Die Abhängigkeit des Verlaufes der Kalibrationsfunktionen von deren Aufstellungsart bei der emissionsspektrochemischen Analyse*

K. FLÓRIÁN, A. LAVRIN und M. MATHERNY

Lehrstuhl für Analytische Chemie der Hüttenmännischen Fakultät der Technischen Hochschule, 043 85 Košice

Eingegangen am 20. Juni 1973

Es wurde der Verlauf von $\Delta Y = f(C_X)$ Funktionen untersucht. Die ΔY -Werte wurden durch unterschiedliche Methoden an ein und derselben Spektrumserie ermittelt; u. zw. erstens bei Anwendung der Bezugslinienmethode, wo auch der Einfluß der Untergrundkorrektur bei beiden Linien geprüft wurde. Zweitens wurde an Stelle des Bezugselementes der Untergrund angewendet. Drittens wurden direkt die $Y_{X,L+U^-}$ und Y_X -Werte sowie die ΔS - und $S_{X,L+U}$ -Werte anstatt der ΔY -Werte für die Ermittlung des Verlaufes der Kalibrationsfunktionen verwendet.

The course of analytical function and the influence of the evaluation on it was studied for identical series of spectra. The value of ΔY was calculated for the function $\Delta Y = f(C_X)$ using: uncorrected values of Y_{L+U} , values corrected for background intensity for analytical line, for reference line, and for both lines. For the construction of analytical curves the $Y_{X,L+U}$ and Y_X values, the $Y_{X,U}$ values and finally the $S_{X,L+U}$ and ΔS values were directly used instead of ΔY values.

Die Aufstellungsbedingungen der emissionsspektrochemischen Kalibrationsfunktionen $\Delta Y = f(C_X)$ beeinflussen maßgebend deren Verlauf und gleichzeitig auch die Präzision der Aufstellung [1]. Mit diesem Problem hat sich schon teilweise Kaiser [2] beschäftigt, u. zw. im Zusammenhang mit der Bedeutung der Untergrundkorrektur auf den Verlauf von Kalibrationsfunktionen, aber ohne eine statistische Bewertung der erreichten Verlaufe von Kalibrationsgeraden. Eine umfassende und mehrseitige methodische Studie, in der alle bedeutendsten Auswertungsbedingungen auf identischen Spektren untersucht wurden, fehlt noch. Die Aufstellung der zuverlässigsten Kalibrationsfunktionen ist aber von der Gewinnung der ΔY -Werte abhängig, da diese nicht nur über die Linearität der Funktionen und letztlich auch über die relative Präzision der analytischen Bestimmung.

Die ΔY -Werte wurden deshalb durch mehrere unterschiedliche Methoden an derselben Spektrumserie ermittelt; u. zw. erstens bei Anwendung der Bezugslinienmethode, wo gleichzeitig der Einfluß der Untergrundintensitätskorrektur der Linien verfolgt wurde. Zweitens wurde an Stelle der Bezugsintensität einer Spektrallinie die Untergrundintensi-

•

^{*} Erweitertes Manuskript des Vortrages am XVI. Colloquium Spectroscopicum Internationale, Heidelberg, Oktober 1971.

tät angewendet, und drittens wurden anstatt der ΔY -Werte direkt die $Y_{X,L+U}$ - resp. die Y_X -Werte für die Ermittlung des Verlaufes der Kalibrationsfunktionen benützt. Letztens wurden auch die ΔS - und $S_{X,L+U}$ -Werte direkt für die Ermittlung des Verlaufes von Kalibrationsfunktionen angewendet.

Experimenteller Teil

Der Verlauf der Kalibrationsfunktionen wurde an einer Spektrumserie, die MgO als Matrix anwendet, untersucht. Die Kalibrationsfunktionen wurden gemeinsam mit den zuständigen statistischen Prüfungen der Grundparameter und der Linearität [3, 4] mittels des Rechenprogramms KF-FLM-72 berechnet.

