Synthesis and pesticidal activity of the substituted 3-(1-aza-1-cycloalken-2-yl)-3-phenyl-1-methylureas

P. JAVORSKÝ, Z. VESELÁ, and Š. TRUCHLIK
Research Institute of Agrochemical Technology, 81004 Bratislava

Received 24 May 1976

Accepted for publication 17 November 1976
3-(1-Aza-1-cycloalken-2-yl)-3-phenyl-1-methylureas substituted on the phenyl were prepared by the reaction of the substituted 2-anilino-1-aza-1-cycloalkenes with methyl isocyanate. The structure of the title compounds was proved by i.r., u.v., and ${ }^{1} \mathrm{H}$-n.m.r. spectra.

Abstract

В работе описан синтез на фениле замещенных 3-(1-аза-1-циклоалкен--2-ил)-3-фенил-1-метилмочевин при помощи реакции замещенных 2 -анилино-1-аза-1-циклоалкенов с метилизоцианатом. Структура полученных соединений была доказана при помощи ИК, УФ и ЯМР спектров.

Some derivatives of lactams with four- and five-membered rings as N -alkyl-2--phenylimino-1-aza-1-cycloalkenes, substituted on the phenyl, are known as acaricides [1].

Based on the fact that the $-\mathrm{N}=\mathrm{C}-\mathrm{NH}-$ group, characteristic of substituted amidines, allowed to react with methyl isocyanate affords substituted ureas (Scheme 1) not described as yet, we synthesized a series of new 3-(1-aza-1-cyclo-hexen-2-yl)-3-phenyl-1-methylureas substituted on the phenyl and tested them for biological activity.

The starting substituted 2-anilino-1-aza-1-cycloalkenes were prepared by two methods: \boldsymbol{A}. by the reaction of cyclic imidoethers (Scheme 1) with differently substituted anilines [2] ; B. by treatment of a mixture of the appropriate lactam and the substituted aniline with phosphoryl chloride POCl_{3} (Scheme 1) [1]. The starting substituted 2-anilino-1-aza-1-cycloalkenes can exist in two tautomeric forms (D and E), which can lead to two structurally different products (F and G; Scheme 2) after addition of methyl isocyanate.

To find out the position of the $-\mathrm{CO}-\mathrm{NHCH}_{3}$ group in the molecules of the final substances, the i.r., u.v., and ${ }^{1}$ H-n.m.r. spectra of the compounds I and XXVIII were measured.

D

$\mathrm{R}^{1}, \mathrm{R}^{2}, n-$ see Table 1.
Scheme 1

E $\mid \mathrm{CH}_{3} \mathrm{NCO}$

F

Scheme 2

Experimental

Infrared spectra were measured on a Specord 71 (Zeiss, Jena) spectrophotometer in chloroform and carbon tetrachloride. Cells of 0.1 cm thickness were used and the apparatus was calibrated with polystyrene foil. The wavenumbers were read with $\pm 0.5 \mathrm{~cm}^{-1}$ accuracy.

Electronic spectra were measured on a Unicam SP 8000 spectrophotometer in the region of $300-700 \mathrm{~nm}$; concentration of the compounds in dry methanol, ethanol, isopropyl alcohol, and n-heptane was $10^{-3}-10^{-4} \mathrm{M}$.
${ }^{1}$ H-n.m.r. spectra were measured on a Tesla BS-477 spectrometer in deuterated chloroform at 60 MHz using TMS as internal standard.

Thin-layer chromatography on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (0.3 mm thickness) was accomplished in the system benzene-acetone ($95: 5, \mathrm{v} / \mathrm{v}$) and with the compounds VII-XV, XXXIII-XL in benzene-acetone ($80: 20, \mathrm{v} / \mathrm{v}$).

2-Anilino-1-aza-1-cycloalkenes

Method A

A mixture of aniline (0.1 mole) and O-methylcaprolactim (0.1 mole) [3] was heated at $140-150^{\circ} \mathrm{C}$ for 3 h under the simultaneous distillation of methanol. After cooling the mixture to room temperature, a crude crystalline product was obtained and crystallized. The compounds I, II, IV, VII, XIII, XV, and XXII (Table 1) were prepared in this way.

