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In this paper the theory of polarographic method is generalized for the case
that the diffusion coefficient is a linear function of concentration of the
depolarizer. Besides, the spherical diffusion is also taken into account. The case
of reversible reactions in the presence of indifferent electrolyte is solved. The
solution results in the generalized corrected Ilkovi¢ equation and in the relation
between “apparent” diffusion coefficient and heterodiffusion coefficient.

B pa6oTe 6bu1a 060611€Ha TEOPUS NMONsporpauyecKkoro MeToaa B ciiyyae,
koraa kKo3adduuueHt nuddy3un sBISETCH JTHMHEHHON (QYHKIMEH KOHLIEH-
TpaUMK Nenoyisipu3aTopa U ONHOBPEMEHHO YYMThIBaeTcs cepuueckas oUd-
¢dy3us. Boul peureH ciyyail o6paTHMBIX pPeaKlMid B MPUCYTCTBUH MOCTOPOH-
HEro 3JeKkTponuTa. PemeHue npUBOAUT K OGOOIIEHHOMY, MCIpPaBIECHHOMY
ypaBHeHHIO WINBKOBHYAa M K COOTHOUIEHHIO MEXAY «KaXYLIUMCs» KO-
duueHToM nUddy3nn 1 KoachdpuuHeHToM rereponudPys3nu.

The theory of polarographic method was developed on the assumption that the
diffusion coefficient is independent of concentration of electroactive particles, i.e.
D =const. The result of this theory is the Ilkovi¢ equation [1] which presumes
a plane diffusion layer. The real curvature of diffusion layer was taken into
consideration by Koutecky [2], who corrected the Ilkovi¢ equation and exactly
solved the equation of convective diffusion in spherical coordinates by means of
infinite series. In a later paper [3] published by Levich, another approximative
method of solution is proposed. This solution leads to an inhomogeneous equation
of convective diffusion which is easier to be solved and the result is in agreement
with the correction according to Koutecky.

The aim of this study is to generalize the theory of polarographic method on the
assumption that a linear relationship between diffusion coefficient and concentra-
tion of the depolarizer exists. Reversible reactions and the presence of indifferent
electrolyte which enables us to neglect the migration currents due to electric field in
the solution with respect to the diffusion current will be taken into consideration.

448 Chem. zvesti 33 (4) 448—457 (1979)



GENERALIZATION OF THE ILKOVIC EQUATION

Theoretical
Let us consider the equation of convective diffusion
dc ;
§+v grad ¢ =div [D(c) grad c] (1)

which is written in spherical coordinates for the case of central symmetry

3¢ dc 3’ &, 2 8c> 3D(c) ac
Tt T )( rar) T ar ar 2)
If we insert the expression
D(c)=Dw(1+ac) (3)

where Dy, a, and ¢ are the heterodiffusion coefficient for ¢ — 0, the coefficient
characterizing the linear concentration dependence of the diffusion coefficient, and
the concentration of the depolarizer, respectively, we obtain

ac+ 8 D(Gc 280>+
YR "ar? ror

d’c 2 dc 80)2
+aD,.[ (a +2 8r)+<8r ] )
For polarography, the initial and boundary conditions of the equation of diffusion

(4) are
c(r,t=0)=co

c(r=a,t)=c(@) clr—>xo,t)=co 5)

where a, co, and ¢ are the radius of drop, the concentration of depolarizer inside
solution, and the potential of mercury dropping electrode, respectively. According
to [3], it holds

c(p)=coA e " (6)

where A is a constant proportional to the activity coefficient of ions.

The solution of polarographic method necessitates further treatment of eqn (4)
which is described in original papers, e.g. [1] and [3] and we shall, therefore,
present only the results.

