17,52	12,48		
13	0,399	8,16	17,49	12,47		
14	0,531	15,00	neanal	yzováno		
15	0,688	22,81	neanalyzováno			
16	0,991	36,39	17,54	12,45		
17	1,130	40,84	17,60	12,47	"	
18	1,188	43,74	17,90	12,41	$Ca_2J_2O_9$. $9H_2O$	
19	1,207	46,05	20,74	7,47	$Ca(JO_4)_2 \cdot 6H_2O$	
20	0,991	47,02	neanal	yzováno		
21	0,701	50,01	20,68	7,45		
22	0,638	51,39	20,63	7,42		
23	0,542	53,82	20,70	7,49	"	
24	0,389	67,21	20,98	7,49	$Ca(JO_4)_2 \cdot 6H_2O$	
25	0,311	68,82	23,82	0,05	$H_{5}JO_{6}$	
26	0,059	71,67	23,96	0,02	,,	
B	—	75,02	24,55	-	$H_{5}JO_{6}$	
Vypočteno pro:						
C	$Ca(OH)_2$			54,12		
$Ca_3(JO_5)_2 \cdot 9H_2O$		16,08	17,28			
$Ca_2J_2O_9$. $9H_2O$		17,49	12,53			
$Ca(JO_4)_2 \cdot 6H_2O$		21,13	7,56			
$H_{5}JO_{6}$		24,56				

Rozpustnost v trojné soustavě CaO-J₂O₇-H₂O při 30 °C

pustnosti je znázorněn na obr. 1. Z průběhu křivky rozpustnosti a z analýz tuhé fáze je patrno, že ve studované soustavě existují 3 soli: $Ca_3(JO_5)_2 \cdot 9H_2O$ (sůl 1), $Ca_2J_2O_9 \quad 9H_2O$ (sůl 2), $Ca(JO_4)_2 \cdot 6H_2O$ (sůl 3). Křivka rozpustnosti se skládá ze 7 větví: AE_1, E_1M_1 , $M_1E_2, E_2M_2, M_2P_1, P_1E_3, E_3B$. Větev AE_1 odpovídá rozpustnosti hydroxidu vápenatého v různě koncentrovaných roztocích soli 1, větev E_1M_1 rozpustnosti soli 1 v různě koncentrovaných roztocích hydroxidu vápenatého, větev E_2M_1 odpovídá rozpustnosti soli 1 v různě koncentrovaných roztocích soli 2, větev E_2M_2 odpovídá rozpustnosti soli 2 v roztocích soli 1, větev M_2P_1 rozpustnosti soli 2 v roztocích soli 3, větev P_1E_3 rozpustnosti soli 3 v roztocích kyseliny jodisté a větev E_3B odpovídá rozpustnosti kyseliny jodisté v roztocích soli 3.

Bod A zobrazuje rozpustnost hydrxidu vápenatého, bod B rozpustnost kyseliny jodisté, body E_1 , E_2 , E_3 jsou eutonické body, bod P_1 je bod peritonický. Body M_1 a M_2 označují maxima na křivce rozpustnosti (tj. minimální rozpustnost soli 1 a 2). Přímky spojující tato maxima s počátkem souřadného systému zobrazují stechiometrický poměr J_2O_7 : CaO = 1 : 3, resp. 1 : 2. Bod O zobrazuje složení Ca(OH)₂, bod P složení Ca₃(JO₅)₂. .9H₂O, bod R složení Ca₂J₂O₉ 9H₂O, bod Q složení Ca(JO₄)₂. 6H₂O a bod S složení H₅JO₆.

Rozpustnost v trojné soustavě BaO-J₂O₇-H₂O

Nalezené hodnoty rozpustností při 30 °C jsou uvedeny v tab. 3. Průběh křivky rozpustnosti je znázorněn na obr. 2. Z průběhu křivky rozpustnosti a z analýz tuhé fáze je patrno, že ve studované soustavě existují 3 soli: $B_{3_3}(JO_5)_2 \cdot 2H_2O$ (sůl 1), $B_{3_2}J_2O_9$.

