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An equation for the dependence of activities of a given substance in liquid and solid 
solutions on the temperature of primary crystallization of the substance was developed 
on the basis of the Planck function. The analysis of the course of the liquidus curve near 
the melting point of the pure substance shows that the objective difference between the 
calorimetrically and cryometrically determined values of the melting enthalpy of the 
discussed substance is a sufficient (though not necessary) condition for the existence of 
limited solid solutions. 

На основании функции Планка было выведено уравнение для зависимости 
активностей данного вещества в жидком и твердом растворах от температуры 
первичной кристаллизации. Анализ хода кривых плавкости вблизи точки плавле
ния чистого вещества показывает, что объективная разница между калориметри
чески и криометрически найденым значением энтальпии плавления, является 
достаточным (хотя и не необходимым) условием существования ограниченных 
твердых растворов в системе данного типа. 

Even though the basic relations for the equilibrium in systems of the given type 
are known [1—3], so far no detailed analysis of the derivation of these relations 
seems to be performed, nor the course of the liquidus and solidus curves for high 
concentrations of the basic substances has been analyzed. 

The dependence f(a),a*) = F(Ti) for systems of the given type 

Let us consider a binary condensed system at P = const in which limited solid 
solutions exist. For thermodynamic equilibrium in points k k l" and kk2" (Fig. 1) with 
respect to the component B, it holds 

B'*±B»; О'в = 0-В 

and thus also W D W O 

(In further considerations we omit the index kkB".) 
With an infinitesimal change of the independent variables T and P both sides of 

eqn (1) also change, viz., the term on the left side by d(G'/r)C 4, that on the right 
side by d(G77\ q . For equilibrium it again holds 

L r J.. L т \ 
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Fig. I. Phase diagram of a binary condensed 
system A—B, in which the mutual limited solu

bility in the solid state of components occurs. 

(GV 71 4 + d (GV 7 1 ч = (GV Г)сч + d( GV Т)сч (2) 

then with respect to eqn (1) the relation is valid 

d(G7r)C 4 = d(GVr)C4 (3) 

0* = 1(Т,Г)Р; Gs = f(r,jr s)p, 

d(G4T\4 = [d{&!T)ldT]„.x dT^ + [d(G4T)/dx]P.T-dxC4 

Choice of the standard states 

Let us take as standard state the state of the pure undercooled substance В at the 
temperature T Thus if лгв—> 1, ав-»*в—• 1- The exact differential on the left side 
of eqn (3) can be further rearranged as follows 

d(G7r)C 4 = [a(G<M + RT In я'/Г)/ЗГ]Р., dTC4 + 

+ [d(G"' + RTIn a'/T)/dx]p.r-dx^ , 

d(G , /r) e 4 = [3(G"Vr)/9r] P i -dr c 4 + Ä[31nfl l /3r]^-d7;4 + 

+ [3(Gol/r)/3x],,r-d*cq + R[d In а'/дх]Р.т-ахсц 

After applying the isobar equation we obtain 

H" 
d ( G 7 r ) c g = - ^ dr c 4 + R din < (3a) 

as the equation holds 
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LIMITED SOLID SOLUTIONS 

d In a\T, x)P = [Э In al/3T]Pjc • dT+ [Э In al/dx]PT • dx 

Analogically we find that 

d ( G 7 r ) c q = - ^ d r e q + /?dln*: q (3b) 

In this case the standard state of the pure solid substance В at the temperature T 
has been chosen. Thus it holds that if xs

B-*l, яв—>*S

B—>1. Introducing the 
corresponding term from eqns (За) and (3b) into eqn (J), we get 

- (H°A/ T) d re q + R d In < = - (//»••/ T) d Teq + Ä d In *:q 

Rearranging, 

ď In (al/a% = (AH0Ma/RTl) d r c q , (4) 

where /Щ"-"0-1 = //"•'-i/0-' 

Thus we have established the differential form of the fundamental equation 

f(*;,O e q = F(7;.) 

By integrating eqn (4) we obtain 

d l n a 1 - J dln«- = j ^ ^ - - d r « , (S) 
T 

Because both terms a1 and as equal one at 7\ the left side of eqn (4) becomes 
-In (a]/as). Then rearranging eqn (5) we may write 

J 'T1 Awn).l/0.s 

^ ^ ^ • d r c q (6) 

It holds further that 

d AHo.,m.t=:ACKvo., d T 

Integrating this equation we find 

The quantity АЩ}10-* will be denoted by Alf = const. Consequently, 

т 

Therefrom by substitution into eqn (6), integrating and rearranging we may write 

\п(аЧаХ = ̂ -(иГ-1/Т^ + 1^\^\^АО'">ат\аТ^ (7) 
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Let us suggest that the molar heat capacity change may be represented by an 
equation of the form 

ACľ'"-* = Aa + AbT + AcT1 

Then eqn (7) can be modified into the following form 

\n(axla\4 = (AH4R) ( 1 / Г - l/T) + (Aa/R) \TIT- 1 -In (Г/Т)] + 

+ (Ab/2R) \(T)2IT-2T+T] + (Acl2R) (l/T-l/T)2 (8) 

If zlC/

,; l(,s = (), tfs=l, we obtain the well-known generalized LeChatelier— 
—Schröder equation for the course of liquidus curves in simple eutectic systems. 

