Relationship between the ¹³C NMR chemical shift and substituent effects in the series of *meta*- and *para*-substituted phenyl isothiocyanates

"I. DANIHEL, "P. KRISTIAN, "S. BÖHM, and "J. KUTHAN

*Department of Organic Chemistry and Biochemistry, Faculty of Natural Sciences, P. J. Šafárik University, CS-041 67 Košice

^bDepartment of Organic Chemistry, Institute of Chemical Technology, CS-166 28 Prague

Received 13 June 1983

¹³C NMR chemical shifts of substituents ($\delta_{r,s}$ /ppm) in meta- or para-substituted phenyl isothiocyanates I and II were found to well correlate with calculated or empirically derived parameters of the substituent X. Similar linear correlations with π and total atomic charges Q_{π}/e , resp. Q_{tot}/e exhibit slopes of the magnitudes 195 to 640.

Было установлено, что 13 С ЯМР химические сдвиги заместителей в мета- и пара-замещенных фенилизотиоцианатах Iи II хорошо коррелируют с рассчитанными или эмпирически выведенными параметрами заместителей X. Подобные линейные корреляции с π и общими атомными зарядами Q_{π}/e или Q_{tot}/e имеют углы наклона от 195 до 640.

Relationships between the ¹³C NMR chemical shifts and appropriate LFER or quantum chemical data have been widely used as experimental substituent effect probes in physical organic chemistry [1, 2]. Our current interest in organic isothiocyanates has led us to apply this approach to the structural investigation of meta- and para-substituted phenyl derivatives I and II (Scheme 1). The prelimi-

Scheme 1

nary results have shown [3] that 13 C substituent chemical shifts ($\delta_{r,s}$) are sufficiently variable with the nature of the substituent X (see also [4]). We have now used the $\delta_{r,s}$ values to correlate them with theoretical substituent effects [5, 6], with π and all-valence-electron distribution, as well as with some empirical substituent parameters [7, 8].

Experimental

 13 C NMR spectra of compounds I and II were measured with a Jeol FX 100 spectrometer (25.04 MHz) using CDCl₃ or DMSO-d₆ solutions and TMS as an internal standard and the carbon signals were assigned by a selective proton-decoupling technique. 13 C substituent chemical shifts of all investigated compounds I and II are given in Tables 1 and 2.

A standard CNDO/2 procedure was applied for calculating the total atomic charges Q_{tot} summarized in Table 3. The reported [9] molecular geometry of unsubstituted phenyl isothiocyanate was used for the parent skeleton of all CNDO/2 models I and II in addition to earlier generalized [6] bond lengths and angles of the substituents X. Analogous π -charges Q_{π} were taken from [10] (Table 4). The mentioned Q_{tot} values of the energetically preferred planar conformers IIa or IIb (according to their molecular CNDO/2 energies) were chosen for correlations with the $\delta_{r,s}$ values, although the charge differences for both conformers were very small.

Results and discussion

The theoretical π or $\pi + \sigma$ substituent effects $\delta \Delta E_x$ expressed in energy units were defined as shown in [5, 6] on the basis of semiempirical SCF molecular energies of meta- and para-substituted benzoic acids and the corresponding benzoate ions (the Hammett series).*

It has further been postulated [6] that every accurate linear correlation of the $\delta\Delta E_{\rm X}$ energy differences with a given electron distribution characteristic indicates that the latter is a reasonable measure of the substituent effect caused by the variable molecular fragment X. Taking into account the postulate in the series of isothiocyanates I and II one can conclude that the mentioned correlation criterion is best satisfied for the carbon charges Q_{π} and $Q_{\rm tot}$ of the functional NCS group (Fig. 1). This observation seems to be of interest because the functional carbon is usually attacked by various nucleophiles and its ¹³C NMR signal is easily detectable in the corresponding ¹³C NMR spectrum. Consequently, the charges Q_{π} and $Q_{\rm tot}$,

$$XC_6H_4CO_2H + C_6H_5CO_2^- \Rightarrow XC_6H_4CO_2^- + C_6H_5CO_2H.$$

^{*} The $\delta\Delta E_{\rm x}$ values are defined as molecular energy changes accompanying the isodesmic process [11, 12]:

Table 1

Observed ¹³C substituent chemical shifts $(\delta_{r,s}/ppm)$ for meta- and para-substituted phenyl isothiocyanates I and II (solutions in CDCl₃)^a

