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The problem of concentration dependent diffusion coefficient for the case of 
electrochemical diffusion is solved using the method of digital simulation. The 
procedure and results are demonstrated on the example of diffusion of Al(III) 
ions in the melt NaCl—KCl deposited on aluminium electrode. 

Цифровым симулированием решается проблема концентрационно за
висимого коэффициента диффузии при электрохимической диффузии. 
Ход и результаты решения показаны для случая диффузии ионов AI(III) в 
расплаве NaCl—KCl, которые выделяются на алюминиевом катоде. 

In studying the kinetics of electrode reaction, our aim is to elucidate the relation 
between the rate of reaction and the experimental variables and so deduce the 
reaction mechanism. If we postulate a particular reaction mechanism then the 
kinetics of reaction can be calculated by solving a set of equations describing single 
reaction steps. If the theoretical and observed relations between experimental 
variables (potential, concentration, current, etc.) agree in limits of error we may 
accept the proposed mechanism. 

However, at the study of kinetics of electrode processes it often happens that 
analytical relationships between current, potential, time, and kinetics parameters 
cannot be derived. If we wish to deal with real systems, in which the electrochemi
cal reactions and transport of species can be described by more complicated 
schemes which are not analytically soluble, one of the ways how to overcome the 
mathematical obstacles is the digital simulation of electrochemical processes by 
means of a computer. For the case of constant diffusion coefficient this topic is 
treated in a comprehensive review [1]. In this paper we shall deal with concentra
tion dependent diffusion coefficient for the case of metal deposition on a planar 
electrode formed by the same metal. 

The equation for one-dimensional diffusion when the diffusion coefficient D is 
a function of concentration с is 
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If the rate of cathodic electrochemical reaction is determined only by a linear 
diffusion then for the case of chronopotentiometry when the current flowing 
through the system is constant it holds in the vicinity of electrode 
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where n is the charge number of the electrode reaction, F is the Faraday constant, 
and D 0 is the diffusion coefficient in the vicinity of electrode. The boundary 
conditions are chosen so that at time / = 0 the concentration of electroactive species 
equals c° for all x. In the infinity distance from electrode the concentration c° 
remains constant also during electrolysis. 

The basis of the conceptual model for digital simulation is discretization of space 
and time. Let us divide the electrolyte into the volume elements A V the thickness 
of which is Ax (Fig. 1). The average distance of the 7-th volume element from the 
electrode surface is 

x = (I-0.5)Ax (3) 

and the average concentration in the 7-th volume element is с,. (I is an integer.) It 
should be noted that the term 0.5 is especially important for proper treatment of 
the boundary conditions at J = 1 [1]. 

The rate of diffusion is given by empirical Fick's first law 

' - » 5 «> 
The change in amount of substance in the J-th volume element is given by the 
difference between the fluxes of substance entering and exiting the element. For 
the case of concentration dependent diffusion coefficient the transport across an 
element boundary can be described using average diffusion coefficient between the 
two adjacent volume elements. The change in concentration occurring during time 
interval At in the 7-th volume element (J^2) can be expressed in the difference 
form as 

ci-c^j^yiiDj^-^DjXcj^-c^-iD^D^Xcr-c^)] (5) 

where cf is the concentration in the J-th element at time / + At. If the diffusion 
coefficient is constant eqn (5) is identical with the Schmidt relation [2]. 

Similarly as in the case of Schmidt method the stability of eqn (5) is given by 
condition 

DAt/(Ax)2^0.5 (6) 

The stability conditions of numerical solution of diffusion equations are discussed 
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in detail in the monograph [3]. The time interval At was chosen according to eqn 
(6) for the highest value of diffusion coefficient in the studied concentration range. 
In our case the diffusion coefficient decreased with increasing concentration and, 
therefore, for estimation of At the limit value of diffusion coefficient at zero 
concentration was used. 

In the first volume element at the vicinity of electrode besides transport 
phenomena (diffusion from the second volume element) also the electrochemical 
reaction takes place which is responsible for the decrease of the amount of 
substance in this element. It holds 

where the first term on the right side corresponds to diffusion from the second to 
the first volume element and the second term corresponds to consumption of the 
electroactive substance in electrochemical reaction. 

