Preparation and spectral properties of cyclic acetals of 2,2,5,5-tetrakis(hydroxymethyl)cyclopentanone

R. ČIŽMÁRIKOVÁ and J. HEGER

Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Komenský University, 880 34 Bratislava

Received 17 August 1978

Accepted for publication 26 June 1979

Dedicated to Professor L'. Krasnec, in honour of his 65th birthday

2,2,5,5-Tetrakis(hydroxymethyl)cyclopentanone reacts with carbonyl compounds in a 1:2 ratio to give cyclic acetals similarly as α - or β -glycols. These acetals were prepared under catalysis of acids (hydrochloric, sulfuric, and *p*-toluenesulfonic) or phosphorus pentoxide. Their structure was proved by spectral means (i.r., u.v., and 'H-n.m.r. spectroscopies).

2,2,5,5-Тетракис(гидроксиметил)циклопентанон реагирует с карбонильными соединениями в отношении 1:2 с образованием циклических ацеталей аналогично α - или β -гликолям. Эти ацетали были приготовлены с использованием в качестве катализатора кислот (хлористоводородной, сернокислой и *п*-толуолсульфоновой) или P_2O_3 . Их структура была подтверждена спектрофотометрическими методами (ИК, УФ и ¹Н-ЯМР).

Cyclic 5- or 6-membered acetals are extraordinarily easily formed from two- or morehydric alcohols containing hydroxyl groups in 1,2 or 1,3 positions. In contrast to generation of acyclic acetals, when at a 1:2 mole ratio an equilibrium is attained, cyclic acetals have their equilibrium shifted, even with a stoichiometric ratio, in favour of the acetal [1-12].

This paper concerns the preparation and spectral properties of cyclic acetals of 2,2,5,5-tetrakis(hydroxymethyl)cyclopentanone, the hydroxyl groups of which are in a β -glycol arrangement.

Experimental

Melting points were determined on a Kofler micro hot-stage. Purity of the prepared substances was checked by thin-layer chromatography on Silufol UV 254 (Kavalier, Votice) plates in the solvent system benzene—ethyl acetate 5:1. The respective spots were detected

both with iodine vapours and under an u.v. lamp. The R_r data are the mean values of three measurements. Infrared spectra were recorded with a UR-10 (Zeiss, Jena) spectrophotometer either in nujol (acetals *I*, *III*—*IX*, *XII*—*XX*, *XXII*, *XXIII*), or in KBr (*X*, *XI*, *XXI*), or in carbon tetrachloride (*VI*). The u.v. spectra were taken with a Specord UV VIS (Zeiss, Jena) apparatus in the 200—350 nm region at a 10^{-2} — 10^{-5} M concentration in dioxan; cell length 0.2—2 cm. The 'H-n.m.r. spectra were measured in deuteriochloroform with a Tesla BS 487 A apparatus operating at 80 MHz; internal reference hexamethyldisiloxane.

Cyclic acetals

2,2,5,5-Tetrakis(hydroxymethyl)cyclopentanone (24 mmol) prepared according to [13] was stirred with the appropriate carbonyl compound (49 mmol) a) at room temperature in 50% ethanol or methanol (10 ml) with concentrated hydrochloric acid or 40% sulfuric acid (10 ml); after 24 h the product was filtered off; b) at a given temperature in a suitable solvent with P_4O_{10} (4 g); after a convenient time the catalyst was filtered off and the filtrate was concentrated for crystallization; c) at a reflux in benzene (150 ml) with *p*-toluenesulfonic acid (5 g) using a distillation head; after neutralization with a sodium carbonate solution benzene was distilled off and the crude material crystallized from a suitable solvent.

Detailed conditions and characterization of products are listed in Table 1.

Results and discussion

Acetals VI and X are the only two of 23 described in this paper, which were reported in the literature; they were prepared from the respective starting material and HCl as a catalyst [14]. This catalyst was also used in the synthesis of acetals VI-XV and XVIII with aliphatic and aromatic aldehydes. Sulfuric acid was found to be advantageous with VII and VIII, where hydrochloric acid furnished the products in a low yield. Further suitable catalyst for preparation of acetals, where the above-mentioned acids did not afford products in a satisfactory yield, was phosphorus pentoxide in dry benzene. The acetal from p-dimethylaminobenzaldehyde was prepared by an azeotropic acetalization using p-toluenesulfonic acid or phosphorus pentoxide, because attempts with other catalysts failed. We also examined phosphoric acid and zinc chloride, which in comparison with the preceding catalyst did not give reasonable results and therefore, we do not mention them in the following text.