X	C-1	C-2	C-3	C-4	C-5	C-6	C-7
p-NMe₂	- 12.43	1.23	- 17.06	22.16	-17.06	1.23	-3.15
p-OMe	- 7.69	1.36	-14.62	31.45	-14.62	1.36	-1.34
p-Me	- 2.70	0.00	0.77	10.33	0.77	0.00	-1.04
p-Cl	- 2.23	1.43	0.45	5.85	0.45	1.43	1.21
p-Br	- 0.42	1.69	3.38	- 6.30	3.38	1.69	1.56
p-NCS	- 0.86	1.56	- 2.34	3.06	-2.34	1.56	2.12
p-COOH	4.29b	0.68	1.47 ^b	3.07 ^b	1.47	0.68	2.30^{b}
p-CN	4.89	0.87	4.14	-16.59	4.14	0.87	4.14
p-NO ₂	7.15	1.04	- 3.90	18.99	-3.90	1.04	5.17
m-NMe ₂	0.75	-16.52	21.82	-15.56	0.67	-12.05	-1.30
m-OMe	0.87	-14.50	30.69	-13.65	0.69	- 7.49	-0.01
m-OH	0.99	-12.78	26.32	-12.24	1.22	- 6.69	-0.04
m-Cl	1.41	0.13	5.52	0.26	0.97	- 1.56	2.27
m-Br	1.52	3.03	- 6.71	3.10	1.08	- 1.38	2.80
m-I	1.55	9.04	-35.24	9.23	1.39	- 0.70	2.46
m-NCS	1.87	- 2.73	3.51	- 2.53	1.20	- 0.91	2.76
m-COOH	1.52 ^b	0.49^{b}	4.07 ^b	0.68^{b}	0.71	4.79 ^b	1.83
m-CN	1.82	3.16	-15.60	3.25	1.17	5.48	3.66
m-NO ₂	2.00	- 4.94	19.23	- 5.33	1.42	5.98	3.96

a) ¹³C NMR chemical shifts for unsubstituted phenyl isothiocyanate (δ_r /ppm): 130.94 (C-1), 125.40 (C-2), 129.30 (C-3), 127.02 (C-4), 135.24 (C-7); b) calculated by the correlation eqns in Table 5.

Chem. zvesti 38 (4) 539-548 (1984)

Table 2

Observed ¹³C substituent chemical shifts ($\delta_{r,s}$ /ppm) for meta- and para-substituted phenyl isothiocyanates I and II (solutions in DMSO)^a

					100		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
х	C-1	C-2	C-3	C-4	C-5	C-6	C-7
p-NMe ₂	- 13.30	1.20	- 17.33	21.79	- 17.33	1.20	-3.05
p-OMe	- 7.71	1.49	-14.27	31.28	-14.27	1.49	-1.40
p-Me	- 2.64	0.07	0.87	10.35	0.87	0.07	-0.82
p-Cl	-2.52^{b}	1.58 ^b	0.54^{b}	5.30 ^b	0.54 ^b	1.58 ^b	0.83
p-Br	- 0.56	1.83	3.34	- 6.74	3.34	1.83	1.04
p-NCS	- 0.82	1.75	- 1.86	1.91	- 1.86	1.75	1.55
p-COOH	4.03	0.78	1.57	2.48	1.57	0.78	1.78
p-CN	4.60 ^b	1.00 ^b	4.24 ^b	-17.37^{b}	4.24b	1.00^{b}	3.36 ^b
p-NO ₂	6.33	1.37	- 4.14	18.28	- 4.14	1.37	4.28
m-NMe ₂	1.07	-16.72	21.60	-15.74	0.57	-12.31	-1.08
m-OMe	1.04	- 14.68	30.26	-14.15	0.39	- 7.93	0.06
m-OH	1.22	-12.85^{b}	25.91 ^b	-12.38^{b}	1.28	-6.80^{b}	-0.05^{b}
m-Cl	1.65	0.21	4.70	0.41	1.26	- 1.19	1.77
m-Br	1.66	3.65 ^b	- 7.83 ^b	3.69^{b}	1.12	- 1.38 ^b	2.16
m-I	1.69b	9.92	-36.97^{b}	10.11 ^b	1.48 ^b	-0.69^{b}	1.90 ^b
m-NCS	1.91	- 2.13	2.04	- 1.86	1.09	- 0.68	2.06
m-COOH	1.66	1.00	3.18	1.16	0.66	4.92	1.41
m-CN	1.91	3.98	- 16.68	3.79	1.71	5.60	2.75
m-NO ₂	2.07	- 4.67	18.80	- 4.98	3.01	5.80	3.17

a) ¹³C NMR chemical shifts for unsubstituted phenyl isothiocyanate (δ_r/ppm): 129.99 (C-1), 125.32 (C-2), 129.34 (C-3), 127.26 (C-4), 134.02 (C-7); b) calculated by the correlation eqns in Table 5.