In the experimental study of electrode reactions at chronopotentiometric condi
tions we follow the dependence of potential of working electrode vs. time. 
Potential of electrode is given by the Nernst relationship 

E = E° + (RT/nF) In flox/flRed (8) 

where a0 x, «Red are the activities of an oxidation-reduction couple in the vicinity of 
electrode. In the case of metal deposition on the electrode formed by the same 
metal aRcd approaches 1. If the activity (and therefore also concentration) of 
deposited metal approaches zero at the electrode vicinity, the electrode potential 
changes rapidly. Time at which а0* equals zero is the transition time т. This time is 
important characteristic of an electrode process. 

In digital simulation of chronopotentiometry we are looking for the point when 
the concentration of electroactive component at the electrode equals zero. If the 
concentration in the middle of the first volume element is cu then from the 
boundary condition of chronopotentiometry (eqn (2)) and respecting eqn (3) it 
follows 

C * = O = C I ~ 2 ^ F Ď ; ( 9 ) 

Therefore the digital simulation of electrochemical diffusion is based on calculation 
of concentration distribution at time (N+ 1) At on the basis of knowledge of this 
distribution at time NAt using eqns (5) and (7). At the beginning the concentration 
of electroactive species is c° in the whole electrolyte. In the first time interval 
(N= 1) the transport of substance given by eqn (5) equals zero and the diffusion 
term in eqn (7) equals zero as well. The change in concentration in the first volume 
element is only due to electrochemical reaction. After each cycle we use eqn (9) for 
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testing whether concentration c0 at the electrode surface equals zero. Actually the 
concentration c0 will never be zero but at some point in simulation process this 
concentration will become negative. Therefore the transition time is to be 
determined by linear interpolation of time on the basis of values c0 at time (NEND 
- 1) At and NEND At. 

It should be noted that the choice of At and Ax must fulfil not only the condition 
(6) but also the boundary condition of chronopotentiometry (9). Therefore it is 
necessary to choose sufficiently small Ax and subsequently to calculate At 
according to relation (6). 

The method of digital simulation is illustrated in Fig. 1 where the change of 
concentration vs. distance from the electrode is plotted. The number on each curve 
is the time, in seconds, elapsed since the beginning of electrolysis. The numerical 
data were obtained for the diffusion of Al(III) in the melt NaCl—KCl at 700°C. On 
the basis of 30 experiments carried out at different concentrations c° and current 
densities it was found [4] that the experimental dependence of transition time on 
concentration (up to 10~3 mol A1C13 per cm3) and current density can be described 
by hyperbolic dependence of diffusion coefficient on concentration. The hyperbolic 
function enables to model sharp change of diffusion coefficient in the vicinity of 
electrode 
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Fig. L Change in concentration of Al(III) ions 
as a function of time elapsed from the beginning 
of electrolysis and distance from the electrode. 
c° = 9.392 x 10"5 mol cm"3, у = 0.6369 A cm-2, 

Ax = 3.742 x l (T 3 cm. 
Diffusion coefficient depends on concentration 

according to eqn (10). 
1. 0.05 s;2. 0.10s\3. 0.15s;4. 0.20s; 

5. 0.25 s; 6.0.30 s. 

Fig. 2. Chronopotentiometric curve constructed 
on the basis of data obtained by digital simula

tion of diffusion. 
The experimental conditions are the same as in 

Fig. 1. 

156 Chem. zvestí 34 (2) 153—157 (1980) 



ELECTROCHEMICAL DIFFUSION 

Dr/cm2 s_1 = 1/(1/7 x 10- 4 + 108 c,/mol cm-3) (10) 

The agreement between model and experiment was tested using criterion of 
minimalization of the sum 

к 

/ j V^i.exp b | ,calc/ /*i ' ,exp 
» = 1 

In the example shown in Fig. 1, the experimental transition time is 0.31 s while the 
transition time obtained by digital simulation of chronopotentiometric diffusion is 
0.35 s (c° = 9.392 x 10"5 mol cm"3, / = 0.6369 A cm- 2). 

In Fig. 2, the difference of the electrode potential and standard potential E -E° 
(see eqn (8)) vs. time is drawn. The experimental conditions are the same as 
mentioned above. The activity of Al(III) equals mole fraction of A1C13 in the 
electrolyte, the activity of deposited metal is assumed to be unit. 

It can be concluded that in the case of concentration dependent diffusion 
coefficient no analytical expressions derived for constant diffusion coefficient can 
be correctly used, neither for determination of transition time, nor for logarithmic 
analysis of experimental chronopotentiometric curve. Numerical solution of diffu
sion equations discussed in this paper yields a universal tool for solving this 
problem. 
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