Dissociation of the anions AIF_6^{3-} in the system Na₃AIF₆—Na₂SO₄

I. KOŠTENSKÁ and M. MALINOVSKÝ

Department of Inorganic Technology, Slovak Technical University, 880 37 Bratislava

Received 31 May 1977

Accepted for publication 12 September 1977

Dedicated to Professor Ing Dr Jaroslav Malkovský on his 75th birthday

The course of the liquidus of Na₂SO₄ in the system Na₃AlF₆—Na₂SO₄ was determined. The eutectic point was found to be at 9.0 mole % Na₃AlF₆ and 91.0 mole % Na₂SO₄, $t_E = 794.5^{\circ}$ C. The solubility of Na₃AlF₆ in solid Na₂SO₄ is negligible. The course of the liquidus curve of Na₂SO₄ in the composition interval of 91.0—96.0 mole % Na₂SO₄ is consistent with the assumption that the anions AlF₆⁻ undergo thermal dissociation according to the scheme AlF₆⁻ \Rightarrow AlF₄⁻ + 2F⁻. At a very low content of Na₃AlF₆ in Na₂SO₄ a total destruction of the anions AlF₄⁻ takes place under the formation of 7 new elementary particles from each molecule of Na₃AlF₆ in molten Na₂SO₄. In the eutectic point of the system Na₃AlF₆—Na₂SO₄ the degree of thermal dissociation of AlF₆⁻⁻ anions according to the given scheme equals 0.67. The calculated dissociation degree of pure cryolite is 0.21. The conclusions of some other papers concerning the given problems are discussed.

Измерен ход ликвидуса Na₂SO₄ в системе Na₃AlF₆—Na₂SO₄. Обнаружена эвтектическая точка при 9,0 мол. % Na₃AlF₆ и 91,0 мол. % Na₂SO₄, $t_{\rm E}$ =794,5°C. Растворимость Na₃AlF₆ в твердом Na₂SO₄ пренебрежимо мала. Ход кривых ликвидуса Na₂SO₄ в интервале состава 91,0—96,0 мол. % Na₂SO₄ консистентный в соответствии с предпосылкой того, что анионы AlF₆³⁻ диссоциируют термически по схеме AlF₆³⁻ \Rightarrow AlF₄⁻ + 2F⁻. При очень низком содержании Na₃AlF₆ в Na₂SO₄ происходит также полное разложение анионов AlF₄⁻, причем из одной молекулы Na₃AlF₆ образуется в расплаве Na₂SO₄ 7 новых элементарных частиц. В эвтектической точке системы Na₃AlF₆—Na₂SO₄ степень термической диссоциации анионов AlF₆³⁻ по указанной схеме равна 0,67. Рассчитанная степень термической диссоциации чистого криолита равна 0,21. Обсуждаются заключения некоторых работ, посвященных этой тематике.

As indicated by numerous papers [1-11], the thermal dissociation of cryolite in the liquid state is a topical problem in the research of fused salts. Several authors

applied to their study the classical thermodynamic approach, described *e.g.* by *Glasstone* [12]. Its principle lies in comparing the experimentally established course of the liquidus of Na₃AlF₆ in the system Na₃AlF₆—MA with the course calculated under certain simplifying assumptions. In this case, however, the system Na₃AlF₆—MA has to fulfil several conditions [1, 2, 4, 5]. In 1959 *Grjotheim et al.* [13] suggested for the determination of the character of thermal dissociation of Na₃AlF₆ not to analyze liquidus curve of Na₃AlF₆, but that of the component MA in the system Na₃AlF₆—MA (the method of "the second component"). As the component MA sodium sulfate was chosen. This forms with cryolite a system with a eutectic. In the composition interval with a high content of Na₃AlF₆ there is a wide region of solid solutions, while the Na₃AlF₆ is practically insoluble in solid Na₂SO₄ just as it is required if applying the method of "the second component". The data published by *Grjotheim et al.* [13] were confirmed in [14].