The diffusion takes place in a thin layer the thickness of which is very small in
comparison with the drop radius a () that increases with time. We may substitute
the following expression for the coordinate r

r=a(t)+y; y<a(t) ! (7)
Then it holds [1, 4]
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8¢y _(8¢c\ __¥ B3¢
(5.~ &), 53 ®
where
_(3d’Us\"" /3 m\'”
Y—< 16 ) <4Jr 9) ©)

The symbols d, Uy, ¢, and m in expression (9) stand for the diameter of the
capillary from which mercury drops, the linear flow rate of mercury in the capillary,
the specific weight of mercury, and the flow rate of mercury running off per second,
respectively. The radial flow rate of liquid during the growth of drop v. is given by
the following expression [3]

-

WIN

2
§+ ;{—m (10)
Now we must express the Laplace operator in spherical coordinates and substitute
from eqn (7) and eqn (11 ) expressing the growing drop radius a (¢) explicitly [4]

a(t)=yt"” (11)
Hence, we obtain

3’ 23c_d¢, 2 3dc
—tE—=——t—
8r2+ ror oy® yt'? ay (2]
If we take into consideration eqns (12), (10), (8), and (7), the equation of
convective diffusion (4) may be transformed into the form

3c _ <EX_ ) dc _ 3’ c+ 2 Sc
3t \3:¢ yt dy hay2 t" ay
3% 2 dc dc .
—m— )+ (= 3
+aD"[C<§E+Yt” Sy) (8y>] (13)
If we suppose
laleco<1 (14)

we can prove that the following inequality is fulfilled [3]

23 2 3c 2 ac 8 c
rar a(t)dy yt ay ay (15)
On the basis of this reasoning, the terms of littleness of the second order in the
composite bracket in eqn (13) may be omitted and it may be assumed
ac

2
aDc Wma—)o (16)
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For illustration, we shall write eqn (13) with approximation (16) in the form

8_2y3c_p dc_2Dydc_ y dc
ot 31ty "W~yt 3y yt*”ay
3%  [ac\’
—+(— 17
+aDh[c ay2+<ay) ] ( )

Now let us consider eqn (17) the right side of which is supposed to equal zero.
For initial and boundary conditions (5), the solution of this equation gives [1]

2 z/(2 V) _g2
cl(z,r)=ﬁ[co—c(«p)lﬁ e dE + () (18)

where the new variables z and t are bound with the variables y and ¢ by the
subsequent relations

z2=t"y; T=;Dhtm (19)

On the basis of the solution ¢y, it is already easy to calculate the diffusion flow
and the corresponding current density flowing through the mercury dropping
electrode and thus to obtain the Ilkovi¢ equation.

Now let us consider eqn (17) in which we substitute a = 0. The solution is given
in paper [3] by Levich and leads to a correction of the Ilkovi¢ equation. As evident
from eqn (17), the correction involves influence of the curvature of the diffusion
layer and is identical with the correction derived earlier by Koutecky [2], more
exactly with the first term of this correction.

Let us solve eqn (17) for a$0, i.e. respecting linear concentration dependence
of the diffusion coefficient (3). The solution may be performed by the method of
successive approximations and expressed in the form

¢ =ci+cCk lex] < (20)

where ¢, is a correction solution for the function ¢, given by eqn (18). If we
substitute from eqn (20) into eqn (17) the solution ¢, must fulfil the following
equation

dck 2 ydc 3’ 2Dydci y* dc

ot 3t dy dy® yt " 3y yt dy
3’ , (3c\’
+aDyfe 3+ (3 | (21)
for the following initial and boundary conditions
ck(y’ t= 0) = O
a(y=0,1)=0; c(y—>>,1)=0...t>0 (22)
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The terms of littleness of the second and higher orders in eqn (21) have been
neglected, i.e.

» o —0 (23)

which is the approximation suggested by Levich [3]. Furthermore, we put

d’c ac d’c, dc\?
¢ 8y2+(ay) ~a 3 2+<8y> (24)

(see eqns (20) and (17)).

Let us consider the function cx; which is the solution of eqn (21) for =0 and
initial and boundary conditions (22) where we write c.; instead of the function cx.
This function was already presented in paper [3] by Levich and therefore we shall
not analyze this problem in more detail.