Method B

To aniline (0.05 mole), phosphoryl chloride (0.06 mole) was added stepwise at $15-20^{\circ} \mathrm{C}$ under stirring and then benzene solution of lactam (0.05 mole) at $20-25^{\circ} \mathrm{C}$. The reaction mixture was kept at the same temperature for 1 h . Then within 1 h the temperature of the reaction mixture was adjusted to $80-85^{\circ} \mathrm{C}$ which was maintained for $2-3 \mathrm{~h}$ (hydrogen chloride was liberated simultaneously). Then the reaction mixture was cooled to $20-25^{\circ} \mathrm{C}$, water (400 ml) was added and after stirring the water layer was alkalized by 45% solution of sodium hydroxide. The obtained precipitate was washed with water, dried, and purified by crystallization. The compounds III, V, VI, VIII-XII, XVI-XXI, XXIII-XXVII (Table 1) were prepared by the described method.

Substituted 3-(1-aza-1-cycloalken-2-yl)-3-phenyl-1-methylureas

Into a flask provided with a stirrer and a cooler, the starting 2-anilino-1-aza-1-cycloalkene and methyl isocyanate (1.25 g ; 0.022 mole) were added to benzene (50 ml) at $20-25^{\circ} \mathrm{C}$; after the addition, the temperature increased by $4-5^{\circ} \mathrm{C}$. After 1 h stirring the temperature of the reaction mixture increased to $50-60^{\circ} \mathrm{C}$ and stirring was continued for further 9 h at this temperature. Then the solvent was distilled off and the solid residue was crystallized. The compounds XXVIII-LIII (Table 2) were prepared by this method.

Table 1. Synthesized 2-anilino-1-aza-1-cycloalkenes

No.	n	\mathbf{R}^{1}	R^{2}	Formula	M	Calculated/found		Yield \%	$\text { M.p., }{ }^{\circ} \mathrm{C}$ Solvent	Ref.
						\% N	\% Cl (Br)			
I	5	H	H	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2}$	188.28	15.11		56.48	102-104	[4]
						14.88			n-Heptane	
II	4	H	H	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2}$	174.25	15.90		60.5	93-94	
						16.08			Cyclohexane	[4]
III	3	H	H	$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2}$	160.22	17.56		56.4	112-113	
						17.48			Cyclohexane	[4]
IV	5	H	$2-\mathrm{Cl}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClN}_{2}$	222.72	12.80	16.20	90.2	92-94	
						12.58	15.92		n-Heptane	
V	4	H	$2-\mathrm{Cl}$	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClN}_{2}$	208.69	13.55	16.81	44.7	75-77	
						13.42	16.99		Cyclohexane	
$V I$	3	H	$3-\mathrm{Cl}$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{2}$	194.67	13.98	18.71	76.7	123-124	
						14.39	18.21		Cyclohexane	
VII	5	H	$4-\mathrm{Cl}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClN}_{2}$	222.72	12.68	16.32	51.3	128-130	
						12.58	15.92		n-Heptane	
VIII	4	H	4-Cl	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{CIN}_{2}$	208.69	13.95	17.10	50.9	109-110	
						13.42	16.99		Cyclohexane	
IX	3	H	$4-\mathrm{Cl}$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{2}$	194.67	13.90	18.15	41.2	142-144	
						14.39	18.21		Cyclohexane	
\boldsymbol{X}	5	H	$4-\mathrm{Br}$	$\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrN}_{2}$	267.18	10.24	30.21	77.9	127-128	
						10.49	29.91		n-Heptane	
XI	4	H	$4-\mathrm{Br}$	$\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrN}_{2}$	253.15	11.24	32.76	75.9	119-120	
					.	11.07	31.57		Cyclohexane	
XII	3	H	$4-\mathrm{Br}$	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrN}_{2}$	239.02	11.50	33.21	75.3	$140-142$	
						11.72	33.43		Cyclohexane	
XIII	5	H	$4-\mathrm{OCH}_{3}$	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$	218.30	12.23		36.7	83-85	
						12.83	-		n-Heptane	[2]
XIV	4	H	$4-\mathrm{OCH}_{3}$	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$	204.27	13.99		39.2	105-107	
						13.71	-		Cyclohexane	