The degree of thermal dissociation of cryolite in equilibrium

$$Na_3AIF_6 \rightleftharpoons NaAIF_4 + 2NaF$$
 (A)

should be designated as d; apparently it holds that $d = f_1(x_1) = f_2(x_2)$; x_1 and x_2 are mole fractions of Na₃AlF₆ and Na₂SO₄, respectively; $(x_1 + x_2 = 1)$. If the temperature interval is not too wide $(T_2^t - T_2 \le 100^{\circ}\text{C})$, for the equilibrium activity of the component MA in its saturated solution, $a_{2,eq}^t$, the known relation is valid

$$\ln a_{2,eq}^{I} = (\Delta H_{2}^{f}/R)(1/T_{2}^{f} - 1/T_{2})$$
(1)

where ΔH_2^t is the molar melting enthalpy of the pure component MA, T_2^t is the melting temperature [K] of the pure component MA, and T_2 is the temperature [K] of the liquidus of component MA in the liquid phase, when its equilibrium activity is equal to $a_{2,eq}^t$.

The activity $a_{2,eq}^{1}$ is a function of the parameter *d*. We choose different schemes of thermal dissociation and under the assumption of an ideal behaviour of the mixture Na₃AlF₆ + MA, we may express the quantity $a_{2,eq}^{1}$. If a proper scheme was chosen, then the slope of the linear dependence log $a_{2,eq}^{1} = f(1/T_{2}^{t} - 1/T_{2})$ is equal $\Delta H_{2}^{t}/R$. Since the systems NaCl—Na₂SO₄, NaBr—Na₂SO₄, and Na₂CO₃—Na₂SO₄ are nearly ideal, *Grjotheim et al.* [13] suggest that also the mixture of the ions Na⁺, F⁻, AlF³₄, AlF³⁻₆, and SO²⁻₄ (*i.e.* the molten binary system Na₃AlF₆—Na₂SO₄) will exhibit an ideal behaviour, thus justifying the application of Temkin's model of ideal ionic solutions [15].

In [13] it was stated, however, that for all the three chosen schemes

$$Na_{3}AlF_{6} \rightleftharpoons 2NaF + NaAlF_{4} \rightarrow 3Na^{+} + 2F^{-} + AlF_{4}^{-}$$
(B)

$$Na_{3}AlF_{6} \rightleftharpoons 3NaF + AlF_{3} \rightarrow 3Na^{+} + Al^{3+} + 6F^{-}$$
(C)

 $Na_3AlF_6 \rightleftharpoons 3Na^+ + AlF_6^{3-}$ (D)

the dependence $a_{2,eq}^{!} = f(1/T)$ had the form of a curve, convex with respect to the axis of reciprocal temperature coordinates. According to *Grjotheim et al.* [13] this fact was due to a nonideal behaviour of the given system and they therefore suggested that $\Delta \bar{H}_{Na_2SO_4,mix}^{!} \neq 0$. In order to eliminate the effect of this quantity they drew tangents to the curves $a_{2,eq}^{!} = f(1/T)$ for $x_2 \rightarrow 1$ and from the slopes of these tangents they calculated the value of the parameter $\Delta H_2^{!}$.

For the first of the above schemes, *i.e.* (*B*), the obtained value conforms very good with the calorimetric data. Thus it may be expected that at a low content of cryolite in the given system the anions F^- , AIF_4^- , and SO_4^{2-} are present in the melt.