Table 3

Relative CNDO/2 atomic charges and theoretical $\pi + \sigma$ substituent effects for meta- and para-substituted phenyl isothiocyanates I and II

x .		SAF 104/37						
	C-1	C-2	C-3	C-4	C-5	C-6	C-7	— δΔE _x ·10⁴/eV
p-NMe ₂	-300	141	- 540	1340	- 536	142	- 75	2498
p-OMe	-206	237	-602	1879	-732	243	- 34	- 157
p-Me	-120	66	- 197	400	- 194	65	-28	546
p-COOH	129	- 9	16	261	15	- 9	30	-2305
p-CN	136	20	20	353	21	- 1	42	-2431
p-NO ₂	238	- 39	143	245	141	- 41	70	-4708
m-NMe ₂	103	-537	1313	- 525	111	-280	- 14	1398
m-OMe	120	-612	1861	-733	220	-309	3	- 39
m-OH	112	-637	1892	-751	211	-328	- 3	195
m-COOH	38	- 5	341	52	.56	235	17	- 1989
m-CN	32	4	372	5	11	416	21	-2052
m-NO ₂	67	92	302	96	12	553	46	-4511

a) $Q_{\text{tot}} \cdot 10^4/e$ values for unsubstituted phenyl isothiocyanate: 1341 (C-1), -131 (C-2), 201 (C-3), 103 (C-4), 204 (C-5), -117 (C-6), 2177 (C-7); b) taken from Ref. [6].

Relative π -electron atomic charges and theoretical π -substituent effects for meta- and para-substituted phenyl isothiocyanates I and II

Table 4

x	$Q_{\pi} \cdot 10^4/e$								
	C-1	C-2	C-3	C-4	C-5	C-6	C-7	- δΔE _x · 10⁴/e\	
p-NMe₂	-491	111	- 843	136	- 849	111	- 186	-354	
p-NH ₂	-414	96	-718	52	-732	103	-157	-315	
p-OMe	-272	74	- 526	357	- 529	78	- 93	-168	
p-OH	- 257	71	- 496	362	- 499	75	- 87	-156	
p-Me	- 40	- 3	- 40	96	- 40	- 2	- 18	- 42	
p-SMe	- 103	22	- 174	74	-176	24	- 37	- 80	
p-SH	- 89	20	- 153	81	- 155	21	- 32	- 58	
p-F	- 150	44	-305	331	-307	45	- 49	- 89	
p-Cl	- 96	25	-188	212	- 189	26	- 32	- 55	
p-Br	- 46	13	- 93	129	- 93	13	- 15	- 33	
p-I	- 33	9	- 61	75	- 61	9	- 10	- 15	
p-COOH	173	- 7	239	-243	241	- 19	65	101	
p-CN	192	0	240	-201	242	2	72	100	
p-NO₂	369	12	446	-675	451	- 5	151	264	
m-NMe₂	41	- 898	60	-830	68	-440	- 53	- 86	
m-NH ₂	37	-773	5	-780	62	-367	- 41	- 68	
m-OMe	39	- 581	306	-520	56	-227	- 23	- 20	
m-OH	34	- 551	313	-492	54	-210	- 21	- 19	
m-Me	- 13	- 80	76	- 36	30	8	- 12	- 16	
m-SMe	5	-220	48	-108	20	-119	12	- 5	
m-SH	5	-120	57	- 151	20	- 42	- 10	2	
m-F	22	-355	298	-303	39	-106	- 11	- 7	
m-Cl	10	-235	187	- 185	25	- 52	- 9	- 10	
m-Br	5	-137	112	- 91	18	- 2	- 3	2	

Table 4 (Continued)

x	$Q_\pi \cdot 10^4/e$							
Λ	C-1	C-2	C-3	C-4	C-5	C-6	C-7	$-\delta\Delta E_{\rm x}\cdot 10^4/{\rm eV}$
m-I	2	- 105	59	- 60	15	13	- 3	4
m-COOH	11	185	-244	226	21	200	37	71
m-CN	17	182	-203	226	33	219	42	80
m-NO ₂	55	375	-661	418	63	379	96	186

a) $Q_{\pi} \cdot 10^4/e$ values for unsubstituted phenyl isothiocyanate: 9543 (C-1), 10192 (C-2), 10052 (C-3), 10245 (C-4), 10072 (C-5), 10278 (C-6), 8669 (C-7); b) taken from Ref. [5].

