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Liquidus and solidus curves in binary systems of the 2nd kind having
complete miscibility in liquid and solid states are analyzed from the mathematic
and thermodynamic points of view. The types T/K, K/T, T/T, U/K, K/U, U/U
are discussed. (T, K or U denote Temkin’s, classic or universal model for
activity.) For each type the characteristic equation of liquidus or solidus curve
(if the equation exists), and the equation for extremum are derived. The limit
values of the tangents at the melting points of pure components are calculated.
Thermodynamic conditions for the existence of a monotonic course of liquidus
and solidus curves and for a course with common extremum on both curves are
determined.

C MaTeMaTH4eCKOi U TEPMOAMHAMUYECKON TOYEK 3PEHUs ObUIN aHAIU3UPO-
BaHbl KPUBbIE JIMKBUYCA U COJIMAYCA B CUCTEMAxX BTOPOTO pofa C HEOrpaHHU-
YEeHHOM B3aMMHOH pacTBOPMMOCTBIO KOMIIOHEHTOB KaK B JKHAKOM, TakK
M B TBEPIOM COCTOsIHMSAX. Bblin nuckytuposanbl Tunsl T/K, K/T, T/T, U/K,
K/U u U/U. (T, K nu U o6o3Ha4yator Mopenn TeMKHHa, KJIAaCCHYECKHH
U yHUBepcasbHbIi.) st Kaxpgoro Tuma ObUIO BBIBEAEHO — IMOKa BOOOILE
CYLIECTBYET — XapaKTEPUCTUYECKOE YyPAaBHEHUE KPUBOM JIMKBUAYCA UM COJIH-
Ayca, a TaKXe YpaBHEHME NSl IKCTpeMyMa. BbulM paccuuTaHbl MpENebHbIE
3HAYEHHUS YIIIOBBIX KO3(P(PULMEHTOB KAaCaTENbHBIX B TOUKE [IABJIEHHS YUCTbIX
KOMITOHEHTOB. BbIN BBIBEEHBI TEPMOAMHAMHYECKHE YCIOBHS IS CYIIECTBO-
BaHMS MOHOTOHHOIO XOfa KpPUBBIX JIMKBHAYCa M CONMAYyca M TaKXKe s
3KCTpEMyMa Ha 0OEUX KPHBbIX. ’

The course of liquidus and solidus curves in binary ionic systems of the 2nd kind
having complete miscibility in liquid and solid states has been discussed in [1, 2]. In

* Based on a paper presented at the 1st Conference of Socialist Countries on Chemistry and
Electrochemistry of Molten Salts, Smolenice, November 24—26, 1975.
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TEMKIN'S AND UNIVERSAL RELATIONSHIPS

the quoted papers a general functional relation between activity and composition
was assumed.

In this work the theoretical relations derived in the cited papers are used for the
detailed analysis of Temkin’s and universal relations between activity and composi-
tion [3, 4]

a; =Te(x;) i=1,2 (1)
a; =U(xi) (2)

It holds
x1+x:=1 3)

where both mole fractions are related to the same phase. The considerations are
based on the thermodynamic relation

Table 1
System N,A,—N,B, with commion ion, type T/K

1 s s

a as a; as

,[%If%%fﬁr [F%%i%9§] *1 1—xi

Characteristic equation of liquidus curve

t+xi(q—t) t+xi(q—
t>1 t=1
lim dT/dx| Z;T{ R(TIy %Hi{ R(T!)
q>1 q=1
fim dT/dx! - A(}qg R(TLy %4_02—1‘:;; R(TY)?
t>1 =1
lim dT/dx; © qQ, lim dT/dx;
T e
q>1 q=1
lim dT/dx; — ‘ tM, lim dT/dx!
T—TS T—TS

Equation for extremum
[ t ](] - q a —AHY/AH]|
Trxq-n) 17 {[Hx(qft)Jx } 7 Q=0
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i g [AZE (L _1)]
= | R (7 7)