Synthesized 3-(1-aza-1-cycloalken-2-yl)-3-phenyl-1-methylureas

No.	n	R^{1}	R^{2}	Formula	M	Calculated/found		Yield \%	$\text { M.p., }{ }^{\circ} \mathrm{C}$ Solvent
						\% N	\% Cl (Br)		
XLI	3	H	$4-\mathrm{OCH}_{3}$	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	247.29	16.98	-	77.8	70-73
						16.99			Cyclohexane
XLII	5	$2-\mathrm{Cl}$	4-Cl	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	314.22	13.49	22.41	61.5	76-79
						13.37	22.57		n-Heptane
XLIII	4	$2-\mathrm{Cl}$	$4-\mathrm{Cl}$	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	300.19	13.63	23.50	83.3	48-52
						14.00	23.62		Cyclohexane
XLIV	3	$2-\mathrm{Cl}$	4-Cl	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	286.16	14.31	24.65	90.6	109-110
						14.68	24.78		Cyclohexane
XLV	5	$3-\mathrm{Cl}$	4-Cl	$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	314.22	13.56	22.51	74.2	103-105
						13.37	22.57		n-Heptane
XLVI	4	$3-\mathrm{Cl}$	4-Cl	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	- 300.19	14.23	23.63	63.3	112-114
						14.00	23.62		Cyclohexane
XLVII	3	$3-\mathrm{Cl}$	4-Cl	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$	286.16	14.64	24.68	97.6	146-148
						14.68	24.78		Cyclohexane
XLVIII	5	$3-\mathrm{Cl}$	4-CH3	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{O}$	293.80	13.85	12.09	78.5	Glassy
						14.30	12.07		material
XLIX	4	$3-\mathrm{Cl}$	4-CH3	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}$	279.77	15.26	12.41	50.0	70-74
						15.02	12.67		
L	3	$3-\mathrm{Cl}$	$4-\mathrm{CH}_{3}$	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{O}$	265.75	15.57	13.43	90.6	$108-111$
						15.81	13.34		
LI	5	$2-\mathrm{Cl}$	$5-\mathrm{CF}_{3}$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}$	347.77	12.03	-	86.0	Glassy
						12.08			material
LII	4	$2-\mathrm{Cl}$	$5-\mathrm{CF}_{3}$	$\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}$	333.74	12.34	-	83.6	68-72
						12.59			Cyclohexane
LIII	3	$2-\mathrm{Cl}$	$5-\mathrm{CF}_{3}$	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}$	319.72	12.86	-	93.5	$77-79$
						13.14			Cyclohexane

Results and discussion

The 2-anilino-1-aza-1-cycloalkenes afforded the appropriate 3-(1-aza-1-cycloalken-2-yl)-3-phenyl-1-methylureas by the reaction with methyl isocyanate. Their purity was affirmed by elemental analysis and thin-layer chromatography. Their R_{f} values varied in dependence on the type of the lactam ring in the series $\left(\mathrm{CH}_{2}\right)_{3}<\left(\mathrm{CH}_{2}\right)_{4}<\left(\mathrm{CH}_{2}\right)_{5}$. The R_{f} values of the prepared urea derivatives were higher than those of the 2-anilino-1-aza-1-cycloalkenes. To determine the structures of the synthesized substituted 3-(1-aza-1-cycloal-ken-2-yl)-3-phenyl-1-methylureas, the spectral data of the compounds I and XXVIII and those of the model compound N-methyl-2-(phenylimino)-1-azacycloheptane [4] were taken into consideration. The spectral data were as follows:

Compound I: $\gamma(\mathrm{C}=\mathrm{N}) 1637$; ${ }^{1} \mathrm{H}$-n.m.r. (p.p.m.) $\left(\mathrm{CH}_{2}\right)_{3} 1.63(\mathrm{~m}) ;\left(\mathrm{CH}_{2} \mathrm{~N}\right)$ $3.08(\mathrm{~m}) ;\left(\mathrm{CH}_{2}-\mathrm{C}\right) 2.5(\mathrm{~m}) ;\left(\mathrm{C}_{6} \mathrm{H}_{5}\right) 7.05(\mathrm{~m}) ;(\mathrm{NH}) 4.75(\mathrm{~b})$.

Compound XXVIII: $\gamma(\mathrm{CO}) 1670 ; \gamma(\mathrm{C}=\mathrm{N}) 1628 ; \gamma(\mathrm{NH})$ bound 3148, 3033 ; ${ }^{1}$ H-n.m.r. (p.p.m.) $\left(\mathrm{CH}_{2}\right)_{3} 1.6(\mathrm{~m}) ;\left(\mathrm{CH}_{2} \mathrm{~N}\right) 4.03(\mathrm{~m}) ;\left(\mathrm{CH}_{2}-\mathrm{C}\right) 2.53(\mathrm{~m}) ;\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ 7.00 (m); (NH) 10.33 (b); ($\left.\mathrm{CH}_{3}\right) 2.86$ (d).

All present groupings of atoms were characterized by 'H-n.m.r. spectra except the position of the $-\mathrm{CO}-\mathrm{NHCH}_{3}$ group.

The group $>\mathrm{C}=\mathrm{N}-\mathrm{O}\left(\gamma(\mathrm{C}=\mathrm{N}) 1614 \mathrm{~cm}^{-1}\right)$ in N-methyl-2-(phenylimino)--1-azacycloheptane was in conjugation with benzene ring. This was evident in the i.r. spectra from the shift of the band belonging to $\gamma(\mathrm{C}=\mathrm{N})$ to lower wavenumbers at simultaneous increase of intensity of the $\gamma(\mathrm{C}=\mathrm{C})$ vibration and its shift to lower wavenumbers.

This phenomenon was not observed in the i.r. spectra of the compound I. The electronic spectra of N-methyl-2-(phenylimino)-1-azacycloheptane and of the compound I were used to elucidate the question whether the $>\mathrm{C}=\mathrm{N}$ - bond in the compound I was or was not in conjugation with benzene ring. The u.v. spectra of the compound I measured in various solvents showed no shift of the band at $\lambda 234 \mathrm{~nm}$ to higher wavenumbers at simultaneous increase of the integrated absorption in the region of $240-280 \mathrm{~nm}$. On the other hand, the u.v. spectra of N-methyl-2-(phenylimino)-1-azacycloheptane ($\lambda 234 \mathrm{~nm} \rightarrow \lambda 240.5 \mathrm{~nm}$) proved the conjugation of the $>\mathrm{C}=\mathrm{N}$ - group with the phenyl residue. The solvents did not affect the position and intensity of the characteristic bands significantly.

From the presented data it follows that 2-anilino-1-aza-1-cycloalkenes appeared in the form D and the corresponding 3-(1-aza-1-cycloalken-2-yl)-3-phenyl-1--methylureas had the structure F (Scheme 2).

The tests for biological activity [5] showed that the prepared compounds had no significant herbicidal effects.

References

1. Enders, E., Stendel, W., and Wollweber, H., Pest, Sci. 4, 823 (1973).
2. Benson, R. E. and Cairns, T. L., J. Amer. Chem. Soc. 70, 2115 (1948).
3. Org. Syn. 31, 72 (1951).
4. Bredereck, H. and Bredereck, K., Chem. Ber. 94, 2278 (1961).
5. Furdík, M., Konečný, V., Priehradný, S., and Truchlik, Š., Acta Facult. Rer. Natur. Univ. Comenianae (Chimia) 13, 53 (1968).

Translated by A. Kardošová

