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The effect of short-range repulsion forces on shape of A, vibration bands of 
planar XY3 molecules in liquid phase is described. The repulsion forces are 
described by the Born—Mayer potential. Application of the perturbation 
theory and stochastic models of reorientation and translation of molecules 
gives results which for a simple model of radial distribution function agree 
semiquantitatively with experiment. 

В работе описывается влияние отталкивающих сил ближнего порядка 
на форму колебательных полос Ах плоских молекул типа XY3 в жидкос
тях. Отталкивающие силы описываются потенциалом Борна-Майэра. 
При помощи теории возмущения и стохастических моделей переориен
тировки молекул и поступательного движения были получены резуль
таты, которые находятся в полуколичественном согласии простой модели 
радиальной функции состояний с экспериментом. 

The effect of short-range repulsion forces on the bandwidths of vibrational 
spectra of liquids was first explained by Valiev [1]. His theory was later modified 
and applied to spherical top molecules [2]. Recently, several papers [2—7] 
appeared, where vibrational bandwidths were studied. This paper is an extension of 
theory to planar XY3 molecules with D3h symmetry. Since the theory of the effect 
of repulsion forces on bandwidths was already described elsewhere [2], we shall 
only briefly review the basic ideas. 

Theory 

It follows from the perturbation theory that the probability p of transition 
vk^>vk - 1, where vk is vibrational quantum number of fc-th vibration, is given by 
the following expression 

p(vk-^vk-l) = h-2 í H'*(0)H'(0 exp(-2mco)kt) at (1) 
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where H' = (vk\H\vk - 1), cok is the wavenumber in cm"1. The studied liquid is 
formed by only one type of molecule and repulsion between the /-th atom of 
studied molecule and y-th atom of molecule \i is given by the Born—Mayer 
potential 

H(RtJß) = V„ exp( - auRIJß) (2) 

R» is a vector connecting centres of mass of the studied molecule and molecule /i, 
vectors Aj,, Ai determine the positions of atom у in molecule ц and atom / in the 
studied molecule. It follows then 

H' = (hvk)
1/2(4jzc(ok)-l/2 2 щУц exp( - auRU(Á) (N,M (4) 

where NiJfi = RiJlt/Rltili. 
Vectors Cue are defined by the following transformation 

А = 2 С * 0 * (5) 
к 

Qk is the A>th normal coordinate and S, is the displacement of atom i in this 
vibration (for vectors we shall use small letters if they are expressed in molecule-
-fixed system of coordinates and capital letters if they are expressed in laboratory 
system of coordinates). Averaging in eqn (1) is carried out in the following way 

H'*(0)H'(t) = ÍH'*(0)H'(t)W(qo,0;q,t)dqodq (6) 

where W(qo,0',q,t) dqodq is the probability that at time t = 0 the values of 
variables are within the interval (q0,q0 + d^0) while at time / they are within the 
interval (q,q + dq). It follows from eqns (3) and (4) that H' is a function of nine 
variables — three components of vector /?M, three Eulerian angles of molecule \i 
(vector Ailt is their function), and three Eulerian angles of the studied molecule 
(vector Ai is their function). Therefore integration in eqn (6) must be carried out 
over 18 variables (9 at / = 0 and 9 at time t). Unfortunately the integral cannot be 
evaluated analytically. Thus in order to evaluate the integral (6) we expand the 
expression H'*(0)H'(t) into the Taylor series with respect to powers of compo
nents of vector Ajlt —Ai and neglect all powers higher than the second. 