The results of theoretical analysis are summarized in Tables 1—11 and possible

shapes of liquidus and solidus curves are drawn in Figs. 1—5. If the functional

relationship a; =f(x;) is the same for both liquid and solid solutions, the course of
the liquidus and solidus curves in the corresponding phase diagram will be always

)

Table 2
System N,A,—N,B, with common ion, type K/T

1 1 o g

a, a, ai as
1 | qx: & t(l_xi) ]‘
ol ' h s [H—xi(q—t)] [t+x§(q—t)

Characteristic equation of solidus curve

Qt(1 —xD]' —[t+xi(q — O + M(qxi) [t +xi(q— D] ™=

t>1 t=1
lim dT/dx| —® lim d7T/dx;}
Tt Qo T—T!
q>1 q=1
lim dT/dx, o0 — lim dT/dx;
T—T} Mo y
t>1 t=1
lim dT/dx; R(T!) Q=9 p 11y
T—T} ' AI‘Ir q AH} 1
q >1 q=1
lim dT/dx; - R(TY)? t=Mo o sy
T—TS ! AHZ 2 t AH; &
Equation for extremum
[t+X(q—t)]‘ 1 {[t+x(q—t)]“ L}‘A”g“’”’_o 0
t (1—-x)" q g o
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Table 3 .
System N,A,—N,B, with common ion, type T/T

a, as a; as

Characteristic equation of liquidus curve
(O—(l/l) _ 1)t _x:[t(o—(l/r) = 1) + q(l _M—(l/q))] - O
t(Q 1/t __ )

y | 2
Tlinra; dT/dx} T AH R(TY)

lim dT/dx; QY lim dT/dx|

T—T! 7Tl

: 1 Q(l _M<IJ/q 2
L N afE R(TY
lim dT/dx; M} lim dT/dx|

T—TS T=T§

Table 4
System M, A,—N,B, without common ion, type T/K

1

a,
[pr:a;' - r)} [t +xqi?(i - t)}q [ri(xl}(;x—) r)]r [t vtL(ch i;qx:—)t)]l
a as

X1 1—%;

Characteristic equation of liquidus curve

-3 [wﬁfp: —a]p [t e t)]q B [ri(i :pri)r)] [t o :?qxi)t)]l -

r+t

Tlin:{ dT/dx} AR R(T:)
. i p+q

lim dT/dx] A R’
lim dT/dx} )

T—T|

lim dT/dx} — o0

T—TS
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Equation for extremum

I'rﬂptl(l _x)r+t—l rrt:+|q(1 _x)r+l—l :, '
[r+x(p—0]"[t+x(@=0)  [r+x(p—0)t+x(q—0O]™"

1 { pnqqxn+q—l }—AH}AH,’
pr___, gt [r+x(p—D[t+x(q—0]"
r+x(p—r) t+x(q—t)

=Q,

Table 5

System M,,A,—N.,B, without common ion, type K/T

a

a
x| 1—x,|
a as

( px; J"[ qx; J“ [ r(1—x3) }‘[ t(1—x3}) ]‘
r+xi(p—r)] [t+xi(g—t) r+xi(p—r)] [t+xi(q—t)
Characteristic equation of solidus curve

? [fi(iTZPxi)r)Jr [t i(i:;qxi)t)]‘Jr M [r+x?f; ~ r)]" [t +xc"§f; = t)}q —1=0

lim dT/dx, — 00
T—T|
lim dT/dx; +
T-TS

r+t
lim d7T/dx; R(T}
Tl——‘l’{ 1 AH! ( )
. . p+q
Iim dT/dx R(T:
b 1 AHF ( )

Equation for extremum

[(+x(-0)]t+x(q=0)] {[r +x(p—)]t+x(q- t)]"}“‘”g/“”{— Q,=0

rrtx(l _x)rﬂ—l ppqqxp+q—]
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Table 6