Provided the function ¢y, is the solution of the equation

dcwe_2y3a_ ) dck_ ¢y, (3cs ]
et R aDh[cla +<8y> (25)

at initial and boundary conditions (22) where we write ci., instead of cy, the
solution of inhomogeneous eqn (21 ) for conditions (23) and a # 0 is the function

Ck=Ck1+Ck2 (26)

It is, therefore, obvious from these considerations that the generalized theory of
the polarographic method respecting linear concentration dependence of the
diffusion coefficient is reduced to the solution of eqn (25) at conditions (22). If we
introduce substitution (19) in eqn (25), it may be written in the form

3k 3'Ca [ (@ t)am(z 7) (861(2,7)”:

ar a9z ¢ oz
=aF(z, 1) 27)

The particular solution of inhomogeneous eqn (27) at initial as well as boundary
conditions corresponding to zero (22) on an infinite half line is given by the
following expression [4]

e 2\/; o Jo VT —x

s -«}aF(g x) dE dx (28)

Tf we insert the solution c; given by eqn (18) into eqn (27) and express the
function F(&, ») by means of eqn (28) or eqn (27), we obtain
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a F(&, »)= a[K, S € ax erf—t5—+K2 Z & 4x +

+K3%e‘f—:] @9)
where
Ki= —>=lco—c(@)]
1
K= o [co—c(@)lc(e) (30)

s=Lleo—c(@)]

In polarography we are interested in the current density i flowing through the
area of the mercury dropping electrode

22 31)

. dc
i=nFD[c(p)] 3zl.m0 3y

Therefore we shall differentiate the function cy, expressed by eqn (28)

a L 1 o
z=0—2\/.7-tfo_[ (T—x)”zge F(&, ») d§ dx (32)

dcka(z, T)
9z

and insert the function F(E, x) given by eqn (29). Then it holds

a—;f = a[KiL + KoL, + Kali] (33)
z=0
where I, i =1, 2, 3 are the following integrals
g R g
S o Eer —— dE dx (34)
fi= ZVnJ;fo (t— 7¢)3’2 7 © 2Vx
1 1 & e e 1
1=——_ff 1 5 o ggdn=— (35)
oVl o (m—x) 42 d V1
13=_1:ff __l_ﬁge‘wg—xs‘iz?dgdx=ﬁi_ (36)
2Vado Jo (t—%)"*x 2 Vr

Now we are concerned with integral (34) the calculation of which we are going to
carry out approximately. For this purpose, we express the functions erf z by means
of a majorant function [7]
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_2
erfz<1—-e ;° (37)

If we insert from eqn (37) into eqn (34) and take into account integral (35), we
may write

I|z[z—ln (38)
1 52 __ & g 1§
I“szofo mxme ar—x) 2 Vi Ve 95 d% (39)

It is easy to integrate double integral (39) with respect to the variable & by using
substitution

21— 1 T—2x
— ————— —— 40
2\/%\/1’—){E Vr Y2t —x #0)

and rearrange it into the form

l —
In=i_L_f—-——l—[—\—2£e'l:”<l—erf—— 1-n n)x

VaVvtl, 2-1)" Vr
1,1 1-7 1 [1-n 1
(2 Vr2- n> 2V ]d" 0-256 \/— S

The value of I,; was determined by means of a computer.
If we insert from eqns (41), (38), (36), (35), and (30) into eqn (33), we obtain

3Ciz
acz =Oz2 \1/]_':. [Co—c(q))] % {0256[C0—C(q))] —C(QJ)} (42)

Now, it is already possible to calculate the current flowing through the mercury
dropping electrode. If we take into- account eqns (26) and (20), it will do to
substitute the solution ¢, expressed by eqn (18), the solution ci explicitly
presented in [3], and eqn (42) into eqn (31). The current I flowing through a drop
is related with the current density i also by the following expression [1]

I=4r a’(t)i (43)

where the drop radius a(¢) is given by eqn (11). Provided we replace the variables t
and z by the variables y and ¢ according to eqn (19) and take into account eqns (9)
and (3), we may write'for the instantaneous current
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1/2 (1/6

[~0732n F D,','zmmt”(’[co—c(cp)]{{l #3927 [1+ac(@)]+

+a{0.182[co—c((p)]+%c(tp)}}} (44)

la]co=<0.3

Eqn (44) is the generalized Ilkovi¢ equation which respects linear dependence of
the diffusion coefficient on concentration of the depolarizer (the third term in
double parenthesis and the correction ac(g) in the second term) and the spherical
diffusion as well (the second term in this parenthesis). By integrating with respect
to the variable ¢, we obtain the mean current I from eqn (44)