 $6H_2O$ (sůl 2) a $Ba(JO_4)_2$. $6H_2O$ (sůl 3). Křivka rozpustnosti se skládá ze sedmi větví: $AE_1, E_1M_1, M_1E_2, E_2M_2, M_2P_1, P_1E_3, E_3B$. Větev AE_1 odpovídá rozpustnosti hydroxidu

Tabulka 3

Rozpustnost v trojné soustavě BaO-J₂O₇-H₂O při 30 °C

	Složení fáze					
Bod	kap	alné	tuhé		Sloučenina v tuhé fázi	
	% BaO	% J ₂ O ₇	% Ba	% O _A		
A	7,246 2,437	0.005	48,59 47,09	0.100	$Ba(OH)_2 \cdot 8H_2O$ $Ba(OH)_2 \cdot 8H_2O$	
2	1.814	0.009	47.30	12.80	Ba ₂ (JO ₂), 2H ₂ O	
3	1.614	0.009	47.20	12,75		
4	1,426	0,009	neanal	yzováno		
5	0,038	0,011	neanal	yzováno		
6	0,027	0,012	47,21	12,80		
7	0,027	0,014	46,90	12,90		
8	0,100	0,063	47,78	12,93		
9	0,157	0,085	47,56	12,76	,,	
10	0,308	0,146	47,42	12,80	$Ba_3(JO_5)_2 \cdot 2H_2O$	
11	0,308	0,163	35,20	14,15	$Ba_2J_2O_9 \cdot 6H_2O$	
12	0,224	0,224	35,10	14,20		
13	0,225	0,321	35,15	14,35		
14	0,263	2,32	neanal	yzováno		
15	0,302	3,85	neanal	yzováno		
16	0,297	4,46	neanalyzováno			
17	0,470	13,88	neanalyzováno		1	
18	0,502	15,80	neanalyzováno			
19	0,555	18,35	34,99	14,10	>>	
20	0,656	22,58	34,22	14,22	$Ba_2J_2O_9 \cdot 6H_2O$	
21	0,595	25,99	23,80	17,92	$Ba(JO_4)_2 \cdot 6H_2O$	
22	0,535	30,56	23,90	17,98		
23	0,501	33,29	24,07	17,64	"	
24	0,256	66,36	23,90	17,98	$Ba(JO_4)_2 \cdot 6H_2O$	
25	0,135	68,25	0,40	24,20	$H_{5}JO_{6}$	
26	0,002	70,18	-	24,50	,,	
	-	74,93	—	24,53	$H_{5}JO_{6}$	
Vunočta						
, spotter	no hro.					
E	Ba(OH), . 8H,O		43,56	-		
E I	Ba3(JO5)2 . 2H,	0	47,81	12,99		
E E	Ba2J20, . 6H,0		35,19	14,34		
E	Ba(JO ₄), . 6H ₂ O		21,90	18,51		
I I	I ₅ JO ₆			24,56		

barnatého v různě koncentrovaných roztocích soli 1, větev E_1M_1 rozpustnosti soli 1 v roztocích hydroxidu barnatého, větev M_1E_2 rozpustnosti soli 1 v roztocích soli 2, větev E_2M_2 odpovídá rozpustnosti soli 2 v roztocích soli 1, větev M_2P_1 rozpustnosti soli 2 v roztocích soli 3, větev P_1E_3 rozpustnosti soli 3 v roztocích kyseliny jodisté a větev E_3B rozpustnosti kyseliny jodisté v roztocích soli 3. Bod A zobrazuje rozpustnost hydroxidu barnatého, bod B rozpustnost kyseliny jodisté, body E_1, E_2, E_3 jsou body eutonické, bod P_1 je bod peritonický. Body M_1 a M_2 označují maxima na křivce rozpustnosti (tj. minimální rozpustnost soli 1 a 2). Přímky spojující tato maxima s počátkem souřadného systému zobrazují stechiometrický poměr J_2O_7 : BaO = 1:3, resp. 1:2. Bod O

zobrazuje složení Ba $(OH)_2 \cdot 8H_2O$, bod P složení Ba $_3(JO_5)_2 \cdot 2H_2O$, bod R složení Ba $_2J_2O_9 \cdot 6H_2O$, bod Q složení Ba $(JO_4)_2 \cdot 6H_2O$ a bod S složení H $_5JO_6$.

Krystalizační oblasti nejsou v diagramech omezeny přímkami, neboť koncentrace nejsou naneseny na osách v lineárním, nýbrž odmocninovém měřítku; v takovém případě přecházejí v křivky všechny přímky, kromě přímek rovnoběžných se souřadnými osami a přímek procházejících počátkem.