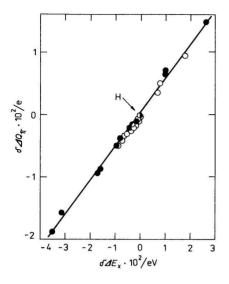


Fig. 1. Plot of π -electron charge on the carbon of the NCS group (Q_{π}/e) vs. theoretical π -substituent effect $(\delta \Delta E_{x}/eV)$ for meta- and para-substituted benzoic acids.

Slope = 0.54, r = 0.994. • para series; \bigcirc meta series.

as well as the appropriate substituent chemical shifts can be considered to be mutually intercorrelating reactivity indices for isothiocyanates I and II. As a matter of fact, we have really found that the quantities are linearly correlated according to the expressions

$\delta_{r,s}(CDCl_3) = 278.3 \text{ ppm} \cdot Q_{\pi}/e + 1.4 \text{ ppm}$	r = 0.902
$\delta_{r,s}(DMSO) = 194.9 \text{ ppm} \cdot Q_{\pi}/e + 0.5 \text{ ppm}$	r = 0.945
$\delta_{r,s}(CDCl_3) = 639.6 \text{ ppm} \cdot Q_{tot}/e + 0.9 \text{ ppm}$	r = 0.950
$\delta_{rs}(DMSO) = 443.9 \text{ ppm} \cdot O_{rot}/e + 0.3 \text{ ppm}$	r = 0.982

The slopes of the regression lines (195 to 640) are somewhat higher for less solvating deuteriochloroform solutions and about by one order lower in comparison with the analogous correlations of ¹⁹F $\delta_{r,s}$ of benzoyl fluorides [13]. The sign of the slopes is in the expected direction, *i.e.* with electron-donating groups X causing upfield shifts and with electron-withdrawing substituents X exhibiting downfield shifts.

It is noteworthy that similar, although somewhat less significant correlations were found if the other calculated charges Q_{π} or Q_{tot} were plotted against the corresponding ^{13}C $\delta_{\text{r,s}}$ values of the carbons C-1, C-3, and C-5 in the para series I, or of the carbons C-2, C-4, and C-6 in the meta series II. This behaviour of isothyiocyanate I and II resembles to some extent the situation in the series of X-substituted benzenes [14] where the ^{13}C substituent chemical shifts did not correlate with the corresponding atomic charges in meta position of the substituent X and the given carbon atom.

Chem. zvesti 38 (4) 539-548 (1984)

A simple Hammett plots involving single $\sigma_{m,p}$ substituent parameters, as well as the application of a more sophisticated dual substituent parameter approach (DSPA) [1, 15, 16] using both the inductive and resonance parameters F and R [7, 8], seem to be of interest also in the series of isothiocyanates I and II

$$\delta_{r,S} = A\sigma_{m,p} + B \tag{1}$$

$$\delta_{rs} = C F + D R \tag{2}$$

The existence of the simple correlations (1) already demonstrated in [3] apparently corresponds with the finding that $\sigma_{m,p}$ values also well correlate with the π -charges at the functional carbon atom [10].

The correlation (1) of the functional carbon atom was employed for estimation of the Hammett substituent constants of the isothiocyanate group. The calculated $\sigma_p = 0.34$ and $\sigma_m = 0.44$ for CDCl₃ and DMSO solutions, respectively, were in a good agreement with the reported $\sigma_{m,p}$ values (0.38, 0.49) [17]. As expected, the involvement of the two parameters F and R into the correlation (2) led in some cases to statistically more significant results. The ratios D/C expressing the relative weights of resonance contributions to the substituent effect transmission show that the mechanism ought to be dominant at the functional as well as at the C-1 carbons in the para series I and the carbons C-2 and C-6 in the meta series II, respectively. Although the correlations (2) for carbons C-3, C-4, and C-5 are quite poor it still can be suggested that the formal resonance effect in molecules I and II is mainly spread over the I ipso, I ortho, and I para positions with respect to the substituent I is evidently limited by the solvent effect. Thus, considering the I values for the functional carbons in various solvents, the resonance contribution appears to be