System M,,.A -—N,.B,. without common ion, type T/T

1

a, . as
[r + xi?ai - r):lp [t + qu?ci = t)]q L :-(i {sz—:)r)}r [t th(i {qui)t)]l
: ai a
B TN

Characteristic equation cannot be given because it is not possible to eliminate
either x| or x}

w- () a0

o- () sy e

e+t
lim dT/dx| O R(TIy/AH!
b 2 o 0

== 1/(p+q)
lim dT/dx] (pJ’q)(Ml,],(pﬁ'f“ ) R(T%)"/AH:
lim dT7/dx; QY9 lim dT/dx!
T-T§ T—T}
lim dT/dx; MY fim dT/dx!
T—T3 T—T}

Table 7

System M-A,.—N,.B,. without common ion, type U/K

a ai . a:
(x)™ (1 —x})r+e X 1 —x;
Characteristic equation of liquidus curve

Qx)™+M(l—x)"""-MQ =0
(prq>DA@+t>DA(p+q=r+1t)
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lim dT/dx|

T—T]|

lim dT/dx;

T—TS

lim dT/dx;

T—T|

lim dT/dx}

TTL
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I+t

_ptg 2
AH! : R(T2)

Table 8

System N,.A ,-—N,.B.. with common ion, type U/K

p=r= 0
ai aj a; as
(x) (1—x))" x5 1—x;
Characteristic equation of liquidus curve
Q(x)'+M(1—x1)*—MQ=0
=1 t>1 t=1
q>1 q=1 q=1
. 1 1 12 tQu—1 £12 Qo1 £\2
lim dT/idvi g ROV Qam RIV gami R(TY
. I 1 _Mﬂq \2 1 2 1-M, 12
Th_.nrlg dT/dx, M.AH! R(T3) AH! R(Tz) M.AH! R(T3)
lim dT/dx; + o0 Q, lim dT/dx| Q, lim dT/dx;
T—T]| T-T] T—-T|
lim dT/dx; M, lim dT/dx; — M, lim dT/dx|
TS T—TS T—T}
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Table 9
System M,,.A,.—N,.B,. without common ion, type K/U
a, as a; as
xi - 1—xi (D)™ (1 —xy)rr
Characteristic equation of solidus curve
Q(l—x)"" " —=M(x)™=1=0
(Ptaq>DA(+t>1D)A(p+q=r+t)
lim dT/dx; —
T-T{
lim dT/dx; + o
T—T}
. s r+t
T]Lnr].' dT/dx; TAH! R(Ty
3 S p + q
Tlin:; dT/dx; AH. R(T5)?
Table 10
System N;.A,-—N..B..
p=r=0
aj as a; as
x| 1—x, (x) a1 —-xpe
Characteristic equation of solidus curve
Q1 —x})'=M(x})' —1=0
t=1 t>1 t=1
q>1 gq=1 q=1
. Q() —t O() —1 2
I dT/dx, = —_— 2 \2
g ” Quam; RV g,z R(TD
. , q—M, 5 1-M, 2
A AT Ay R - Mam; KT
; 1 . .
lim dT/dx; —— R(T})* Q, lim dT/dx| Q, lim dT/dx|
T—T| AH, T T—T]
lim dT/dx;} M, lim dT/dx, - R(T)? M, lim dT/dx|
T-TS T-aTS AHz T—T}
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Table 11
System M,.A,.—N,.B.. with and without common ion, type U/U
a, as a; . ai
(x:)r+l (1 __xll)p+q (xT)'“ (1 _xfi)p+q

Characteristic equation of liquidus curve

| M!(r+x)(l _Ql(rH'kl))

X1 = MO _ Qe

. QY —1)(r +t )
lim, dT/dx; ( o™ A)I(LI{ )R(T{)'

: (=M (p+q) 5
rILTQ dT/dx: Mtl)/(H”AH; R(Té)
lim dT/dx; QY™ lim dT/dx,
ToT! T—T]

lim dT/dx; M/} lim dT/dx,
T—TL T—T}

742 Chem. zvesti 32 (6) 734—754 (1978)



TEMKIN'S AND UNIVERSAL RELATIONSHIPS

Fig. 1. Solutions with common ion.