Rentgenometrie

Debye-Scherrerovou práškovou metodou byly pořízeny rentgenogramy sloučenin:

Obr. 4. Čárový diagram rentgenogramů. A. Ba(OH)₂. 8H₂O; B. Ba₃(JO₅)₂. 2H₂O; C. Ba₂J₂O₉. 6H₂O; D. Ba(JO₄)₂. 6H₂O; E. H₅JO₆. Na diagramu nejsou uváděny čáry o nejslabších intenzitách.

iva diagramu nejsou uvadeny cary o nejsiabsien menzitaen.

Ba $(JO_4)_2$. 6H₂O; pro snímání bylo použito tuhých fází ze vzorků 7, 11 a 22 soustavy CaO—J₂O₇—H₂O a tuhých fází ze vzorků 7, 13 a 23 soustavy BaO—J₂O₇—H₂O. Kromě toho byly vyhledány hodnoty mezirovinných vzdáleností *d* pro kyselinu jodistou [11], hydroxid vápenatý [12] (str. 481) a hydroxid barnatý [12] (str. 450) a tyto hodnoty porovnány s hodnotami *d* příslušných solí (obr. 3 a 4).

Diskuse

Z údajů v literatuře vyplývá, že dosud byly v tuhém stavu připraveny reakcemi ve vodném prostředí různě hydratované jodistany vápenaté typu $Ca_2J_2O_9.nH_2O$ a různě hydratované jodistany barnaté typu $Ba_3(JO_5)_2.nH_2O$ a $Ba_2J_2O_9.nH_2O$ [13—17].

Námi provedený systematický výzkum jodistanů barnatých metodou rozpustnosti při konstantní teplotě 30 °C a metodou rentgenometrickou prokázal, že kromě jodistanu o atomovém poměru Ba : J = 3 : 2 a 1 : 1 je možno ve vodném prostředí připravit ještě jodistan o atomovém poměru Ba : J = 1 : 2, jenž při teplotě 30 °C má složení Ba $(JO_4)_2$. $6H_2O$. Průběh křivky rozpustnosti (obr. 2) ukazuje, že jde o sloučeninu inkongruentně rozpustnou, což současně snad vysvětluje, proč dosud nebyla připravena v tuhém stavu. Z roztoků, které mají složení odpovídající atomovému poměru Ba : J = 1 : 2, se při zahušťování vylučuje sůl o poměru Ba : J = 1 1; pro přípravu soli o poměru Ba : J = 1 : 2 je třeba zahušťovat roztok značně kyselejší.

Obdobný výzkum jodistanů vápenatých prokázal, že kromě jodistanů o atomovém poměru Ca: J = 1: 1, je možné připravit ještě jodistany o poměru Ca: J = 1:2 a 3:2, které mají při teplotě 30 °C složení Ca $(JO_4)_2$. $6H_2O$ a Ca₃ $(JO_5)_2$. $9H_2O$, jodistan Ca $(JO_4)_2$. $6H_2O$ je stejně jako analogická sůl barnatá ve vodě inkongruentně rozpustný.

Vzhledem k tomu, že nebyla dosud zjišťována struktura studovaných jodistanů a způsob vazby vody v nich, formulujeme všechny tyto látky sumárním vzorcem, tj. s veškerou vodou vázanou hydraticky.

СОЛИ ИОДНОЙ КИСЛОТЫ (VIII) ПЕРИОДАТЫ КАЛЬЦИЯ И БАРИЯ

М. Дратовски, З. Тернбах

Кафедра неорганической химии Естественного факультета, Карлов университет, Прага

Чтобы получить представление о периодатах кальпия и бария, определялась растворимость тройных систем CaO— J_2O_7 — H_2O и BaO— J_2O_7 — H_2O при 30°C. Изотермические тройные диаграммы этих систем были получены так, что на оси прямоутольной системы координат наносились корни пятой степени концентраций J_2O_7 и BaO (или CaO). Кроме уже описанных в литературе периодатов, были найдены еще три, до сих пор неизвестные: Ca(JO_4)₂. $6H_2O$, Ca₃(JO_5)₂. $9H_2O$ и Ba(JO_4)₂. $6H_2O$. Периодаты типа $Me^{II}(JO_4)_2$. aq не были до сих пор обнаружены, вероятно, потому, что эти соединения инконгруентно растворимы и из водных растворов выделяются только при значительном избытке иодной кислоты в растворе. Если в растворе присутствуют оба компонента в молярном отношении $MeO: J_2O_7 = 1$ 1, то при испарении из раствора выделяются периодаты типа $Me_2^{II}J_2O_9$. aq, а не вещества типа $Me^{II}(JO_4)_2$. aq. Химическая природа полученных соединений была также подтверждена рентгенографически.