Regularities of the courses of the liquidus curves near the melting point 
of the pure component for systems of the given type 

In this case, since the temperature interval [7\ V] is comparatively small (some 
°C only), we may neglect in eqn (8) all terms containing AC"'0'* and we may write 

1п(а1/а*)кц = (АНЧЯ) ( 1 / Г - 1/Г) (9) 

Therefrom 

In al

ti4 = (AH1/R) (1/Г-1/Г) + 1п<.ч (10) 

The temperature dependence of the activity of the given component in the liquid 
phase may be expressed as follows 

In a[4 = (AH*/R) (l/T-l/T) (11) 

Evidently the term AH* is of the same physical units as AH1. By insertion from 
eqn (//) into eqn (10) it follows 

(AH*IR) (\/T-\/T) = (AH1/R) ( l / r - l / r ) + lnfls 

Multiplying by RI(\IV-\IT)= - RVI AT, where AT= V- Г>0, this equation 
becomes 

AH* = Atr-RTV \n(a*IAT) (12) 

Eqn (/2) also holds in the limiting case, if л:, —> l.Then a\->x)-> 1, <—>*;—> 1, and 

lim AH* = Y\m AH1 - RT lim (T-In a*/AT) (13) 
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LIMITED SOLID SOLUTIONS 

Now we determine the limit values of all terms in eqn (13). From eqn ( / / ) it 
follows 

din a1 = da1/a1 = (AH*/RT1) dT 

Rearranging, 

AH* = (RT*/al) (dal/dT) = (Rri/al) \\/(dT/dal)\ 

and finally, 

lim AH* = R(Tl)2lk%± (14) 

where 

k°* = lim(dT/dal) 
* — i 

Consequently £"• is the slope of the tangent to the curve а) = ((Т{) for *,—> 1 in 
a system with solid solutions on the basis of the substance b 7" 

Let us consider the system В—С of the eutectic type, without any solid solutions 
of component С in the component B. Then for the component В it holds (Fig. 2) 

\n(a\KHX, = (AH{/R)(\/r-\/T) (IS) 

Applying the same procedure as above, we obtain from eqn (/5) 

lim AH* = R(T)2/k" (16) 

where 

А в в с 

Fig. 2. Comparison of the phase diagrams of the binary condensed systems A—В and В—С. The first of 

them exhibits a limited solid solution on the basis of the component В ; in the second the solubility of the 

component С in the solid component В equals zero. 
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*°e. = lim(d77da;) 

Consequently the term £°ei represents the slope of the tangent to the curve 
a) = i(Ti) for x,.—> 1 in a eutectic system, where no solid solutions are formed on the 
basis of the substance " /" 

We still have to determine the term 

lim (T-\nas/AT). 
X — 1 

For x^> 1, Г—> T\ a*-+ 1, In я8—>0, AT=V- T—»0. We thus obtain an indefinite 
expression. To find its value the UHospital rule should be used 

\im(T\nas/AT) = T lim (In a*/AT) = 

= T lim (I/a*) [das/d(T-T)] = T lim(l/<) [ d * 7 ( - d r ) ] = 

= - r i im[ l/ (dr/df l s ) ]=-^ f (l/*fJ0, (17) 
x — 1 

where 

k{\ = \\m(dTlda*) 
X — I 

Consequently k"- is the slope of the tangent to the curve ß* = f(7)) for JC#.—> 1 in 
a system in which solid solutions exist on the basis of the substance "/"" 

By substitution from eqns (14), (16), and (17) into eqn (13) we obtain 

R(T)2lk{\ = R(T)2lk"a> + R(T)2lk{\ 

and dividing by R(V)2 

\1к{\=\1к"аь+\1к{\. (18) 

Eqn (18) is the fundamental relation determining the course of the liquidus and 
solidus curves of the type я, =f(7]-) near the point x,; = 1. 

Analogically to eqns (14) and (76) we formally may write 

\im AH* = R(T)2/kl\ (19) 
X — 1 

Evidently AHS has the same physical dimensions as AH*. 

With respect to the definition of the AH terms it holds 
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Um АН* = АН* (20a] 
х-* I 

Um АН'= AH' (20b) 
*-— I 

lim АН* = АН* (20с) 

Upon insertion from eqns (14), (16), and (19) into eqn (IS) and with respect to 

eqns (20a)—(20c) we easily find 

AH* = AH* + AH* (21) 

Inserting into eqn (11), we get for the vicinity of the point JC,- = 1 

\n(a\^ = \(AH* + AH*)/R\ ( 1 / Г - 1 / Г ) (22) 

Comparison of eqns (9) and (15) gives the well-known relation 

(a\J(a%4 = «)^ 

Eqn (21) can be obtained immediately from th.e modified eqn (9) if we write 

formally 

\x\(a*)^ = (AH*IR) ( 1 / Г - 1 / Г ) 