Acetals mentioned in Scheme 1 are white crystals insoluble in water and soluble in organic solvents. The most part of the prepared acetals was isolated in relatively high yields even when using the stoichiometric ratio of reactants the exception being those prepared from p- and o-hydroxybenzaldehydes; here side reactions took place in a considerable measure.

The $R_{\rm f}$ values of acetals synthesized from substituted aromatic aldehydes (o-,

m-, *p*-Cl, *m*-, *p*-NO₂ and fluoro derivatives decrease in the order o-isomer > *p*-isomer > *p*-isomer > unsubstituted isomer

Compound	X	XI	XII	o-Cl	xIV	XV	XVI
X	H	m-F	p-F		m-Cl	p-Cl	p-CH ₃
Compound	XVII	XVIII	XIX	XX	XXI	XXII	
X	p-OCH ₃	m-NO ₂	p-NO ₂	o-OH	p-N(CH ₃) ₂	2-OH-3,5-diCl	

Sci	heme	1
JU	icine	1

Cyclic acetals of 2,2,5,5-tetrakis(hydroxymethyl)cyclopentanone

Characterization of the prepared cyclic acetals

			Calculated/found			Reaction conditions				M.p., °C	D		
Compound	Formula	MI -	% C ·	% H	% X	-	Solvent	Catalyst	Catalyst Temperature		Solvent	AN C	
I	C15H24O5	284.36	63.36	8.51	-		Excess	P ₄ O ₁₀	lab.	60	175 Methanol	0.19	
П	$C_{17}H_{28}O_{5}$	312.41	65.36 65.52	9.03 9.31	-		Excess	P_4O_{10}	B.p.	59	136—139 Methanol	0.34	
Ш	C19H28O3	336.43	67.83 67.95	8.39 8.60	—		Excess	P_4O_{10}	lab.	95	214-215 Acetone	0.35	
IV	$C_{21}H_{32}O_5$	364.49	69.20 69.26	8.85 9.00	_		Excess	P_4O_{10}	lab.	77	171—173 Acetone	0.37	
V	C23H36O5	392.54	70.37	9.25	-		Excess	P_4O_{10}	lab.	88	222-225 Acetone	0.38	
VI	_		-	_	-		Ethanol Methanol	HCI	lab.	81	180—182° Methanol	0.17	
VII	C13H20O5	256.30	60.92 60.81	7.87	_		Ethanol	H ₂ SO ₄	lab.	74	101—104 Ethanol	0.35	
VIII	$C_{15}H_{24}O_{5}$	284.36	63.36 63.02	8.51 8.25	-		Ethanol	H₂SO₄	lab.	76	94—95 Methanol	0.35	
IX	C19H32O5	340.46	67.03	9.47 9.80			Ethanol	HCI	lab.	75	155—156	0.49	
X	_				_		Ethanol	HCl	lab.	90	204206 [®] Methanol	0.51	
XI	$C_{23}H_{22}F_2O_5$	416.43	66.33	5.32	9.12	(F)	Ethanol	HCI	lab.	72	180—183 Methanol	0.56	
XII	$C_{23}H_{22}F_2O_5$	416.43	66.33 66.03	5.32 5.10	9.30 9.12 9.20	(F) (F) (F)	Ethanol Methanol	HCI	lab.	75	293—295 Methanol	0.51	

