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The direct evaluation of the internal diffusion coefficient from experi-
mental adsorption kinetic curve is possible, only when this coefficient
is constant. In such a case, the known analytical solution of the 2nd Fick’s
law may be used. However, this assumption is not mostly satisfied. Then
the concentration dependence of diffusion coefficients is to be evaluated.
So far, only graphical methods for a plane sheet have heen published.

In this paper a computer-suitable iteration method for deducing con-
centration dependence of diffusion coefficient from the sorption data is
described. The idea is based on the Crank’s method for progressing sorption
experiments.

Ha ocHOBe 3KCIepHMeHTaabHO MOIYUEHHBIX aJCOPOLIOHHBIX KUHETIYeCKHX
KPUBBIX MOKHO NPAMO OLEHHUTh BHYTpeHHIe KoaduunenTs Juddysnu ToIsKo
B TOM Ccllyyae, ecJM OHII ABIAITCA KOHCTAaHTaMH. B aToM ciyuae Mo#HO npu-
MeHATb BTopoii 3akon ®Puka. OpHaKo 3TO NpennosoAeHie B OO0JbLIIHCTBE
cllyyaeB HeJOCTaTO4YHO. B 1eRoTOpBIX ciyyaax HeoOXOAMMO OIpedeiTb 3aBH-
cumocTb KoagduientoB auddysnu or KoHumentpammu. Jdo cux nop ObBIM
onyOI1MKOBaHbEl TOJIbKO NMI0CKOCTHEIE TpafMyecKile MeTORbI.

B oroit crarbe 1 paccuerax 11a 0CHOBe MONXOJALIEN0 HTEPALIIOHHOTO METOXA
AnsA BHIOpAHHBIX KOHLEHTPAUMIi NPUBOZNTCA 3aBHCUMOCTh Kod(duieHTa
auddysun ot copOUMOHHBIX JaHHBIX. MeTox ocHOBBIBaeTcsa Ha Teopun Hpanka,
KOTOpafA NMpPHUMEHAETCA [7A COBPEMEHHBIX COPOLIIOHHBIX HKCIEPIMEHTOB.

One of the most important factors exerting influence upon the performance of
any adsorption device appears to be the mass transfer rate. If the resistance of
interface and of the adsorption on the active centres is negligible, only transport
of molecules of adsorbate from the bulk liquid to the interface (external diffusion)
and from the interface into the inside of particle (internal diffusion) has to be consi-
dered. For the description of the external diffusion only the rate equation

* Presented at the lst Czechoslovak Seminar on Adsorption, Bratislava, June 4—5,
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7= ke(p — pi1), (1)

is commonly used ; on the other hand several mathematical models for the description
of the internal diffusion can be used. The physically justified one is the 2nd Fick’s
law

oC )

— = div(D grad C). (2)

ot

If the particle of a sorbent is isotropic (with no prevailing orientations of pores),
the diffusion coefficient is a scalar.

Since, in general, the diffusion coefficient is concentration dependent, it is insuffi-
cient to know only its value at given conditions, but it is necessary to know the
concentration dependence of the diffusion coefficient in the whole concentration
interval. The aim of this paper was to develop the computer-suitable method for
deducing diffusion coefficient—concentration dependence on the basis of results
of the so-called ““progressing sorption experiments’” (in the subsequent experiments
we move forward step by step in concentration, each new sorption process starting
at the concentration where the previous one finished).

If the diffusion coefficient is constant and the particle has a simple geometrical
shape (plane sheet, infinite cylinder, their intersections, or a sphere), there exists
an analytical solution of eqn (2)

q = f(Fo). (3)

For the actual forms of relation (3) for the geometries mentioned above see [2].
For each experimental point (t/, ¢7) it is possible to calculate the corresponding
value of Fo(g/) by numerical solution of eqn (3) and hence of D

Dl =12, (4)

For D = constant, the whole kinetic curve is characterized by a single value of
the diffusion coefficient D, calculated on the basis of the half-time values (i.e.
time corresponding to ¢ = 0.5), or from the initial gradient of relation ¢ = f( Vt) [1].

If D is not constant, there is no analytical solution of eqn (2) and the shape of
the kinetic curve at given diffusion coefficient—concentration dependence can be
obtained only by numerical integration of eqn (2). Therefore a direct computation
of diffusion coefficient —concentration dependence is not possible and some iteration
method has to be used. The values of the diffusion coefficients obtained from the
values of the half-time or the initial gradient according to the equations valid for
a constant diffusion coefficient are to be interpreted as mean values for the given
concentration interval.