However, the experiments provide the dependence not of the type 7] = i(a,), but 
Tt = f(xf): Therefore we need to have the dependence я, =f(jc,) in a suitable form at 
our disposal. After a little modification we obtain from eqn (//) 

T= AH* I (AS* - R In a') , (23) 

where 

AS* = AW IV 

By differentiating eqn (23) with respect to x we find 

dT/dx = RAH* (a[)~l (da'ldx)l(AS* - R In я') 2 

and 

\imdT/dx = R AH* (AS*)~2 lim(d*'/<Lr') = 

= R(V)2IAH* \\m{daxldxx) (24) 

Let us take for the functional dependence tf,=f(jr,) the so-called universal 
relationship [4], i.e., 

at=x1 (25) 
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For a not very great interval [T, V] it holds with a sufficient accuracy that the 
exponent in eqn (25), viz., к = const = kSt\ ksi being the Stortenbeker correction 
factor [4]. By differentiating eqn (25) with respect to x (we omit the index "/") 

da/dx = ksi xikSl-l) 

and 

\im(da/dx) = kSt (26) 

Therefore it holds 

AH* = \R(T)2lkuA k*u (27) 

(kSxi is related to the activity of the given substance in the liquid solution.) 
Analogically we find that 

ЛгГ = \Я(Г)2/к^\ k*u (28) 

and finally 

AH* = \R(T)2lk"A **•" (29) 

(kSl s is related to the activity of the given substance in the solid solution.) 

Generally, 

By comparison of eqn (21) with eqns (27—29) we obtain 

**../£« = jp.y*»A + ^ s t•v^^ (зо) 

and if ksu = kst-s 

l/W=l/k»b+l/K (31) 

It follows from eqn (30) that 

l/^^=(^s«•,/^•s-) ( * ^ - * ; . ) / * ; д *•;. (32) 

or rearranging, 

* ^ = (* s , -7* s u ) Л'Д к{\1(к"хь-к{\) (33) 

Always it holds that 

k{\^k" 

Substitution from eqn (32) into eqn (29) yields 

AH* = R(T)2 ksu (кЧь-кУкЧь-кЪ (34) 

Apparently 
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-) and solidus (-Fig. 3. Schematic comparison of the course of the curves of liquidus ( ) and solidus (—• — •—) of 

the component В in a system with limited solid solutions on the basis of B, and the course of the liquidus 

curve ( ) of the same В in simple eutectic system. The mole fractions characterizing the course 

of these curves at a chosen temperature TB are given: 

a) JC' = 0 . 4 0 , ** = 0.50; b) xx = 0.48, * s = 0.60; <-)*' = 0.56, x s = 0.70; •</) jr' = 0.64, * s = 0.80; 

e)jr' = 0.72,*" = 0.90; /) JC' = 0 . 7 6 , * s = 0.95. 

In all cases x\} = 0.80. 

0 ^ M S 

It follows from eqn (34) that for the determination of AH* we need not know the 
value of kSts 

Formally we may write 

In (*•)**"•= (AH7Ä) ( 1 / Г - 1 / Г ) 

Therefrom after modification and using eqn (34) 

l n ť = P (Г)2 (k^-kl\)/kSt* k{\ k{\ (\IV-\IT) (35) 
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Rearranging eqn (28) we get 

ksu = Á ř r fc^/R(Tf)2 

Insertion of ksu from this relation into eqn (35) gives 

lnx* = Alf (k^-k(\)IR k{y kSt* (1/Г-1/Г) (36) 

The relation (36) may be used in calculating the course of solidus curve near the 
melting point of pure substances in systems of the given type. 

Fig. Ъа—3/ show some cases of the course of the curves x\ xl

0 and xs provided 
that ksu = ksus= 1 and л:!, = 0.8 at a chosen temperature TB. 

Practical use of the deduced relations 

From the data for the liquidus curve of systems in which we search for limited 
solid solutions we determine the slope £"• and using eqn (14) the value of the 
quantity AH*. If the difference AH* — Alf is greater than the admissible error in 
measurement (Alf being determined calorimetrically or cryometrically from the 
course of the liquidus curve of the given substance in systems of the eutectic type in 
which on the basis of the discussed substance no solid solutions are formed) then it 
is a sufficient evidence of the presence of limited solid solutions in the system. If the 
above-mentioned difference is equal to zero (exactly or within the limits of 
experimental errors), the presence of solid solutions in the studied system cannot 
be determined definitely in the described way. In this case the slope of the tangent 
to the solidus curve for JC—> 1, viz., £"*—> °° (Fig. 4). Then it follows from eqn (31) 
that £"i equals k(^ and hence AH* = Alf. In such a case the existence of limited 
solid solutions has to be proved by other methods. 

4 

Fig. 4. Phase diagram of a binary condensed 
system A—B. On the side of the component 
A the criterion for the existence of limited solid 

о solutions fails. 

In deducing all the relations the formation of associates of the type e.g., An—B, 
where n > 1, has not been taken into consideration. Therefore the relations cannot 
be generally used if the components form associated molecules or particles in the 
solutions. 
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