Tabelle 1

Experimentelle Bedingungen

Spektrograph	Gitterspektrograph PGS-2, Zeiss, Jena $m = 1, D = 7.37 \text{ A mm}^{-1}$
Wellenlängenbereich	von 250 bis 350 nm
Abbildungsart	dreilinsig mit Zwischenabbildung
Abbildungsblende	3,2 mm
Spaltbreite	0,050 mm
Elektrodenmaterial	Graphit, VEB Elektrokarbon, Topoľčany
Trägerelektrode	SU-304
Gegenelektrode	SU-201
Verdünnungsmittel	Graphitpulver SU-602
Elektrodenabstand	4,0 mm
Anregungsart	Wechselstromabreißbogen
Anregungsquelle	Generator BIG-100
Primärspannung	220 V
Primärintensität	7,2 A
Polarität	±
Zündungspunkt	λ/4
Zündungszahl	100 s ⁻¹
Expositionszeit	60 s
Emulsion	ORWO, WU-3
Entwickler	ORWO, F-43, 10 Minuten bei 20°C

Tabelle	2
---------	---

•

Element	Wellenlänge [nm]	Anregungspannung [eV]
Analytisc	he Linien	
Cr I	298.08	5,12
Cr I	302,16	5,13
Ni I	301,20	4,59
VI	318,54	3,96
Bezugslin	ien	
Pd I	302,79	5,05
Pd I	328,73	4,58
Mg I	291,55	10,00
100 C		

S	pektrallinien	und	deren	Parameter
~		Con a Co		A COLONALLOUGH

Es wurden drei analytische Elemente, Cr, Ni und V, in Kombination mit Pd und Mg als Bezugselement verfolgt. Die analytischen Elemente wurden zuerst zur spektralreinen MgO-Matrix beigemengt. Die verfolgten Massenverhältnisse umfaßten die Grenzwerte von $5 \cdot 10^{-1}$ bis $3 \cdot 10^{-3}$ %. Weiter wurden die so vorbereiteten Proben noch nachträglich mit Graphitpulver im Verhältnis 1:9 verdünnt und im Wechselstrombogen angeregt. Die allgemeinen, optischen und Anregungsbedingungen enthält die Tabelle 1. Die Tabelle 2 umfaßt die angewendeten Spektrallinien samt ihrer bedeutendsten Parameter laut Literaturangabe [5]. Letztens sind in den Tabellen 3 bis 5 die prägnantesten Ergebnisse der Verfolgung der Parameter der Kalibrationsfunktionen zusammengestellt.

Der Erfolg und die Berechtigung eines solchen Vergleichs ist aber nur dann gesichert, wenn man mit solchen analytischen Linienpaaren arbeitet, die gut korrelieren. Deshalb wurden die wichtigsten Linienkombinationen durch Auswertung der Streudiagramme [6-8] untersucht. Die Ergebnisse sind in der Tabelle 6 zusammengefaßt.

Diskussion*

Als erstes Ergebnis ist zu erwähnen, daß die Werte der Korrelationskoeffizienten der Kalibrationsgeraden zwischen den Nennwerten von 0,96 bis 0,996 schwankten. Ihre Abweichung von Null war immer signifikant, und dadurch wurde für alle untersuchten Linienkombinationen die stochastische lineare Abhängigkeit der ΔY -Werte von den log c_X -Werten bestätigt.

Der Einfluß beider angewendeten Bezugselemente, Pd und Mg, auf die Parameter der Kalibrationsgeraden war trotzdem daß Mg das Matrixelement darstellte (Tabelle 4), vernachlässigbar. Dieses Phänomen ist nur dadurch erklärbar, daß bei einem so hohen

Tabelle 3a

Vergleich der Parameter der Kalibrationsfunktionen für das analytische Linienpaar Cr 298,08/Pd 302,79