R. ČIŽMÁRIKOVÁ, J. HEGER

Compound	Formula	М -	Calc	ulated/fo	und	-	Reaction conditions				M.p., ℃	R,
			% C	% H	% X		Solvent	Catalyst	Temperature	/0	Solvent	
XIII	$C_{23}H_{22}Cl_2O_5$	449.34	61.48	4.92	15.78	(Cl)	Ethanol	HCI	lab.	79	220—223	0.62
			61.29	5.10	15.65	(Cl)	Methanol				Carbon tetrachloride	
XIV	$C_{23}H_{22}Cl_2O_5$	449.34	61.38	4.94	15.78	(Cl)	Ethanol	HCI	lab.	80	174—176	0.59
			61.37	4.64	15.80	(Cl)	Methanol				Carbon tetrachloride	
XV	C23H22Cl2O5	449.34	61.38	4.94	15.78	(Cl)	Ethanol	HCI	lab.	78	238-239	0.55
			61.14	5.11	15.90	(Cl)	Methanol				Carbon tetrachloride	
XVI	C25H32O5	412.53	72.8Ő	7.82	_		Benzene	P_4O_{10}	B.p.	83	248-251	0.49
			73.00	7.66							Methanol	
XVII	$C_{25}H_{28}O_7$	440.50	68.17	6.41			Benzene	P_4O_{10}	lab.	69	231-234	0.40
			68.05	6.50							Methanol	
XVIII	$C_{23}H_{22}N_2O_9$	470.44	58.72	4.71	5.95	(N)	Ethanol	HCI	lab.	85	221—224	0.42
			58.90	4.76	5.60	(N)	Methanol				Acetone	
XIX	$C_{23}H_{22}N_2O_9$	470.44	58.72	4.71	5.95	(N)	Benzene	P_4O_{10}	B.p.	82	247-250	0.40
			58.60	4.61	5.60	(N)					Acetone	
XX	$C_{23}H_{24}O_7$	412.44	66.98	5.87			Benzene	P₄O ₁₀	B.p.	15	257259	0.14
			66.99	6.17							Chloroform	
XXI	$C_{27}H_{34}N_2O_5$	466.58	69.51	7.35	6.00	(N)	Benzene	p-Toluene-	B.p.	10	228—230	0.28
			69.21	7.05	5.80	(N)		sulfonic acid			Methanol	
XXII	$C_{23}H_{20}Cl_4O_7$	550.24	50.21	3.66	25.77	(Cl)	Acetonitrile	P ₄ O ₁₀	B.p.	77	255—257	0.31
			49.95	3.71	25.90	(Cl)					Chloroform	
XXIII	C27H28O5	432.52	74.98	6.53			Benzene	P_4O_{10}	lab.	80	208210	0.53
	4 march 4 march 40.03		75.14	6.70							Acetone	

a) M.p. according to [14] 182°C; b) M.p. according to [14] 206.5°C.

217

Ultraviolet and infrared spectra of the prepared compounds

Compound		<u> </u>	(4	λ_{max}/nn $\varepsilon/l mol^{-1}$	n cm ⁻¹)				$v(C=O)/cm^{-1}$		Ban 10	ds in tl 10—11	he regi 90 cm⁻	on • 1	
					307	316	330		1720	1038	1103	1158			
1					(21.0)	(20.0)	(10.5)								
					307	317	328		1720	1039	1097	1148	1182		
П					(25.0)	(23.5)	(13.5)								
					306	317	328		1727	1063	1118	1158	1188		
m					(21.5)	(21.0)	12.0)								
IV					307	317	329		1723	1033	1058	1078	1108	1178	1158
1,					(21.0)	(20.0)	(11.5)								
V					308	317	328		1725	1018	1038	1073	1118	1178	
					(26.5)	(25.0)	(14.5)					1072			
VI					308	316	326		1735	1038	1103	1073			
					(19.0)	(18.5)	(10.5)			1022	1050	1110	1150		
VII					307	317	330		1720	1033	1058	1110	1150		
					(20.9)	(19.1)	(9.8)		1705	1020	1070	1102	1123	11/18	
VIII					308	317	331		1725	1038	1078	1105	1125	1140	
					(21.5)	(20.5)	(11.5)		1720	1038	1073	1123	1158		
IX					308	317	328		1720	1036	1075	1125	1150		
					(23.0)	(22.0)	(13.0)		1720	1028	1078	1120	1178		
X	252	256	263	267	298	308	329		1720	1020	1070	1120			
10.000	(1900)	(2450)	(2100)	(1350)	(24.0)	(20.0)	(15.5)	320	1725	1028	1078	1108	1148	1178	
XI	257		263	209	(20.5)	(30.0)	(26.5)	(14.5)	1725	1020					
	(9000)		(12 800)	(15 400)	29.3)	307	317	(14.5)	1725	1028	1083	1108	1148	1178	
XII	201		(4300)	(3600)	(24 0)	(32.5)	(29.5)								
	(3200)		(4300)	(3000)	(24.0)	(52.5)	(2).5)								