The main idea of the iterative method described in this paper is based on the method
published by Crank [1] for “progressing sorption experiments” Its basical logical
scheme is as follows:

1. For each concentration interval (Cy_1, Cy), the mean value of the diffusion
coefficient (Dy)es is calculated in a suitable way from the experimental kinetic curve.
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2. The first approximation of the relation

o
I(C) = [ DdC (5)
Co
for concentrations Cy, Cs, is estimated by means of the equation
k
I (Ck) = Z (DkYez (Cr — Cr_1). (6)

n=1

3. The ¢-th approximation of the dependence of D on C is obtained by differentia-
tion of the relation (5)

dz;(C)
dc

Di(C) = (7)

4. The “theoretical” kinetic curves (8) are calculated by numerical integration
of eqn (2) using concentration dependence D;(C) obtained in the previous step

gri = fra(t). C)

5. The mean diffusion coefficients for all intervals (Dy); are calculated in the same
way as in step 1. If a satisfactory agreement between the values (Dg); and (Dg)ex
has been achieved, the computation process is finished. Otherwise we proceed as
follows:

6. Relation is assembled

I; = @i((Dr)i) (9)
by means of which the next approximation of the relation I(C) is estimated as
Ii+1 = ipi((ﬁls)m) (10)

and the calculation proceeds starting from step 3 (Fig. 1).
Crank [1] suggested to calculate (Dg).; from the half-time or initial gradient using

I

[l'ol

Fig. 1. Determination of the new appro-
ximation of the relation I(C) according
to point 6.

(Dylex (Dy);
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the formulas for constant diffusion coefficient and corresponding geometry. This
way of estimation of (Dg)ez, however, does not profit from all information contained
in the experimental kinetic curve. This is unfavourable mainly in the case of a very
fast adsorption when there are only few experimental points on the kinetic curve.
In this case it is impossible to estimate half-time or initial gradient with a sufficient
accuracy and for estimation of (Dy)., the following procedure is recommended.
a) The value of D], is calculated according to eqn (3) and (4) for each experimental
point.
b) (Dg)es is evaluated as the integral mean of Dey(q) over the whole concentration
interval
_ 1 B
(Di)ez = - ' De; dq. (11)
ar — Bk

The integration limits are chosen according to the distribution of experimental
points along the kinetic curve.

Table 1

Flow chart of the program

agreement

| Input of experimental data for k =1, Cr points
! (, qj)k‘ !
' Subroutine 1 (computation of (Dg)ez)
¥
| 5 (5 |
Ii(Cy) = El(Dk)er (Cr — Cra)s k=1,...,m !
| n=
v
Subroutine 2 (numerical differentiation of function defined |, ___
discretely)
Subroutine 3 (integration of diffusion equation) ‘
v
’ Subroutine 1 (computation of (Dy);) ]
; - l Unsatisfactor, |
Comparison of ! nsatisiactory Reading of the values I;;1
(Dx): and (Dr)ec | —H from the_ relation_ I; = |

= @i((Dr):) for (Di)ex
Satisfactory o
‘1’ agreement
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Description of the program

Flow chart of the program is in Table 1. The program contains three subroutines:

Subroutine 1: Computation of the mean value of diffusion coefficients from the
kinetic curve.

Subroutine 2: Numerical differentiation of the discretely defined function.

Subroutine 3: Integration of diffusion equation (2).

This general scheme can be used for particles of any shape. For spherical particles
the following scheme is valid.

Subroutine 1

The analytical solution of eqn (2) for constant diffusion coefficient can be expressed
in the form of the infinite series
6 2 1 )
— exp(—D n2 a2 t/l2). (12)

2
= =1 N

7=1-—

For each point (¢, ¢/) the corresponding value of D, is computed from (12) using
Newton’s method numerically. The mean diffusion coefficient for the corresponding
kinetic curve in the k-th concentration interval is computed from eqn (11). The
integration is performed using the trapesoid rule.

Subroutine 2

Since the measured values are influenced by experimental errors, differentiation
is performed according to the method published by Lanczos [3], which makes it
possible to eliminate the influence of random errors to some extent. The derivative
at the point (z;, y;) is computed as the derivative of a parabola, which is computed
from the points (%2, yi-2), (%i-1, ¥i-1), (Ti, ¥i), (Tis1. Yi+1), and (Tiy2, Yis2) by the
least-squares method.

Subroutine 3

The eqn (2) for spherical particles and spherically symmetric coordinate field
has the form

fgz-l_fi(p(c*) r ﬁ)} (13)
ot 72 |er or

This partial differential equation was interpreted by the finite difference method.
Since an incorrect choice of time interval results in numerical instability of the
computation process, the choice of its correct value is included in the subroutine 3.
In the first case, the value selected was too high and when numerical instability
appeared, computation was repeated with the half value.
The agreement of (Dg); and (Dg)er was considered to be satisfactory, if for at
least m(l — ) values the inequality

B 3 — (D c)ex |
‘ (_L)‘(B_)(D_*_)_ P (12)
k)ex
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was satisfied. The values  and ¢ were chosen with respect to the accuracy of expe-
rimental data.
The values of I;+, were estimated according to relation (10) by linear interpola-

tion.

Pr
q

=

Symbols

concentration of adsorbate in adsorbent
diffusion coefficient
mean value of diffusion coefficient

Fourier number

value defined by eqn (9)

gas film mass-transport coefficient
characteristic linear dimension
number of kinetic curves (concentration steps) during a progressing sorption
experiment

partial pressure in the bulk of gas
partial pressure on the interface
relative amount adsorbed in time ¢
spherical coordinate

mass transfer rate

time

Subsecripts

experimental value

the value is related to the ¢-th iteration

the value is related to the j-th point of kinetic curve
the value is related to the k-th kinetic curve
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