	Parameter						
Auswertungsart der $\varDelta Y$ -Werte	r	$A_{X,R} \pm s_{A_{X,R}}$	$B_X \pm s_{B_X}$	$t_{BX} = 1$ $S = 95\%$	\$ ₄ ¥	s _c /c [%]	$t_{\rm LIN}$ S=95%
$\begin{aligned} \Delta Y &= Y_{X,L+U} - Y_{R,L+U} \\ \Delta Y &= Y_X - Y_{R,L+U} \\ \Delta Y &= Y_X - Y_R \\ \Delta Y &= Y_{X,L+U} - Y_R \\ \Delta Y &= Y_{X,L+U} - Y_{X,U} \\ \Delta Y &= Y_X - Y_{X,U} \\ \Delta Y &\equiv Y_X + U \\ \Delta Y &\equiv Y_X \\ \Delta Y &\equiv AS \\ \Delta S &= S_{X,L+U} - S_{R,L+U} \end{aligned}$	0,994 0,994 0,993 0,984 0,982 0,973 0,975 0,973	$\begin{array}{c} 0,30 \pm 0,02 \\ 0,38 \pm 0,02 \\ 0,36 \pm 0,02 \\ 0,33 \pm 0,02 \\ 1,48 \pm 0,03 \\ 1,52 \pm 0,03 \\ 1,72 \pm 0,04 \\ 1,76 \pm 0,04 \\ 0,32 \pm 0,04 \end{array}$	$\begin{array}{c} 0.82 \pm 0.02 \\ 0.97 \pm 0.02 \\ 0.96 \pm 0.02 \\ 0.82 \pm 0.01 \\ 0.68 \pm 0.02 \\ 0.83 \pm 0.03 \\ 0.77 \pm 0.05 \\ 0.92 \pm 0.05 \\ 0.98 \pm 0.04 \end{array}$	++ +	0,043 0,051 0,051 0,045 0,061 0,077 0,090 0,100 0,100	11,9 12,1 12,2 12,8 20,6 21,4 26,7 25,0 26,4	++++

^{*} Die im Text und Tabellen angewendeten Symbole sind identisch mit denen in Arbeiten [3, 7] benützten Symbolen.

Tabelle 3b

Auswertungsart	Parameter						
der ΔY -Werte	r	$A_{X,R} \pm s_{AX}$	$B_X \pm s_{B_X}$	$t_{B_X=1}$	$s_{\Delta Y}$	sc/c [%]	$t_{\rm LIN}$
$\Delta Y = Y_{X,L+U} - Y_{R,L+U}$	0,991	$0,50\pm0,02$	$0,84\pm0,02$		0,055	15,0	_
$\Delta Y = Y_X - Y_{R,L+U}$	0,991	$0,51 \pm 0,03$	$0,97 \pm 0,03$	+	0,061	14,5	+
$\Delta Y = Y_X - Y_R$	0,991	$0,54\pm0,03$	$0,96 \pm 0,03$	+	0,061	14,6	+
$\Delta Y = Y_{X,L+U} - Y_R$	0,991	$0,50\pm0,02$	$0,81 \pm 0,02$	_	0,053	15,0	-
$\Delta Y = Y_{X,L+U} - Y_{X,U}$	0,975	$1,70 \pm 0,03$	$0,71 \pm 0,03$		0,079	25,8	_
$\Delta Y = Y_X - Y_{X,U}$	0,971	$1,73\pm0,04$	$0,81 \pm 0,04$	-	0,097	27,5	-
$\Delta Y \equiv Y_{X,L+U}$	0,972	$1,89 \pm 0.04$	$0,77 \pm 0,04$		0,090	27,0	
$\Delta Y \equiv Y_X$	0,972	$1,93 \pm 0,04$	$0,87 \pm 0,04$	—	0,102	27,0	+
$\varDelta Y \equiv \varDelta S$	0,995	$0,54 \pm 0,02$	0,92 + 0,02	—	0,044	11,1	_
$\Delta Y \equiv S_{X,L+U}$	0,974	1,87 \pm 0,04	$0,86 \pm 0,04$	-	0,098	26,2	+

Vergleich der Parameter der Kalibrationsfunktionen für das analytische Linienpaar Cr 302,16/Pd 302,79

Tabelle 4

Vergleich der Parameter der Kalibrationsfunktionen für die analytischen Linienpaare Ni/Pd und Ni/Mg