			<i></i>											
Compound				λ_{\max}/n ($\epsilon/l \ mol^{-1}$	m cm ⁻¹)				$v(C=O)/cm^{-1}$		Ban 10	ids in t 1011	he regi 90 cm	on -1
XIII	254	262	268	273	299	308	317	328	1730	1028	1058	1113		
VIII	(1650)	(2650)	(3450)	(2850)	(23.5)	(25.0)	(23.0)	(13.5)	1725	1038	1078	1119	1178	
AIV	(2100)	(3200)	(4300)	(3600)	(30.0)	(32.5)	(29.5)	(16.5)	1755	1030	1078	1110	11/0	
XV	252	257	263	269	298	307	316	328	1720	1018	1038	1098	1118	1178
	(1400)	(1900)	(2250)	(1450)	(20.0)	(24.0)	(23.0)	(12.5)						
XVI	251	255	261	267	307	316	328		1720	1038	1078	1108	1178	
	(7900)	(8500)	(7300)	(5100)	(25.5)	(24.5)	(14.5)							
XVII		268	273	280	306	316	330		1725	1033	1078	1103	1183	
		(12 800)	(14 800)	(13 200)	(30.0)	(27.0)	(16.0)							
XVIII			259			а			1680	1038	1118	1148	1178	
			(1700)											
XIX			261			а			1729	1033	1078	1118	1143	1180
			(19 000)									 NY 100 (10) 	1317-53 P424-53	N N 04005
XX			276	283		а			1725	1029	1108	1138	1158	1183
			(1200)	(12 200)										
XXI			263			302			1725	1038	1078	1108	1178	
			(3050)			(3600)								
XXII			291	296		а			1715	1033	1068	1098	1158	
******			(4100)	(4050)										
XXIII			253		283	292			1720	1033	1100	1139	1158	
			(20000)		(16200)	(11400)								

Acetals bearing an OH group have the R_t values far lower than acetal X without a substituent.

The structure of the prepared acetals was inferred on the basis of i.r., u.v., and ¹H-n.m.r. spetral data. The u.v. spectra of acetals (Table 2) reveal in the 280—340 nm range bands corresponding to $n \rightarrow \pi^*$ transitions. Aromatic acetals display additional bands ascribable to $\pi \rightarrow \pi^*$ transitions in the 240—300 nm range. Both types of bands generally form several maxima [15].

The i.r. spectra show characteristic v(C=O) bands in the 1680–1735 cm⁻¹ and v(C=O-C-O-C) bands in the 1050–1170 cm⁻¹ regions. Many authors [16–20] reported the exact differentiation of the individual bands of the latter group to v_s and v_{as} . Due to more complex types of acetals we listed merely the noticeable bands in this region.

The ${}^{1}_{1}$ H-n.m.r. spectra (Table 3) of aromatic acetals reveal protons in the -O-CH-O- grouping as a singlet the position of which is little substituent dependent. Acetal VI displays in this region protons of the $-O-CH_{2}-O-$

Table 3

Chemical shifts of protons

Compound	CH ₂ in the cyclopentane ring	0CH₂C€	—CH<
I	2.10 (s, 4H)	3.59 (q, 8H)	_
II	2.11 (s, 4H)	3.57 (q, 8H)	
III	2.16 (s, 4H)	3.59 (q, 8H)	_
IV	2.12 (s, 4H)	3.58 (q, 8H)	
\boldsymbol{V}	2.19 (s, 4H)	3.58 (q, 8H)	
VI	2.19 (s, 4H)	3.57 (s, 8H)	4.70 (q, 4H)
VII	2.17 (s, 4H)	3.60 (s, 8H)	4.60 (s.t, 4H)
VIII	2.17 (s, 4H)	3.58 (s, 8H)	4.31 (t, 2H)
IX	2.11 (s, 4H)	3.50 (s, 8H)	4.35 (t, 2H)
X	2.32 (s, 4H)	3.81 (q, 8H)	5.37 (s, 2H)
XII	2.30 (s, 4H)	3.81 (s.s, 8H)	5.35 (s, 2H)
XIII	2.32 (s, 4H)	3.81 (q, 8H)	5.68 (s, 2H)
XIV	2.30 (s, 4H)	3.80 (s.s, 8H)	5.33 (s, 2H)
XV	2.30 (s, 4H)	3.81 (s.s, 8H)	5.35 (s, 2H)
XVI	2.31 (s, 4H)	3.80 (s.s, 8H)	5.32 (s, 2H)
XVII	2.30 (s, 4H)	3.72 (s.s, 8H)	5.30 (s, 2H)
XIX	2.27 (s, 4H)	3.82 (s.s, 8H)	5.41 (s, 2H)
XXI	2.25 (s, 4H)	3.70 (s.s, 8H)	5.20 (s, 2H)
XXIII	2.22 (s, 4H)	3.65 (s, 8H)	4.93 (d, 2H)

s - singlet; d - doublet; t - triplet; q - quartet; s.s - split singlet; s.t - split triplet.