172 ,1/6
D"t

1=0.627n F D> m*’t\°[co— C((p)]{{l +3.4 =5 [1+ac(e)]+

+a{0.182[co—c(¢p)]+%c(tp)}}} (45)

|a|0050.3

where ¢, is the drop time.
We shall summarize the approximations used for the deduction of the

generalized Ilkovi¢ equation. Approximation (23) corresponding to the correction
for spherical diffusion has been discussed in [3] and we shall, therefore, dismiss it.
From the view-point of the correction respecting the concentration dependence
D (c) we have used approximation (16) which means that this correction does not
take into account the influence of the curvature of diffusion layer which itself is
a correction of littleness of the first order as well as approximation (24) which is
justifiable solely on the assumption that |c«| <c,. Finally, we have approximated
the function erf z by means of eqn (37). This approximation manifests itself in the
value of integral I, (see (34)) which is changed by 15%. The calculations were
performed by computing integral (32) on a computer for particular values of 7.
Hence, it holds I, = 0.636 ™" instead of I,(approx) = 0.744 t~'.This refinement was
taken into consideration already in the value of the constant 0.182 in eqns (44 ) and
(45).

It is useful to outline a procedure useable for higher values |a|co which enables
us to appreciate the accuracy of the deduced first approximation as regards
experimental errors for these values. In these cases, a numerical solution of eqn
(27) would be performed on a computer for particular values of a, co and zero
conditions (22). Then it should be put c; + ¢\, instead of the solution ¢, in eqn (27).
Provided a more accurate analysis would be necessary, a numerical solution of eqn
(13) involving substitutions (19) should be performed. After further calculations

Chem. zvesti 33 (4) 448—457 (1979) 455



P. KUBICEK

the results of these solutions may be compared with the values calculated from eqn
(44) or eqn (45).

Discussion

In the generalized Ilkovi¢ equation the heterodiffusion coefficient D, appears.
From the results of measurements obtained with different values c,, this equation
enables us also to determine the coefficient @ and thus the real coefficient of
diffusion according to eqn (3).

The comparison of eqn (45) with the original corrected Ilkovi¢ equation shows
that it is the “‘apparent” coefficient of diffusion D which results from this equation.
For the limiting current it holds ¢(¢)=0 and the following relationship between
apparent diffusion coefficient and heterodiffusion coefficient is valid

1/6

1/6
B'*(1+3.4 1= 5") =DI*(143.4 T DI*+0182a o) (46)

or
1

/6 l/
<1+68 ,,3D”2)~D<1+68 1,3D$’2+0364aco> (47)

The magnitude of the term which in the generalized Ilkovi¢ equation represents the
influence of concentration dependence of the diffusion coefficient mainly depends
on character of the depolarizer with respect to properties of the indifferent
electrolyte, i.e. on the value of a and concentration co used. It should be
emphasized that the value of the heterodiffusion coefficient D, as well as the value
of a is really dependent on concentration of the indifferent electrolyte cin.
Therefore the values of a and Dy, necessitate a statement for which concentration
ci» they have been determined.

Provided the maximum value of |a|co equals 0.35 in a concrete case, the value of
limiting current changes according to eqn (45) by 6.4% while the value of the
apparent coefficient of diffusion changes according to eqn (47) by about 13%.
However, it ensues from eqn (3) that the real coefficient of diffusion at concentra-
tion ¢y, i.e. D (co) must differ from the heterodiffusion coefficient already by 35%
in this case. For higher values of |a|co it is convenient to check the correction by
numerical integration of eqn (27) as stated in the foregoing passage.

In case the correction for spherical diffusion may be neglected, the relationship
between D and a, D, may be written in the form which is equal for other
electrochemical methods and their generalized equations

D =Dy(1 + const aco) (48)

The values of the constant in eqn (48) valid in the presence of indifferent
electrolyte are given in Table 1.
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Table 1

Values of the constant in generalized equations of electrochemical methods

Generalized equation Constant Ref.

Cottrell 0.36 [5]

Sand 0.40 [6]

Levich 0.53 a>0 7]
062 a<0

Ilkovi¢ 0.36

Assuming the diffusion coefficients and valency of positive and negative ions are

equal [8], the value const=0.57 results from the generalized Levich equation for
binary electrolytes. This value is the mean of the values quoted in Table 1 for the
Levich equation.

The consequences resulting from the generalized Ilkovi¢ equation will be

discussed from the view-point of experimental practice in the subsequent paper [9].
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