Linienpaar Ni 301,20/Pd 302,79								
Auswertungsart		Parameter						
der ΔY -Werte	r	$A_{X,R} \pm s_{A_{X,R}}$	$B_X \pm s_{B_X}$	$t_{B_X=1}$	<i>8</i> ⊿ <i>Y</i>	s _c /c [%]	$t_{\rm LIN}$	
	0,988 0,989 0,989 0,989 0,989	$\begin{array}{c} 0,36 \ \pm \ 0,02 \\ 0,43 \ \pm \ 0,03 \\ 0,46 \ \pm \ 0,03 \\ 0,38 \ \pm \ 0,02 \end{array}$	$\begin{array}{c} 0,74 \ \pm \ 0,02 \\ 0,96 \ \pm \ 0,04 \\ 0,95 \ \pm \ 0,04 \\ 0,73 \ \pm \ 0,02 \end{array}$	- + +	0,056 0,067 0,069 0,054	17,5 16,0 16,7 17,2	- - +	

Linienpaar Ni 301,20/Mg 291,55

Auswertungsart	Parameter						
der ⊿Y-Werte	r	$A_{X,R} \pm s_{A_{X,R}}$	$B_X \pm s_{B_X}$	$t_{B_X=1}$	<i>\$</i> ⊿¥	sc/c [%]	$t_{\rm LIN}$
$ \begin{aligned} \Delta Y &= Y_{X,L+U} - Y_{R,L+U} \\ \Delta Y &= Y_X - Y_{R,L+U} \\ \Delta Y &= Y_X - Y_R \\ \Delta Y &= Y_{X,L+U} - Y_R \end{aligned} $	0,986 0,990 0,989 0,986	$\begin{array}{c} 0,59 \ \pm \ 0,03 \\ 0,66 \ \pm \ 0,03 \\ 0,72 \ \pm \ 0,03 \\ 0,65 \ \pm \ 0,03 \end{array}$	$\begin{array}{c} 0,73 \pm 0,02 \\ 0,96 \pm 0,03 \\ 0,95 \pm 0,05 \\ 0,74 \pm 0,02 \end{array}$	++	0,059 0,065 0,067 0,061	18,7 15,6 16,2 19,1	- ++ -

Verdünnungsverhältnis die Selbstabsorptionsprozesse beim Matrixbildenden-Element schon von mäßigerer Bedeutung sind.

Demgegenüber ergab eine Auswechslung der Bezugslinien (Tabelle 5) bei demselben

Tabelle 5

Vergleich der Parameter der Kalibrationsfunktionen für die analytischen Linienpaare V/Pd

Auswertungsart		Parameter					
der $\varDelta Y$ -Werte	r	$A_{X,R} \pm s_{A_{X,R}}$	$B_X \pm s_{B_X}$	$t_{B_X} = 1$	8 ₄ Y	8c/c [%]	$t_{\rm LIN}$
$\Delta Y = Y_{X,L+U} - Y_{R,L+U}$	0,989	$0,54\pm0,02$	$0,74 \pm 0,02$	-	0,052	16,4	
$\Delta Y = Y_X - Y_{R,L+U}$	0,989	$0,54 \pm 0,02$	$0,79 \pm 0,02$	1. 1	0,058	16,9	
$\Delta Y = Y_X - Y_R$	0,989	$0,58 \pm 0,02$	$0,80 \pm 0,02$		0,057	16,6	
$\Delta Y = Y_{X,L+U} - Y_R$ $\Delta Y \equiv \Delta S = S_{Y,L+U} - $	0,991	0,55 \pm 0,02	$0,73 \pm 0,02$	-	0.049	15,4	
$-S_{R,L+U}$	0,991	$0,60 \pm 0,02$	0,84 + 0,02		0.054	14,9	

Linienpaar V 318,54/Pd 328,73

Auswertungsart	Parameter						
der ΔY -Werte	r	$A_{X,R} \pm s_{A_{X,R}}$	$B_X \pm s_{B_X}$	$t_{B_X} = 1$	<i>8</i> ∆ <i>Y</i>	<i>s_c/c</i> [%]	$t_{\rm LIN}$
$\Delta Y = Y_{X,L+U} - Y_{R,L+U}$	0,994	$0,82\pm0,02$	$0,74\pm0,02$	-	0,040	12,4	
$\Delta Y = Y_X - Y_{R,L+U}$	0,993	$0,83 \pm 0,02$	$0,79 \pm 0,02$	_	0,044	12,9	+
$\Delta Y = Y_X - Y_R$	0,993	$0,90\pm0,02$	$0,81 \pm 0,02$		0,047	13,3	+
$ \Delta Y = Y_{X,L+U} - Y_R \Delta Y = \Delta S = S_{X,L+U} - $	0,992	0,88 ± 0,02	$0,75 \pm 0,02$	-	0,046	14,1	
$-S_{R,L+U}$	0,996	0,92 \pm 0,02	0,82 \pm 0,04		0,038	10,6	+

Tabelle 6

Ergebnisse der Auswertung von Streudiagrammen

Analytische Linienpaare	Ni 301,20 Pd 302,79	Cr 298,08 Pd 302,79	Cr 302,16 Pd 302,79	V 318,54 Pd 302,79	V 318,54 Pd 328,73
Parameter der Stre	ouellipsen				· · · · · ·
r s_{Y_X} s_{Y_R} $s_{\Delta Y}$ w_{orth} w_X w_R	0,91 0,07 0,07 0,03 0,98 0,91 0,91	0,90 0,06 0,06 0,03 0,99 0,91 0,89	0,96 0,07 0,07 1,02 0,94 0,98	0,44 0,07 0,04 0,04 1,28 0,38 0,54	0,89 0,06 0,05 0,03 1,11 0,76 1,05
Testprüfungen					
$t_{r=0}$ $\alpha = 0,001$ $t_{SYX} = s_{YR}$ $\alpha = 0.01$	+	- +	- +	_	- +
$\begin{array}{l} \alpha = 0,01 \\ t_{w_X=w_R} \\ \alpha = 0,01 \end{array}$	+	+	+	-	-
$\begin{array}{l}t_{s_{Y_X}=s_{dY}}\\\alpha=0.01\end{array}$	$- s_{\Delta Y} < s_{Y_X}$	$-s_{\Delta Y} < s_{Y_X}$	$- s_{\Delta Y} < s_{Y_X}$	+	$-s_{AY} < s_{YX}$

Element schon bedeutende Differenzen. Diese Differenzen ergeben sich durch eine ganz schwache Korrelation und Regression, die die Parameter der Streudiagramme des V 318,5/Pd 302,8 Linienpaars aufweisen (Tabelle 6). Diese mäßigere Korrelation und Regression dürfte auf die Tatsache zurückzuführen sein, daß sich die Anregungsspannungen (Tabelle 2) der verglichenen Linien schon um ca. 1,10 eV unterscheiden. Der Wert des orthogonalen Regressionskoeffizienten ist schon bedeutend unterschiedlich von Eins (Tabelle 6). Das aber bedeutet, daß zwischen den Y_X - und Y_R -Werten nur ein mäßiger stochastischer Zusammenhang besteht.

Der Vergleich der Kalibrationsfunktionen, die auf Grund der vier Varianten der Gewinnung der ΔY -Werte erhalten wurden, zeigt schon deutliche Unterschiede (Tabelle 3 bis 5). Die Kalibrationsfunktionen, die aus nichtkorrigierten $Y_{X,L+U}$ und $Y_{R,L+U}$ -Werten entstanden, besitzen fast regelmäßig die niedrigsten s_{AY} -Werte. Die Richtungstangenten der Geraden sind für diese Auswertung der ΔY -Werte immer signifikant kleiner als Eins und der Linearitätstest für den untersuchten Massenverhältnisbereich ist oft negativ. Die Untergrundkorrektur an der analytischen Linie, oder aber gleichzeitig an der Bezugslinie verschlechtert teilweise die s_{dY} -Werte, hebt aber bedeutend die B_X --Werte, die in einigen Fällen signifikant mit Eins übereinstimmen. Dadurch kompensieren sich die Einflüsse auf die Werte der relativen Präzisionsbestimmung der Massenverhältnisse, und das s_c/c [%]-Glied bleibt entweder unverändert oder sinkt. Die Linearität der durch Untergrundkorrektur gewonnenen Kalibrationsgeraden wurde in den meisten Fällen mit 95% iger statistischer Sicherheit bestätigt. Diese Behauptung steht in guter Übereinstimmung mit der neuesten veröffentlichten Angabe [9]. Eine Untergrundkorrektur, die ausschließlich an der Bezugslinie durchgeführt wird, verschlechtert im allgemeinen teilweise alle Wertungsparameter.

Ein Vergleich der Werte der $A_{X,R}$ - und B_X -Parameter, die durch vier genannte Auswertungsvarianten der ΔY -Werte gewonnen wurden, ergab, daß die Untergrundkorrektur die $A_{X,R}$ -Werte immer abändert, was auch eine logische Folge ist. Die Standardabweichungen der Grundparameter bleiben jedoch im Rahmen der Meßgenauigkeit unverändert. Die Einführung der Untergrundkorrektur ausschließlich bei der analytischen Linie sowie auch die Korrektur der beiden Linien, die das analytische Linienpaar bilden, verursachten immer eine signifikante Hebung der B_X -Werte. Die ausschließliche Verwendung der Untergrundkorrektur bei der Bezugslinie bietet keine bedeutenden Vorteile. Diese Geraden, im Vergleich zu den ersten drei Geradetypen, sind unter den angewandten Bedingungen durch die Abänderung der $A_{X,R}$ -Parameter nicht nur parallel verschoben, sondern sie verlaufen durch die Abänderung der B_X -Parameter, unter unterschiedlichen Richtungstangenten.

Die Verwendung der Untergrundintensität resp. deren Logarithmus $(Y_{R,V}$ -Wert) anstatt der Bezugsintensität einer Spektrallinie, unabhängig davon ob man nichtkorrigierte $Y_{X,L+V}$ - oder korrigierte Y_X -Werte verwendet, hat gezeigt, daß die Richtungstangenten immer durch von Eins bedeutend kleinere Werte gekennzeichnet sind. Die s_{dY} -Werte stiegen hauptsächlich dann an, wenn mit korrigierten Y_X -Werten gearbeitet wurde. Die Linearität der erhaltenen Geraden ist aber fraglich, da die Teste nur in seltenen Fällen positive Resultate geliefert haben, trotzdem daß der Korrelationskoeffizient stets oberhalb 0,95 liegt. Im Vergleich mit den konventionellen Kalibrationsfunktionen ist festzustellen, daß man nur bei der Anwendung der Untergrundintensität anstatt der Bezugslinienintensität durchaus unterschiedlich verlaufende Gerade bekommt, da nicht nur die Werte der $A_{X,R}$ - aber auch die Werte der B_X -Parameter abgeändert wurden. Die relative Präzision der Massenverhältnisbestimmung sinkt bei diesen Geraden ganz bedeutend. Falls man aber anstatt der ΔY -Werte bei der Aufstellung der Kalibrationsgeraden entweder die nichtkorrigierten $Y_{X,L+U}$ -Werte oder die korrigierten Y_X -Werte verwendet, beobachtet man folgende Erscheinungen. Die Werte der $s_{\Delta Y}$ -Standardabweichungen steigen an, und die relative Präzision der Massenverhältnisbestimmung sinkt. Die Linearität der getesteten Funktionen wurde dagegen bereits teilweise bestätigt, aber eine klare Regelmäßigkeit, ob es eine für korrigierte Funktionen typische Erscheinung ist, konnte nicht bestätigt werden. Der Vergleich der erhaltenen Geraden mit den konventionellen Kalibrationsgeraden zeigt, daß die B_X -Werte nur unbedeutend gesenkt wurden. Diese Änderung ist aber prägnanter bei dem $A_{X,R}$ -Parameter, und darum muß man in diesen Fällen mindestens mit der Parallelverschiebung der Geraden rechnen.