grouping as a quadruplet due to a mutual interaction of the axial and equatorial protons. Proton signals of -O-CH-O- grouping in VII are seen as a quadruplet because of splitting caused by the neighbouring $-CH_3$ group, those in VIII and IX as a triplet. Protons in the $-O-CH_2-C \in$ grouping present in all acetals show a pattern in accordance with the kind of the acetal involved. Thus, protons of acetals VI-IX prepared from aliphatic aldehydes resonate as singlets, those of acetals (X-XIII) from aromatic ones also as singlets, which might be in many cases split, or turned to quadruplets. Signals of these protons in acetals I-Vappear as a quadruplet or even multiplet. These changes might be due to the steric arrangement of hydrogen atoms in the $-CH_2O-$ group associated with alterations of the chair form as influenced by the bulkiness of substituents at the neighbouring carbon atom [21, 22]. The less bulky is the substitution at the adjacent carbon, the simplest are the observed signal patterns of acetals from aliphatic aldehydes. More rigid systems (acetals of aromatic aldehydes and ketones) display signals of both axial and equatorial protons of the grouping under investigation.

Acknowledgements. Our thanks are due to Ing. A. Nagy, Ing. L. Mitterhauszerová, CSc., and Ing. Z. Füllep (Scientific-Research Institute, Faculty of Pharmacy, Komenský University) for measurement of i.r., u.v., and ¹H-n.m.r. spectra and to RNDr. V. Hartelová (Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Komenský University) for elemental analyses.

References

- 1. Smith, L. and Lindberg, J., Ber. 64, 505 (1931).
- 2. Oliveto, E. P., Clayton, T., and Hersberg, E. B., J. Amer. Chem. Soc. 75, 486 (1953).
- 3. Mac Kenzie, C. A. and Stocker, I. H., J. Amer. Chem. Soc. 77, 3148 (1955).
- 4. Garner, H. K. and Lucas, H. J., J. Amer. Chem. Soc. 72, 5497 (1950).
- 5. Blicke, F. F. and Schumann, E. L., J. Amer. Chem. Soc. 76, 1226 (1954).
- 6. Salmi, E. J., Ber. 71, 1803 (1938).
- 7. Baekelheide, V., Liberman, L., Figueras, J., Kiespan, C., Pennington, F. C., and Tarbell, D. S., J. Amer. Chem. Soc. 71, 3303 (1949).
- 8. Jaeger, R. H. and Smith, L., J. Chem. Soc. 1955, 160.
- 9. Bourne, E. J. and Wiggins, L. F., J. Chem. Soc. 1944, 517.
- 10. Blicke, E. F. and Anderson, F. E., J. Amer. Chem. Soc. 74, 1733 (1952).
- 11. Renoll, M. and Newman, M. S., Org. Syn. 28, 73 (1948).
- 12. Howard, W. L. and Lorette, N. B., Org. Syn. 42, 34 (1960).
- 13. Krasnec, L. and Heger, J., Chem. Zvesti 11, 703 (1957).
- 14. Mannich, C. and Brosse, W., Ber. 56, 833 (1923).
- 15. Stern, E. S. and Timmons, C. J., *Electronic Absorption Spectroscopy in Organic Chemistry*, 3rd Edition. E. Arnold, London, 1970; Russian translation, Mir, Moscow, 1974.
- 16. Bergmann, E. D. and Pinchas, S., Rec. Trav. Chim. Pays-Bas 71, 161 (1952).
- 17. Lagrange, G. and Mastagali, P., C. R. Acad. Sci. (Paris) 241, 1947 (1955).
- 18. Tschamler, H., Spectrochim. Acta 6, 95 (1953).

- 19. Barker, E. J. and Bourne, E. J., J. Chem. Soc. 1957, 802.
- 20. Renard, T. L., Korshak, V. V., Tseitlin, G. M., and Kamenskii, I. V., Zh. Org. Khim. 2, 217 (1966).
- 21. Cook, M. J., Katritzky, A. R., and Mono Mañas, M., J. Chem. Soc. 1971, 1330.
- 22. Eliel, E. L., Allinger, N. L., Angyal, S. J., and Morrison, G. A., *Conformational Analysis.* J. Wiley, New York, 1965; Russian translation, Mir, Moscow, 1969.

Translated by Z. Votický