The method used in [13] may be exactly justified. For a not too wide temperature interval $(T_2^f - T_2)$ the simplified form of the general Le Chatelier—Shreder equation is valid [1]. If we consider the formation of a liquid solution from pure liquid substances "1" and "2", it holds

$$\Delta \bar{G}_{2,\text{mix}}^{1} = \Delta \bar{H}_{2,\text{mix}}^{1} - T \,\Delta \bar{S}_{2,\text{mix}}^{1} \tag{2}$$

According to the definition, it holds

$$\Delta \bar{G}_{2,\text{mix}}^{1} = \bar{G}_{2}^{1} - G_{2}^{0,1} = RT \ln a_{2}^{1}$$
(3)

For the case of formation of a liquid solution which is in equilibrium with solid substance "2", the activities in eqns (1) and (3) are equal and it holds

$$\ln a_{2,eq}^{l} = (\Delta \bar{H}_{2,mix}^{l}/RT_{2})_{eq} - (\Delta \bar{S}_{2,mix}^{l}/R)_{eq} = (\Delta H_{2}^{f}/R)(1/T_{2}^{f} - 1/T_{2})$$
(4)

For a system with the behaviour of Temkin's ideal solution $\Delta \bar{H}_{2,\text{mix}}^{1}=0$ and therefore

$$\ln a_{2,\text{eq.Tem}}^{l} = -(\Delta \bar{S}_{2,\text{mix}}^{l}/R)_{\text{eq}} = (\Delta H_{2}^{f}/R)(1/T_{2}^{f} - 1/T_{2})$$
(5)

The term $a_{2,eq,Tem}^{1}$ stands for the equilibrium activity of substance "2" in the liquid solution expressed according to Temkin. In a number of cases the behaviour of real solutions differs from the one postulated by Temkin's model. Then it holds

 $\ln a_{2,eq}^{\perp} \neq \ln a_{2,eq,Tem}^{\perp}$

This deviation from an ideal behaviour according to Temkin's model can be expressed quantitatively as the partial molar enthalpy of mixing of Na₂SO₄, $\Delta \bar{H}^{1}_{2,\text{mix}}$, however, it must be assumed that the value of the partial molar excess entropy of mixing of Na₂SO₄, $\Delta \bar{S}^{\text{ex.l}}_{2,\text{mix}}$, is negligible. Then it holds

$$\ln a_{2,eq}^{l} = \ln a_{2,eq,Tem}^{l} + (\Delta H_{2,mix}^{l}/RT_{2})_{eq}$$
(6)

and with respect to eqn (4)

$$\ln a_{2,\text{eq,Tem}}^{l} = (\Delta H_{2}^{f}/R)(1/T_{2}^{f}-1/T_{2}) - (\Delta \bar{H}_{2,\text{mix}}^{l}/RT_{2})_{\text{eq}}$$
(7)

Chem. zvesti 32 (6) 821-829 (1978)

823

For $x_2 \rightarrow 1$, $\Delta \bar{H}_{2,\text{mix}}^1 \rightarrow 0$ and consequently $a_{2,\text{eq.Tem}}^1 \rightarrow a_{2,\text{eq.}}^1$

In order to approximate the experimental values to the straight line with the slope $\Delta H_2^t/R$, *Grjotheim et al.* [13] suggested that in the molten mixture Na₃AlF₆—Na₂SO₄ the thermal dissociation of the AlF₆³⁻ anions according to the scheme AlF₆³⁻ \rightleftharpoons AlF₄⁻ + 2F⁻ took place. The degree of this dissociation is assumed to be dependent on cryolite content in the melt.

Let x_1 and x_2 be the mole fractions of Na₃AlF₆ and Na₂SO₄, respectively. If the degree of thermal dissociation of Na₃AlF₆ into NaAlF₄ and 2NaF is designated as d, then in the equilibrium mixture there exist

$x_1(1-d)$	moles of AlF_6^{3-}
x_1d	moles of AlF ₄
$2x_1d$	moles of F-
$3x_1 + 2x_2$	moles of Na ⁺

The equilibrium constant of thermal dissociation according to the scheme $AlF_6^{3-} \rightleftharpoons AlF_4^- + 2F^-$ in the given mixture can be expressed as follows

$$K_{\rm dis} = \frac{4x_1^2 d^3}{(1-d)(1+2x_1 d)^2} \tag{8}$$

When deriving the relation (8) it was assumed that the considered molten mixture behaved like Temkin's ideal solution. Further it has been assumed that the constant of the thermal dissociation K_{dis} is temperature independent. This assumption can be satisfactorily fulfilled when the analyzed liquidus curve does not cover a too wide temperature interval. In the given case this interval corresponds to the difference $(T_{Na_2SO_4}^i - T_E) < 100^{\circ}C$ and therefore it can be expected that the postulate $K_{dis} \neq f(T)$ does not introduce any greater inaccuracy into the results. The degree of thermal dissociation, d, is supposed to be unambiguously defined by eqn (8).

According to Temkin, for the activity of Na₂SO₄ the equation holds

$$a_{2,eq,Tem}^{1} = x_{Na^{+}}^{2} x_{SO_{4}^{2}} = \frac{x_{2}}{1 + 2(1 - x_{2})d}$$
(9)

The value of K_{dis} determined by *Grjotheim* [1] equals 0.06 (at the melting temperature of cryolite 1010°C). Then for a given x_1 we can determine the value of d from eqn (8), that of $a_{2,eq,Tem}^{1}$ from eqn (9) and we can draw the dependence $\ln a_{2,eq,Tem}^{1} = f(1/T)$. Though the points obtained in this way are situated nearer to the straight line with the "correct" slope, the deviation, *e.g.* for the eutectic point is still considerable. Therefore in [13] also the value $K_{dis} = 0.02$ has been used in order to approximate the points still more to the straight line. Nevertheless, the points fit to the straight line with the slope $\Delta H_2^t/R$ only then, if $K_{dis} = 0.013$, this value being clearly different from $K_{dis} = 0.06$ [1], or $K_{dis} = 0.037$ [2].

The results presented in [13] support the dissociation scheme $AlF_6^{3-} \rightarrow AlF_4^- + 2F^-$, with d = 50-70%. The values obtained yield, however, a lower

equilibrium dissociation constant than those found by other methods. The considered system does not behave apparently like Temkin's ideal solution at a higher content of cryolite in Na_2SO_4 and therefore the efforts to "approximate" the experimental points to the theoretical curve by choosing a low value of the dissociation constant is questionable.

Further, in [13] the authors did not consider the possibility of a total destruction of the anions AlF_6^{3-} at a low content of cryolite in the melt; such destruction has been found for $x_{Na_3AlF_6} \rightarrow 0$ in the system Na_3AlF_6 —BaCl₂ [16] and also in the system Na_3AlF_6 —NaCl [17] by means of the cryometric method.

Experimental

The system Na₃AlF₆—Na₂SO₄ was investigated using TA method in the composition range 0—12 mole % Na₃AlF₆. Fifteen mixtures from the region of the primary crystallization of Na₂SO₄ and three from that of Na₃AlF₆ were measured. Some of the experimental data are listed in Table 1. The parameters of the eutectic point are 9 mole % Na₃AlF₆ and 91 mole % Na₂SO₄, the temperature of the eutectic crystallization being 794.5 ± 0.5°C. The fact that the temperature of eutectic crystallization has been recorded on the cooling curves also at low contents of Na₃AlF₆ (Table 1) indicates that cryolite is practically insoluble in solid Na₂SO₄. It is well known that the classical thermodynamic approach can be applied to the

Table 1

System Na₃AlF₆—Na₂SO₄ Experimental data on TPC and T_E

Na ₃ AlF ₆	Na ₂ SO ₄	TPC	$T_{\rm E}$
mole %	mole %	°C	°C
0.00	100.00	884.8	
0.10	99.90	881.5	796.0
0.25	99.75	877.0	_
0.50	99.50	872.0	_
0.75	99.25	869.0	789.0
1.00	99.00	866.0	795.0
2.00	98.00	852.0	794.0
3.00	97.00	842.0	796.0
4.00	96.00	832.5	795.0
5.00	95.00	. 823.0	794.0
6.00	94.00	815.0	794.5
7.00	93.00	808.0	795.0
8.00	92.00	800.0	794.5
9.00	91.00	—	794.0

TPC — temperature of primary crystallization.

determination of the character of thermal dissociation of the substance MB on the basis of the course of the liquidus curve of the substance MA only when the substance MB is insoluble in the solid MA. This condition is apparently fulfilled in the given case.

Results and discussion

Because the difference $T_2^{t} - T_E = 884.8^{\circ}\text{C} - 794.5^{\circ}\text{C} = 90.3^{\circ}\text{C}$ is less than 100°C, it is possible to neglect the dependence of the enthalpy of melting of Na₂SO₄ on temperature. For calculation of $a_{2,eq}^{l}$ eqn (1) can be used; it holds

$$\Delta H_2^{\rm f} = 23.72 \text{ kJ mol}^{-1} = 5.67 \text{ kcal mol}^{-1}$$
 [18]

The cryometric treatment of experimental results shows that for $x_2 \rightarrow 1$ it holds that $k_{1/2} \rightarrow 7$. The correction factor decreases rapidly with increasing content of cryolite in Na₂SO₄ and it reaches the value of 2.2 at the eutectic composition. In the case of a total decomposition according to the scheme AlF₆³⁻ \rightarrow Al³⁺ + 6F⁻, $k_{1/2} = 7$. If the complete decomposition AlF₆³⁻ \rightarrow AlF₄⁻ + 2F⁻ takes place, then $k_{1/2} = 3$. Consequently, the existence of the equilibrium

$$AIF_6^{3-} \rightleftharpoons AIF_4^- + 2F^-$$

requires that $k_{1/2} < 3$. Therefore it was necessary to calculate the values of the correction factors in dependence on composition. To this purpose the "universal" relationship

Table 2

Numerical values of the activity of Na₂SO₄ in the molten Na₃AlF₆—Na₂SO₄ mixtures calculated on the basis of eqn (1) and the values of the correction factor $k_{1/2}$ computed using eqn (10)

Mole fraction of Na ₂ SO ₄ x_2	$-(1/T_2^t - 1/T_2) \cdot 10^5$	Activity of Na ₂ SO ₄ $a_{2,eq}^{l}$	Correction factor $k_{1/2}$
1.0000	0.0000	1.0000	7.0
0.9990	0.2468	0.9930	6.9
0.9975	0.5856	0.9832	6.6
0.9950	0.9653	0.9728	5.5
0.9925	1.1946	0.9665	4.4
0.9900	1.4252	0.9600	4.0
0.9800	2.5175	0.9308	3.5
0.9700	3.3145	0.9098	3.1
0.9600	4.0850	0.8900	2.9
0.9500	4.8688	0.8704	2.7
0.9400	5.5395	0.8539	2.6
0.9300	6.1346	0.8394	2.4
0.9200	6.8241	0.8230	2.3
0.9100	7.3035	0.8119	2.2

$$\ln a_{2,eq}^{1} = k_{1/2} \ln x_{2} \tag{10}$$

has been used. Here $k_{1/2}$ denotes a parameter numerically equal to the number of elementary particles (entities), which arise in the system formed by pure substance "2" (*i.e.* by pure Na₂SO₄) when introducing 1 molecule of substance "1" (*i.e.* Na₃AlF₆) [19]. The results of calculations according to eqns (1) and (10) are presented in Table 2. With respect to the value of $k_{1/2}$ there exist two regions in the composition interval 0—9 mole % Na₃AlF₆:

a) 0—3.5 mole % Na₃AlF₆, where it holds $k_{1/2} \ge 3$; in this region a total decomposition of AlF₆³⁻ anions and a partial decomposition of AlF₄⁻ anions evidently takes place. For $x_1 \rightarrow 0$ also the latter decomposition is complete and thus $k_{1/2} = k_{1/2}^{s_1} = 7$. It is clear that as far as $k_{1/2} \ge 3$, eqns (8) and (9) cannot be applied to this case.

b) 3.5—9 mole % Na₃AlF₆, where it holds $k_{1/2} < 3$; in this composition region the equilibrium AlF₆³⁻ \Rightarrow AlF₄⁻ + 2F⁻ can be suggested. In Fig. 1 the measured values of the liquidus temperature of Na₂SO₄ in coordinates log $x_2 = f(1/T_2^t - 1/T_2)$ are presented as well as the tangents to the liquidus curve of Na₂SO₄ for $x_2 \rightarrow 1$, for alternatively 1 to 7 new (foreign) particles arising from 1 molecule of Na₃AlF₆.

It is evident that the conclusions which follow from the data presented in Fig. 1 hold the better the lower is the content of cryolite in the melt.

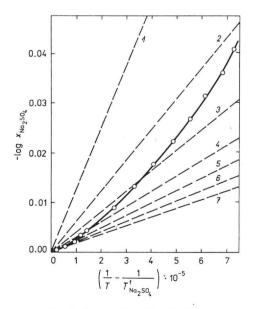


Fig. 1. System Na₃AlF₆—Na₂SO₄.

Experimental values of liquidus temperature of Na₂SO₄ in the coordinates $(1/T - 1/T'_{Na_2SO_4})$ vs. log $x_{Na_2SO_4}$.

$$k = 1; 2, k = 2; 3, k = 3; 4, k = 4; 5, k = 5; 6, k = 6; 7, k = 7$$

Chem. zvesti 32 (6) 821-829 (1978)

827

The above-mentioned relations enable to determine the degree d of thermal dissociation of AlF_6^{3-} anions. From eqn (9) it follows

$$d = \frac{x_2 - a_{2,eq,Tem}^1}{2(1 - x_2) a_{2,eq,Tem}^1}$$
(11)

Using eqn (1) we find $a_{2,eq,E}^1 = 0.8119$. For Temkin's ideal solution $a_{2,eq,E}^1 = a_{2,eq,E,Tem}^1$; from eqn (11) it follows that d = 0.67. The parameters $x_2 = 0.91$ and d = 0.67 inserted into eqn (8) yield the value $K_{dis} = 0.024$, which corresponds to the value of the thermal dissociation of pure cryolite, b = 0.21. Even though these data do not differ appreciably from the values of $K_{dis} = 0.037$ and b = 0.25 reported in [2], it is evident that the melts of the system Na₃AlF₆—Na₂SO₄ do not behave quite ideally, as postulated by Temkin's model. Their deviation from the Temkin ideal ionic solution can be expressed quantitatively as the magnitude of the partial molar enthalpy of mixing of Na₂SO₄ in the given solution. For the sake of simplicity we shall suggest (as it has been done above) that the value of the excess partial entropy of mixing of Na₂SO₄ is negligible.

We have mentioned already that $a_{2,eq,E}^{1} = 0.8119$. The most probable value of the degree of the thermal dissociation of pure cryolite is 0.25 [2, 10], which corresponds to the dissociation constant $K_{dis} = 0.037$. This value together with the value of $x_{1,E} = 0.09$ inserted into eqn (8) yields $d_{E} = 0.73$. Then from eqn (9) we can calculate that $a_{2,eq,E,Tem}^{1} = 0.8043$.

From eqn (6) it follows

$$\Delta \bar{H}_{2,\text{mix,E}}^{1} = RT \ln \left(a_{2,\text{eq,E}}^{1} / a_{2,\text{eq,E,Tem}}^{1} \right) = 81.76 \text{ J mol}^{-1}$$
(12)

Suggesting that the system behaves like a strictly regular solution it holds

$$\Delta \bar{H}_{2,\text{mix,E}}^{1} = \omega (1 - x_{2,E})^{2}$$

from which $\omega = 10.094 \text{ J mol}^{-1}$ can be determined. For the solution with the composition $x_2 = 0.5$ the partial molar enthalpy of mixing of Na₂SO₄ would reach

Table 3

Comparison of the main	parameters of therma	l dissociation of	cryolite in the s	system Na ₃ AlF ₆ —Na ₂ SO ₄

Ref. $a_{2.eq.E}^{1}$		d_{E}		According to Temkin	
	According to Temkin	According to the universal relationship	$K_{ m dis}$	b .	
[13]	0.8215	0.58	0.53	0.013	0.17
This paper	0.8119	0.67	0.60	0.024	0.21

the value of 2523.5 J mol⁻¹. Consequently, Na₂SO₄ exhibits a weak positive deviation from an ideal ionic behaviour in this solution.

For the processing of the experimental results also the universal relationship [19] has been used. For the eutectic point E in the system Na_3AlF_6 — Na_2SO_4 it holds

$$\ln a_{2,eq,E}^{I} = k_{1/2} \ln x_{2,E} \tag{13}$$

As $a_{2,eq,E}^{!}=0.8119$ and $x_{2,E}=0.91$, $k_{1/2}=2.2$. From the equation of the thermal dissociation of cryolite

$$x_1(1-d)$$
 Na₃AlF₆ $\Rightarrow x_1d$ NaAlF₄+2 x_1d NaF (E)

it follows that the sum of the ions equals $1 + 2d = k_{1/2}$. Consequently d = 0.60.

Analogical calculations have been made also using the data presented by *Grjotheim et al.* [13]. The results are confronted in Table 3.

Drawing conclusions we may state that the application of the method of "the second component" to the study of the thermal dissociation of cryolite confirms the data obtained by other methods [2, 10], according to which it holds for cryolite that $b \doteq 0.25$.

References

- Grjotheim, K., Contribution to the Theory of the Aluminium Electrolysis. Kgl. Norske Vidensk. Selsk. Skr., No. 5. F. Bruns, Trondheim, 1956.
- 2. Brynestad, J., Grjotheim, K., and Urnes, S., Met. Ital. 52, 495 (1960).
- 3. Frank, W. B. and Foster, L. M., J. Phys. Chem. 61, 1531 (1957).
- 4. Rolin, M., Bull. Soc. Chim. Fr. 1960, 677, 681.
- 5. Rolin, M. and Bernard, M., Bull. Soc. Chim. Fr. 1962, 429.
- 6. Paučírová, M., Matiašovský, K., and Malinovský, M., Rev. Roum. Chim. 15, 201 (1970).
- 7. Matiašovský, K., Paučírová, M., and Malinovský, M., Collect. Czech. Chem. Commun. 37, 1963 (1972).
- 8. Solomons, C., Clarke, J. H. R., and Bockris, J. O'M., J. Chem. Phys. 49, 445 (1968).
- 9. Dewing, E. W., Met. Trans. 3, 495, 2699 (1972).
- 10. Gilbert, B., Mamantov, G., and Begun, G. M., J. Chem. Phys. 62, 950 (1975).
- 11. Dewing, E. W. and Kouwe, E. Th., J. Electrochem. Soc. 122, 358 (1975).
- 12. Glasstone, S., Textbook of Physical Chemistry, 2nd Ed. Van Nostrand, New York; Mac Millan, London, 1947.
- 13. Grjotheim, K., Halvorsen, T., and Urnes, S., Can. J. Chem. 37, 1170 (1959).
- 14. Matiašovský, K. and Malinovský, M., Chem. Zvesti 19, 41 (1965).
- 15. Temkin, M., Acta Physicochim. URSS, 20, 411 (1945).
- 16. Petit, G. and Ngo Tuang, C. R. Acad. Sci. (Paris) C262, 243 (1966).
- 17. Koštenská, I. and Malinovský, M., Chem. Zvesti 28, 553 (1974).
- Kelley, K. K., Contributions to the Data on Theoretical Metallurgy, XIII. U.S. Bureau of Mines. Bulletin 584, Washington, 1960.
- 19. Malinovský, M. and Koštenská, I., Chem. Zvesti 28, 493 (1974).

Translated by M. Uhrová