Preložila T. Dillingerová

ÜBER DIE SALZE DER ÜBERJODSÄURE (VIII) CALCIUM- UND BARIUMPERJODATE

M. Drátovský, Z. Ternbach

Lehrstuhl für anorganische Chemie der Naturwissenschaftlichen Fakultät an der Karlsuniversität, Praha

Es wurde die gegenseitige Löslichkeit einzelner Komponenten in ternären Systemen. CaO-J₂O₇-H₂O und BaO-J₂O₇-H₂O bei 30 °C bestimmt. Die isothermischen Zustandsdiagramme dieser Dreistoffsysteme wurden derart dargestellt, dass in rechtwinkligem Koordinatensystem die fünfte Wurzel der Konzentrationswerte von J₂O₇und BaO (bzw. CaO) aufgetragen wurde. Ausser den in der Literatur schon beschriebenen Perjodaten konnten drei bisher unbekannte Verbindungen festgestellt werden: Ca(JO₄)₂. . 6H₂O, Ca₃(JO₅)₂. 9H₂O und Ba(JO₄)₂. 6H₂O. Perjodate vom Typus Me^{II}(JO₄)₂. aq konnten bisher wahrscheinlich deshalb nicht nachgewiesen werden, da es sich um inkongruent lösliche Verbindungen handelt, die nur im Falle eines grossen Überschusses an Überjodsäure aus wässrigen Lösungen abgeschieden werden. Enthält die Lösung beide Komponenten im Molverhältnis MeO: $J_2O_7 = 1$ 1, so scheiden sich beim Konzentrieren der Lösung Perjodate des Typus $Me_2^{II}J_2O_9$. aq und nicht Verbindungen des Typus $Me_2^{II}(JO_4)_2$. aq ab. Die chemische Individualität der neu beobachteten Verbindungen wurde röntgenographisch bestätigt.

Preložil M. Liška

LITERATÚRA

- 1. Drátovský M., Collection Czech. Chem. Commun. 24, 2340 (1959).
- 2. Drátovský M., Turnwald J., Collection Czech. Chem. Commun. 25, 2503 (1960).
- 3. Drátovský M., Collection Czech. Chem. Commun. 26, 636 (1961).
- 4. Drátovský M., Prejzková J., Collection Czech. Chem. Commun. 28, 1280 (1963).
- 5. Drátovský M., Ž. neorg. chim. 8, 1792 (1963).
- 6. Drátovský M., Ž. neorg. chim. 8, 2434 (1963).
- 7. Drátovský M., Collection Czech. Chem. Commun. (v tisku).
- 8. Drátovský M., Collection Czech. Chem. Commun. (v tisku).
- 9. Brauer G., Handbuch der präparativen anorganischen Chemie, 254. F. Enke Verlag, Stuttgart 1954.
- 10. Drátovský M., Ternbach Z., Chem. zvesti 18, 289 (1964).
- Prejzková J., Diplomová práce. Katedra anorganické chemie Přírodovědecké fakulty KU, Praha 1961.
- Mirkin A. I., Spravočnik po rentgenostrukturnomu analizu polikristallov, 450, 481. Fizmatgiz, Moskva 1961.
- 13. Rammelsberg C., Chem. Ber. 1, 70 (1868).
- 14. Rammelsberg C., J. prakt. Chem. 104, 434 (1868).
- 15. Blomstrand C. W., Chem. Ber. 3 (1870).
- 16. Partington J. R., Bahl R. K., J. Chem. Soc. 2, 1771 (1934).
- 17. Bahl R. K., Lal N., J. Ind. Chem. Soc. 17, 395 (1940).

Do redakcie došlo 26. 11. 1963

Adresa autorov:

RNDr. Milan Drátovský, C. Sc., Katedra anorganické chemie Přírodovědecké fakulty KU, Praha, Albertov 2030.

Prom. chemik Zdenko Ternbach, Výzkumný ústav anorganické chemie, Ústí n. Labem.