Table 5

Contants and correlation coefficients of $\delta_{r,s}(CDCl_3) = a\delta_{r,s}(DMSO) + b$ of C-1 through C-7 for metaand para-substituted phenyl isothiocyanates I and II from linear regression analysis

		X-para		X-meta			
	а	b/ppm	r	а	b/ppm	r	
C-1	1.00	0.28	0.998	1.19	-0.45	0.991	
C-2	0.93	-0.05	0.983	0.96	-0.47	1.000	
C-3	0.99	-0.09	0.999	0.98	0.96	1.000	
C-4	0.99	0.61	1.000	0.95	-0.42	1.000	
C-5	0.99	-0.09	0.999	0.83	0.16	0.983	
C-6	0.93	-0.05	0.983	0.98	-0.03	0.999	
C-7	1.16	0.25	0.998	1.28	0.03	0.999	

larger in the meta series II for CDCl₃ solutions while in the para series I it appears to be larger when using DMSO as solvent. These discrepancies can be associated with the neglect of a solvent-dependent variable parameter term on the right-hand side of the expression (2) in spite of the fact that a significant correlation between the $\delta_{r,s}$ values measured in the both mentioned solvents really exists (Table 5). Hence, it seems to be hardly justified to discuss the solvent-induced changes of the D/C ratios in terms of pure electronic substituent effects.

Our results show that the 13 C $\delta_{r,s}$ values of isothiocyanates I and II are related to the theoretical and empirical parameters of the substituent X in accordance with the generalized correlation criterion based on the SCF-MO treatments of the isodesmic dissociation of analogously substituted benzoic acids [5, 6, 11, 12]. Especially the simple correlations between 13 C $\delta_{r,s}$ of the NCS group and the corresponding atomic charges of Hammett substituent constants can be explained in this way. The DSPA analysis leads, however, to ambiguous results due to the solvent-induced changes of the 13 C $\delta_{r,s}$ values.

Acknowledgements. We wish to thank Dr. Š. Goljer, Faculty of Chemical Technology, Slovak Technical University, Bratislava, for the spectral measurements.

References

- 1. Hehre, W. J., Taft, R. W., and Topsom, R. W., Progr. Phys. Org. Chem. 12, 159 (1976).
- 2. Pross, A. and Radom, L., Progr. Phys. Org. Chem. 13, 1 (1981).
- 3. Kristian, P., Danihel, I., Burger, A., and Polomská, A., Z. Chem. 21, 363 (1981).
- 4. Jones, R. G. and Allen, G., Org. Magn. Resonance 19, 196 (1982).
- 5. Kuthan, J., Danihel, I., and Skála, V., Collect. Czechoslov. Chem. Commun. 43, 447 (1978).
- 6. Danihel, I. and Kuthan, J., Collect. Czechoslov. Chem. Commun. 45, 2201 (1980).
- 7. Swain, C. G. and Lupton, E. C., Jr., J. Amer. Chem. Soc. 90, 4328 (1968).
- 8. Williams, S. G. and Norrington, F. E., J. Amer. Chem. Soc. 98, 508 (1976).
- 9. Higgins, R. J., Combs, L., Malloy, T. B., Jr., and Cook, R. L., J. Mol. Struct. 28, 121 (1975).
- Danihel, I., Kristian, P., Kuthan, J., and Minčíková, M., Collect. Czechoslov. Chem. Commun. 45, 1056 (1980).
- 11. Hehre, W. J., Ditchfield, R., Radom, L., and Pople, J. A., J. Amer. Chem. Soc. 92, 4796 (1970).
- 12. Yamdagni, R., McMahon, T. B., and Kebarle, P., J. Amer. Chem. Soc. 96, 4035 (1974).
- 13. Brownlee, R. T. C. and Craik, D. J., Org. Magn. Resonance 14, 186 (1980).
- 14. Danihel, I. and Kuthan, J., Collect. Czechoslov. Chem. Commun. 44, 873 (1979).
- 15. Ehrenson, S., Brownlee, R. T. C., and Taft, R. W., Progr. Phys. Org. