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The direct evaluation of the internal diffusion coefficient from experi­
mental adsorption kinetic curve is possible, only when this coefficient 
is constant. In such a case, the known analytical solution of the 2nd Fick's 
law may be used. However, this assumption is not mostly satisfied. Then 
the concentration dependence of diffusion coefficients is to be evaluated. 
So far, only graphical methods for a plane sheet have been published. 

In this paper a computer-suitable iteration method for deducing con­
centration dependence of diffusion coefficient from the sorption data is 
described. The idea is based on the Crank's method for progressing sorption 
experiments. 

На основе экспериментально полученных адсорбционных кинетических 
кривых можно прямо оценить внутренние коэффициенты диффузии только 
в том случае, если они являются константами. В этом случае можно при­
менять второй закон Фика. Однако это предположение в большинстве 
случаев недостаточно. В некоторых случаях необходимо определить зави­
симость коэффициентов диффузии от концентрации. До сих пор были 
опубликованы только плоскостные графические методы. 

В этой статье и рассчетах па основе подходящего итерационного метода 
для выбранных концентраций приводится зависимость коэффициента 
диффузии от сорбционных данных. Метод основывается на теории Кранка, 
которая применяется для современных сорбционных экспериментов. 

One of the most important factors exerting influence upon the performance of 
any adsorption device appears to be the mass transfer rate. If the resistance of 
interface and of the adsorption on the active centres is negligible, only transport 
of molecules of adsorbate from the bulk liquid to the interface (external diffusion) 
and from the interface into the inside of particle (internal diffusion) has to be consi­
dered. For the description of the external diffusion only the rate equation 
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r = ke{p-pt), (1) 

is commonly used; on the other hand several mathematical models for the description 
of the internal diffusion can be used. The physically justified one is the 2nd Fick's 
law 

dC 
= div(DgradC). (2) 

dt 

If the particle of a sorbent is isotropic (with no prevailing orientations of pores), 
the diffusion coefficient is a scalar. 

Since, in general, the diffusion coefficient is concentration dependent, it is insuffi­
cient to know only its value at given conditions, but it is necessary to know the 
concentration dependence of the diffusion coefficient in the whole concentration 
interval. The aim of this paper was to develop the computer-suitable method for 
deducing diffusion coefficient—concentration dependence on the basis of results 
of the so-called '• progressing sorption experiments" (in the subsequent experiments 
we move forward step by step in concentration, each new sorption process start ing 
at the concentration where the previous one finished). 

If the diffusion coefficient is constant and the particle has a simple geometrical 
shape (plane sheet, infinite cylinder, their intersections, or a sphere), there exists 
an analytical solution of eqn (2) 

q = f{Fo). (3) 

For the actual forms of relation (3) for the geometries mentioned above see [2]. 
For each experimental point (tf, qi) it is possible to calculate the corresponding 
value of Fo(qi) by numerical solution of eqn (3) and hence of Di 

Fo(q>) 
DJ

(X = I" - — - (4) 
t 

For D = constant, the whole kinetic curve is characterized by a single value of 
the diffusion coefficient Dex calculated on the basis of the half-time values [i.e. 
time corresponding to q = 0.5), or from the initial gradient of relation q = f(]/ř) [1"|. 

If D is not constant, there is no analytical solution of eqn (2) and the shape of 
the kinetic curve at given diffusion coefficient—concentration dependence can be 
obtained only by numerical integration of eqn (2). Therefore a direct computation 
of diffusion coefficient—concentration dependence is not possible and some iteration 
method has to be used. The values of the diffusion coefficients obtained from the 
values of the half-time or the initial gradient according to the equations valid for 
a constant diffusion coefficient are to be interpreted as mean values for the given 
concentration interval. 

The main idea of the iterative method described in this paper is based on the method 
published by Crank [1] for "progressing sorption experiments" I t s basical logical 
scheme is as follows: 

1. For each concentration interval <Cfc_i, (?#>, the mean value of the diffusion 
coefficient (Djc)ex is calculated in a suitable way from the experimental kinetic curve. 
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2. The first approximation of the relation 

с 
1(C) = f D dC 

Čo 

for concentrations C\, C2, is estimated by means of the equation 

к 
Il(Ck) = 2 Wez(Cb- C*_i). 

(6) 

(0) 

3. The г'-th approximation of the dependence of D on С is obtained by differentia­
tion of the relation (5) 

Di(C) cum 
dC 

(7) 

4. The "theoretical" kinetic curves (8) are calculated by numerical integration 
of eqn (2) using concentration dependence Df(C) obtained in the previous step 

qki = ffci(t). (8) 

5. The mean diffusion coefficients for all intervals (Djc)i are calculated in the same 
way as in step 1. If a satisfactory agreement between the values (D/c)i and (Djc)ex 
has been achieved, the computation process is finished. Otherwise we proceed as 
follows: 

6. Relation is assembled 

Ii = <Pi((Ďth) (9) 

by means of which the next approximation of the relation 1(C) is estimated as 

J i + i = <pt((Dk)ex) (10) 

and the calculation proceeds starting from step 3 (Fig. 1). 
Crank [1] suggested to calculate (Dk)ex from the half-time or initial gradient using 

2 9 2 

Fig. 1. Determination of the new appro­
ximation of the relation 1(C) according 

to point 6. 
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the formulas for constant diffusion coefficient and corresponding geometry. This 
way of estimation of (Djc)ex, however, does not profit from all information contained 
in the experimental kinetic curve. This is unfavourable mainly in the case of a very 
fast adsorption when there are only few experimental points on the kinetic curve. 
In this case it is impossible to estimate half-time or initial gradient with a sufficient 
accuracy and for estimation of (Djc)ex the following procedure is recommended. 

a) The value of D]
ec is calculated according to eqn (3) and (4) for each experimental 

point. _ 
b) {Dk)ex is evaluated as the integral mean of Dex(q) over the whole concentration 

interval 

(Dk)e. 
1 

Oik — ßk áfc 

j' Dexdq. (П) 

The integration limits are chosen according to the distribution of experimental 
points along the kinetic curve. 

Table 1 

Flow chart of the program 

Input of experimental data for к = 1, Ck points 
(tj, ql)k 

Subroutine 1 (computation of (Dk)ex) 

I 
| It(Ck) = S (Dk)cx (Ck - Cfc_i); к = 1, . . ., m 
I H = l 

Subi outine 2 (numerical differentiation of function denned 
discretely) 

1 
Subroutine 3 (integration of diffusion equation) 

I 
Subroutine 1 (computation of (Dk)i) 

1 
1 Comparison of 

! (Dk)i and (Dk)ec 

Satisf 

Unsatisfactory | -D i- г хт_ i J

 > Reading of the vah 
, 1 from the relation 

agreement ! ,,т\ \ \ r i 
6 = <pi{(Dk)i) for (, 

actory 

les Iui 
_Ii = 

Vk)ex 

i agreement 

E n d 
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Description of the program 

Flow chart of the program is in Table 1. The program contains three subroutines: 
Subroutine 1: Computation of the mean value of diffusion coefficients from the 

kinetic curve. 
Subroutine 2: Numerical differentiation of the discretely defined function. 
Subroutine 3 : Integration of diffusion equation (2). 
This general scheme can be used for particles of any shape. For spherical particles 

the following scheme is valid. 

Subroutine 1 

The analytical solution of eqn (2) for constant diffusion coefficient can be expressed 
in the form of the infinite series 

6 " 1 
q = 1 У exp(-D n2 я 2 t/l2). (12) 

я2

 w = 1 п°-

For each point (tf, qf) the corresponding value of D'ex is computed from (12) using 
Newton's method numerically. The mean diffusion coefficient for the corresponding 
kinetic curve in the fc-th concentration interval is computed from eqn (11). The 
integration is performed using the trapesoid rule. 

Subroutine 2 

Since the measured values are influenced by experimental errors, differentiation 
is performed according to the method published by Lanczos [3], which makes it 
possible to eliminate the influence of random errors to some extent. The derivative 
a t the point (xi, yi) is computed as the derivative of a parabola, which is computed 
from t h e points (я*_ 2, y ť_2), (хг-i, yt-i), (a?f,yi), (хм,ум), and (xi+2,yi+2) by the 
least-squares method. 

Subroutine 3 

The eqn (2) for spherical particles and spherically symmetric coordinate field 
has the form 

\dr\ 8r/j 

дС _ i (д/ . а с 

dt 

This partial differential equation was interpreted by the finite difference method. 
Since an incorrect choice of time interval results in numerical instability of the 

computation process, the choice of its correct value is included in the subroutine 3. 
I n t h e first case, the value selected was too high and when numerical instability 
appeared, computation_was repeated with the half value. 

The agreement of (Djc)i and (Dk)ex was considered to be satisfactory, if for a t 
least ra(l — ô) values the inequalit}^ 

(Dk)i - {Dk)ex 
< e Щ) 

(DI:)ex 
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w a s satisfied. T h e va lues ô a n d e were chosen w i t h r e spec t t o t h e a c c u r a c y of expe ­
r i m e n t a l d a t a . 

T h e v a l u e s of Ii+\ we re e s t i m a t e d a c c o r d i n g t o r e l a t i o n (10) b y l i nea r i n t e rpo la ­
t i on . 

Symbols 

<7 concentra t ion of adsorba te in adsorbent 

D diffusion coefficient 
D mean value of diffusion coefficient 

Dt 
F о = F o u r i e r n u m b e r 

I value defined by eqn (5) 

ke gas film mass- t ranspor t coefficient 

/ chara?ter is t ic l inear dimension 

n u m b e r of kinetic curves (concentrat ion steps) dur ing a progressing sorpt ion 

exper iment 

p par t ia l pressure in t h e bulk of gas 

PÍ par t ia l pressure on the interface 
q relat ive a m o u n t adsorbed in t ime t 
r spherical coordinate 
ř mass transfer r a t e 
/ t i m e 

Subscr ipts 

exper imenta l value 
t h e value is re lated to t h e г-th i te ra t ion 

j t h e value is re lated to t h e ^'-th po int of kinetic curve 

к t h e value is re lated to t h e k-t\\ kinetic curve 
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