We shall further assume that probability density W(ßo,0;ß,f) for Eulerian 
angles ß (which define the orientation of molecule) is given according to Ivanovas 
jump model [8] by the following expression 

W(ßo ,0;ß,O= X (2L + l)(8^2r1Din;(ßo)DUß)exp(-r//L m) (7) 
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where D™ are well-known rotation matrices [9] satisfying the following orthogona
lity relations 

J DZn(ß)DZ-n(Q) d ß = 8tt2/(2L + I)" 1 ÔLL-Ômm.ônn. (8) 

If atoms Y in planar XY3 molecule are given numbers 1—3 and atom X is given 
number 4 then for Ax vibration 

fo = (3mY)- , , 2e ř /=1,2 ,3 (9) 

cik = 0 / = 4 (9a) 

where e, is unit vector directed from the centre of mass to atom /. 
Rather lengthy but straightforward calculation using eqns (6—9) and the Taylor 

expansion of expression H'*(0)H'(t) gives the following result 

(H'*(0)H'(t))OR = a2(30mYy
l £ {Юу(,(0)у|1(0 + 4 ( 0 ) 4 ( 0 • 

ß 

•[3(«t(0)í4.(0)-l]exp(-í/ /2 O)} (10) 

( )OR denotes averaging over Eulerian angles, NIA = RIA/RIA, a is X—Y bond 
length, and t20 is a correlation time of the corresponding rotation matrix. The 
symbols у and ô are defined as follows 

yß = 3ßYY,(aYY-2/R,)^ßYXii(aYX-2/R,) (11) 

4 = 3/5Уу,(ауу+1/Ам) + )Зух,(аух+1/Км) (12) 

where ßiUi = (\\уку
/2(4яса)к)~и2аиУи exp(- а,7АД 

In eqns (11) and (12) time-independent terms were omitted. The next step is 
averaging over translational coordinates with probability density given in papers 
[10, 11]. However, this averaging cannot be done analytically. Therefore expres
sions (11) and (12) will be averaged at t = 0 and normalized time correlation 
function for translation is taken to be 

0tr = exp(-r// tr) (13) 

When averaging at t = 0 we shall use radical distribution function Ф(г) = 4лг2и (r), 
where NO (г) dr is a number of molecules in spherical layer between radii r, r + dr 
and origin is at the centre of the studied molecule (N is a number density). 
Averaging gives the following result 

H'*(0)H'(0 = a2N(\5mYy
l{5G exp(- t/ttT) + D exp[- t(C + /J0

1)]} 
(14) 

G = 4JTÍ y2(r)r2u(r)dr (15) 
Jo 
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D = 4jtí ô2(r)ŕu(r)dr (16) 
Jo 

and after substituting to eqn (7) we obtain the final result 

( 2 ^ c r 1 P ( 1 ^ 0 ) = (60mY)-1fl2N(^c)"V2a>-2[5G^V + D(/tT
1 + Í2"o1)] (17) 

which gives the contribution of repulsion forces to the bandwidth of fundamen
tal A i in a liquid composed of planar XY3 molecules. For evaluation of expres
sions G, D the knowledge of radial distribution function is required. If we use the 
simplest model, where u (r) = 0 for 0 < r < d and u (r) = const for r > d and assume 
that constants aih Vtj are universal (a, V), then G, D are given by the following 
expressions 

G = Co(2d2a-6d + 5/a) (18) 

D = C0(2d2a + 6rf + 51a) (19) 

Co = 4ha2V2(cw*)~1 exp(-2ad) (20) 

If the following typical values are substituted to eqns (17—20), a = 150 pm, 
d = 300 pm, a = 0.03 pm"1, V=3.2x 10"16 J, /tr = 2psec, / 2 0 =lpsec, mY = 
= 2.5 x 10"22 g, (o = 1000 cm"1 and N= 2.5 x 1022 cm"3, then the contribution of 
studied effect to the bandwidth is 1.5 cm"1. Since the observed bandwidths of Ai 
fundamentals are usually in the interval 6—20 cm"1 and other effects also 
contribute, the theory outlined in this paper gives at least semiquantitative 
agreement with experiment. 

Discussion 

There are two interesting points which concern the extension of theory to 
symmetric top molecules. It is interesting that lowering of symmetry from spherical 
to axial one did not bring about significant complication and final equations are 
only a little more complex than those for XY4 molecule [2]. It is also worth 
mentioning that while for XY4 molecule the contribution to bandwidth depends 
only on translational correlation function, for planar XY3 molecule this contribu
tion depends on both the translational and rotational correlation function. 
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