Die Verwendung der ΔS - und $S_{X,L+U}$ -Werte anstatt der ΔY -Werte, wobei für die Aufstellung der Kalibrationsfunktionen ausschließlich vom linearen Teil der Kalibrationskurve der photographischen Emulsion stammende S-Werte benützt wurden, führte zunächst zu signifikant kleineren B_X -Werten als Eins. Die $s_{\Delta S}$ -Standardabweichungswerte schwanken zwischen den Nennwerten von 0,04 bis 0,05 und diese Werte sind im Durchschnitt gleich den $s_{\Delta Y}$ -Werten. Das aber bedeutet, daß die relative Präzision der Massenverhältnisbestimmung für die photographischen Emulsionen, deren γ -Wert mit Eins gleich ist, auch unverändert blieb. Dagegen liegen die Werte der s_S -Standardabweichungen bedeutend höher, und die Präzision der Kalibrationsfunktionen, die von S_X -Werten berechnet wurden, ist schon bedeutend schlechter. Der Vergleich der erhaltenen Geraden mit den konventionellen hat gezeigt, daß bei der Verwendung von ΔS -Werten anstatt der ΔY -Werte eine gleichzeitige Änderung der beiden Parameter feststellbar ist. Bei der Verwendung von $S_{X,L+U}$ -Werten anstatt der $Y_{X,L+U}$ -Werte ist dagegen nur eine teilweise Änderung der B_X -Parameter feststellbar.

Schlußfolgerung

Als Endresultat ist hervorzuheben, daß diejenigen Kalibrationsfunktionen, die aus solchen ΔY -Werten konstruiert sind, wo die Intensität der analytischen Linie auf die Untergrundintensität korrigiert wurde, immer signifikant linear verlaufen. Ihre Richtungstangenten stimmen entweder signifikant mit Eins überein, oder ihre Werte nähern sich diesem Optimalwert. Die Werte der s_{dY} -Standardabweichungen schwanken zwischen den Nennwerten von 0,02 bis 0,07 und die Werte der relativen Präzision der Massenverhältnisbestimmungen befinden sich in der Spannweite von ± 4 bis $\pm 16\%$.

Eine ausschließlich bei der Bezugslinie verwendete Untergrundkorrektur ist nur dann zu empfehlen, wenn der Untergrund in der Umgebung der Bezugslinie nicht nur hohe, sondern auch sehr schwankende Schwärzungswerte liefert.

Die Anwendung des Untergrundes als Bezugsintensität verschlechtert die Werte der relativen Präzision der Massenverhältnisbestimmung. Dieser Auswertungsalgorithmus ist nur dann zu empfehlen, wenn es sich um keine überaus genaue Analyse handelt, oder aber in Fällen, wenn die Anwendung der Linienintensität als Bezugsintensität nicht möglich ist.

Letztens kann festgestellt werden, daß die direkte Anwendung der S-Werte oder der ΔS -Werte für die Festlegung der Kalibrationsfunktionen, auch bei einer Beschränkung auf S-Werte, die aus dem sog. proportionellen Teil der Kalibrationskurve der photographischen Emulsion stammen, keine Vorteile bietet.

Die Einflüsse der Untergrundkorrektur auf die Richtungstangenten der linearverlaufenden Kalibrationsfunktionen werden im weiteren verfolgt und später einer ausführlichen Diskussion unterzogen.

Literatur

- Flórián, K., Lavrin, A. und Matherny, M., Proc. XVI. Coll. Spectrosc. Internat., Vol. II, S. 37. Heidelberg 1971.
- 2. Kaiser, H., Spectrochim. Acta 3, 297 (1947/1949).
- 3. Flórián, K., Lavrin, A. und Matherny, M., Chem. Zvesti 27, 623 (1973).
- 4. Flórián, K., Lavrin, A. und Matherny, M., *Rechenprogramm KF-FLM-72*, unveröffentlichte Angaben.
- Zajdel, A. N., Prokofjew, V. K., Rajskij, S. M., Slavnyj, V. A. und Šrejder, E. Ja., *Tablicy spektralnych linij.* (Tabellen der Spektrallinien.) Izd. Nauka, Moskau 1969.
- 6. Holdt, G. und Strasheim, A., Appl. Spectrosc. 14, 64 (1958).
- 7. Matherny, M., Chem. Zvesti 24, 112 (1970).
- 8. Lavrin, A. und Matherny, M., Rechenprogramm SD-LM-69, unveröffentlichte Angaben.
- Zimmer, K. und Szabó, E., Proc. XV. Coll. Spectrosc. Internat., Vol. IV, S. 55. Madrid. 1971.

Übersetzt von M. Matherny

.