T’ T
T[

b) Type T/K;t>1Aq=11Iin all cases.

r

a)TypeT/K;t>1Aq=1;AH§_<R In t.

-In t.

f r
d) Either the type T/K;t>1Aq=1; AH|>R T TT, Int;

¢)Type T/K;t>1Aq=1; AH{=R TT

f f

or the type U/K; t*=1Aq*>1; AH|>R Lk TT, In g*.

1 x; 0

Fig. 2. Solutions with common ion.

TLT:
T—17 &
b) Type T/K; t=1Aq>1in all cases.

f f

a)Type T/K;t=1Aq>1; AH;<R

c)Type T/K;t=1Aq>1; AH!=R T,‘_,},lnq.
2 1
f [
d) Either the type T/K; t=1Aq>1; AH!>R TT= T' Inq;
T’T'
orthe type U/K; t*>1Aq*=1; AH} >R T In t*.
1
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1 X, 0 1 X, 0

Fig. 3. Solutions with common ion.
T T,
a) Type K/T;t=1Aq>1; AH!=R == Inq.
L= T
f f

b) Either the type K/T;t=1Aq>1; AH{>R TT'_T;,, Inq;
1 2

Ty
T - T}
f f

c) Type K/T;t>1Aq=1; AH{<R TY;‘_T,IZ,, Int.
2 1

d) Type K/T;t>1Aaq=1inall cases.

or the type K/U; t*>1Aq*=1; AH;>R In t*.

monotonic [2]. The numerical calculations (see Figs. 6—9) were carried out using
computer Siemens 4004 (Calculating Centre of Universities, Mlynska dolina,
Bratislava). The characteristic equation of liquidus curve (higher than of the second
degree) and nonalgebraic equation of extremum were solved using the iterative
method of division the interval into halves [S]. The roots were calculated with
relative error smaller or equal to 5x 1077,

744 Chem. zvesti 32 (6) 734—754 (1978)
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Fig. 4. Solutions with common ion.
IT;
T:—T:
TT;
Ti=T

IT;

a) Type K/T;t>1Aq=1;AH=R Int.

b) Either the type K/T;t>1Aq=1; AH{>R

or the type K/U; t*=1Aq*>1; AH|>R

¢) Type K/T in all cases.
TiT}

d) Type K/T;t=1Aq>1; AH:<R =T}

In g.

Chem. zvesti 32 (6) 734—754 (1978)
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Fig. 5. Solutions either with or without common ion.
a) With common ion.
Type T/K, if t>1Aq>1; type U/K,if t* >1Aq* > 1 At*=q*.
Without common ion.
Type T/K in all cases ; type U/K, if p* + q* =r* + t*.
b) With common ion.
Type T/K, if t>1Aq>1;type U/K,if t*>1Aq*>1At*=q*
Without common ion.
Type T/K in all cases ; type U/K, if p* + q* =r* + t*.
¢) With common ion.
Type K/T,if t>1Aq>1;type K/U, if t*>1Aq*>1At*=q*.
Without common ion.
Type K/T in all cases ; type K/U, if p* + q* =r* + t*.
d) With common ion.
Type K/T,if t>1Aq>1;type K/U, if tF >1Aq*>1At*=q*.
Without common ion.
Type K/T in all cases ; type K/U, if p* + q* =r*+ t*.

746 Chem. zvesti 32 (6) 734—754 (1978)
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' T1=1200
T} =1200 T
] T
.
1., 1100
1100 2N
r . 1000 - .
1000 - 1 1 1 L ] " C I 1 1 1 ] o
“"10 08 06 04 02 072" 1.0 08 06 04 02 O
X, *
Fig. 6 Fig. 7

Fig. 6. Phase diagram of the binary system NA—NB, of the type U/K having common ion
with the following parameters:
Ti=1200K; T5=1100 K; AH{=6.2802 X 10* J mol™'; AH:=12.5604 x 10* J mol~".

Fig. 7. Phase diagram of the binary system NA,—NB, of the type U/K having common ion
with the following parameters :
T{=1200K; Ti=1100 K; AH{=6.2802 x 10*J mol™'; AH,=12.5604 x 10* J mol~".

T!=1200 = 1200
r r
1100 1100
1000 1000
“1"10 08 06 “1"10 0.8
Fig. 8 Fig. 9

Fig. 8. Phase diagram of the binary system NA,—NB, of the type T/K=U/K having
common ion with the following parameters :
T/=1200K; Ti=1100K; AH[=6.2802x10*Jmol'; AH{=12.5604Xx10*J mol™';
x,=0427;T,=1057 K.

Fig. 9. Phase diagram of the binary system NA;—NB, of the type T/K=U/K having
common ion with the following parameters :
T;=1200K; Ti=1100K; AH!=6.2802%x10*J mol"; AH!{=12.5604 x 10*J mol™';
x.,=0.52;T, =994 K.

Chem. zvesti 32 (6) 734—754 (1978) 747
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The systems of the type U/K

The character of universal functional relationship between activity and composi-
tion (see [4]) does not need in the analysis to distinguish between systems with and
without common ion. However, it is necessary to distinguish between the numbers
denoting the amount of new particles brought into solution with a given substance
and the values of stoichiometric coefficients. Therefore, the stoichiometric coeffi-
cients will be denoted by symbols p*,q*,r*, t*. The numbers indicating the amount
of foreign ions will be denoted according to the following agreement:

p=the amount of foreign cations brought into solution by substance ““1”.

q =the amount of foreign anions brought into solution by substance 1.

r =the amount of foreign cations brought into solution by substance ‘2.

t =the amount of foreign anions brought into solution by substance ‘2.

In the following considerations we shall analyze the solutions of the type

M,-A.—N,B., N, A,

e

In the case of solutions without common ions
p=p* 4g=q* r=rr t=t*
In the case of solutions having common cations
p=r=0 q=q* t=1t*
The functional relations between activity and composition can be expressed
=@(x) =)™ ai=yxi)=x]
=@:(x))=(1—-x)*  as=yu(x))=(1—-x7)
The other relations (see [1, 2]) are

(xl)r+l 0= (1_J‘7l)pqu

x3 1—x}
_(p(M I)_L( I)r+l
X1 = s X1 =M X1

The characteristic equation

Q(x))™ +M(1—x!y*"—~MQ =0

aF INr+t—1 \p+q—1
o (0@~ M(p+a)(1 ~x)
1
OF  _AHY, .. ~ AH{ .. AH{ . AH}
a7~ Q R KM e (1% = MQ pe ~MOQ R

748 Chem. zvesti 32 (6) 734—754 (1978)
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Calculating the limit values of partial derivative with respect to x; we have to
distinguish the case when r+t—1=0 (or p+q—1=0) from the case when
r+t—1#0 (or p+q—1#0).

ptq>1:

Tipy ATy =Lt

12
T—T S B AH: R(Tl)

ptq=1:

Because the parameters p, q, 1, t are integers the equality p+q=1 can be
fulfilled only if one of the parameters equals zero and the other equals unit. It
means, however, that substance “1”” brings into solution no new cations or anions.
Therefore the system in question must have a common ion. Without detriment of
generality we shall denote this system as

N,-A,—N,.B..

If p=0, then also r=0.
In this case

. 1 th— 1 £\2
Jim, 4T/ = g,y KT
r+t>1:
. _ _P*+q £\2
1!51';2 dT/dx AHL R(T3)
r+t=1:
If p=0, then also r=0
1-M,
: ) o Ogq f\2
Th_,rrrlé dT/dx, =M.AH! R(T3)

In a similar way we can calculate also the limit values of the slopes of tangents to
the curves of solidus. The results are presented in Tables 7 and 8.

Let us investigate the existence of a monotonic course of liquidus and solidus
curves.

a) For solutions having no common ion it always holds (p+q>1) A (r+t>1).
In this case the signs of limit values of the slopes of tangents at the edge points of
the interval (0, 1) are always opposite and, therefore, the monotonic course of the
curves of liquidus and solidus cannot exist.

b) For solutions having common ion p=r=0. If g>1, then

lim dT/dx{>0

T—T}

Chem. zvesti 32 (6) 734—754 (1978) 749
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If the course of liquidus curves is to be monotonic it must be also fulfilled

lim dT/dx;>0
T—TS
However, it is possible only if t=1 and 1 - M,q>0. Hence it follows
AH| T;—T;
R TiT:

<-Ingq

If T{>T;

T:T;

AH{>R

At g>1 and t=1 a monotonic course occurs if T{> T3 and the unequality (5) is
fulfilled. '
If TI<T;

T:T:
T:—Ti

AH!< —R Inq
Because q>1, In >0 and, therefore, AH| should be less than a negative number,
which has no physical meaning. A monotonic course cannot therefore exist.
If q=1, it holds
tQ() =1

= | - f\2
lim dT/dxi=0, A RV

If also t=1, then a{=x1{, a;=1—x1, ie., for liquidus and solidus curves the
same functional relations are valid. From the principle of monotonousness (see [2])
it follows that the course of curves can be only monotonic.

If t>1, then lim dT/dx;<0.

T—TS
If the liquidus curve should be monotonic it must hold

tQ,—1<0

AHE TI— T
R TI!T:

<-—Int

For T\>T3}

T, T;

AH:<-R

Int

which is again physically impossible.
For T\ <Tj

750 Chem. zvesti 32 (6) 734—754 (1978)
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TiT:

f
AH{>R 7

Int (6)

Atq=1and t> 1, a monotonic course can be expected if T < T; and the inequality
(6) is fulfilled.

Calculation of the parameters of extremum

(pé(x{) = - (p+q)(1 —x{)r’+q—1

- : Iyr+t—1
VAR CD)
[g—g]._ ; :% (r-{-t)xrﬂ_l=r+t

In the paper [2] the checking identity has been derived

(pé(xcx) 1 = (pZ(XCX)
Pi(Xex) P (Xex)  YalXex)

which in this case acquires the form

P+ —x)y = +0(L—x)" "

Then the left side can be equal to the right side only if
ptq=r+t (7)

An extremum can occur only if the condition (7) is fulfilled. Besides, the criterion
of existence (see [2]) is to be fulfilled as well

T <A =x)PTI<D) (8)

a) Solution without common ion

For this solution it always holds (r+t—1>0)A(p+q—1>0). Therefore, the
inequality (8) has solution in the interval (0, 1). Then the necessary condition for
the existence of common extremum on liquidus and solidus curves is the validity of
the condition (7). The following systems can be given as an example of solutions of
this type: MA;—N,B,, M,A—NB,, MA,—NB,. -

b) Solution with common ion
In this case p=r=0, and, therefore, in order to fulfil the relation (7)

g=t

Chem. zvesti 32 (6) 734—754 (1978) 75 1
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The existence criterion can be written
(x'<DA((1—x)'<])

If g=t=1, then (x*'=1)A((1 —x)*'=1) and, therefore, the extremum cannot
exist. In this case the solution is classically ideal and the curves have monotonic
course.

The extremum occurs only if q=t and simultaneously q>1. Then the universal
functional relationship is identical with Temkin’s one.

It should be stressed that the characteristic equation for solutions without
common ion is identical with the characteristic equation of solutions having
common ion if

qQ:=p+q t,=r+t

Universal functional relationship attributes to the solutions without common ion of
the type M,A,—N.B, the same course of liquidus and solidus curves as to the
solutions with common ion of the type N, Aqiq—N:,Bero-

Physically interpretated can be only the case

ptq=r+t Le. q =t

In this case the universal relationship is identical with Temkin’s one. E.g. for the
solutions MA;—NB;, MA;—N;B, MA;—N,B,, M,A,—N,B, we found the same
course of curves as for the solution N, A,—N, B,. Simultaneously

ai=(x1)* a;=(1-x)*

Conclusion

a) The analysis shows that solutions having no common ion cannot have
a monotonic course of curves. Throughout the interval (0, 1) it can be described by
the universal functional relationship only if p+q=r+t. If this condition is not
fulfilled, the equation F(x, T') = 0 does not determine the implicit function T =f(x)
in each point of the interval (0, 1).

b) Solutions having common ion show extremum if (q=t)A(q>1)A(t>1). In
this case the universal and Temkin’s relations are identical.

If (q#t)A(q>1)A(t>1), a monotonic course cannot exist as a consequence of
opposite signs of limit values of the slopes of tangents at the edge points of the
interval (0, 1). In this case, however, there is also no extremum. It means that the
characteristic equation does not determine the implicit function T =f(x) in the
whole interval. A disjunction appears at the point where the extremum should
occur. At this point the function is not defined because the condition q=t is not
fulfilled. This condition would ensure that the point in which the derivative
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9F/3x =0 lies on the curve of liquidus which is described implicitly by the
equation F(x, T)=0 (see Fig. 7).

If (q#t)A(gq=1vt=1) and simultaneously the enthalpies of fusion AH|, or
AH} do not obey the conditions (5) and (6) for monotonic course the function
F(x, T)=0 does not determine the implicit function T'={(x) in the whole interval
(0, 1). Consequently for T<Min(T7, T3) the curve of liquidus should decrease
towards minimum, however, the equation F(x, T)=0 has no solution in the
interval (0, 1). The curve of solidus goes in this case even over the curve of
liquidus (see Fig. 6). .

The condition for extremum in the case of solutions of the type U/K can be
stated also in the following way:

The solutions of the type U/K can show common extremum on liquidus and
solidus curves only if their characteristic equation is identical with the characteristic
equation of the adequate type T/K. Therefore, the equation of extremum for the
type U/K has not been specially constructed because (in this case) it is identical
with the equation of extremum for corresponding Temkin’s functional relation.

Symbols

T/K in liquid phase Temkin’s functional relationship between activity and composition
and in solid phase classic ideal behaviour (a;=x}) are assumed to be valid

K/T in liquid phase classic ideal behaviour and in solid phase Temkin's functional
relationship are assumed

T/T in both liquid and solid phases Temkin's functional relationship is assumed to be
valid

U/K in liquid phase universal functional relationship and in solid phase classic ideal

behaviour are assumed
K/U in liquid phase classic ideal behaviour and in solid phase universal functional
relationship are assumed

uU/U in both liquid and solid phases universal functional relationship is assumed to be
valid

p,q.r,t stoichiometric coefficients

a activity of the i-th component

al, a;  activity of the /-th component in liquid or in solid state

AH; change in molar enthalpy of pure /-th component at the temperature of fusion T" at
transition from solid to liquid phase

M, exp [(AH{/R)(1/T;—1/T})]

Q, exp [(AHYR)(1/T—=1/T?))

R gas constant

T thermodynamic temperature, K

g temperature of fusion of the /-th component

x}, x;  mole fraction of the /-th component in liquid or in solid state
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I, s; corresponding liquidus and solidus curves
Te(x;) Temkin's relationship
U(x;)  universal relationship
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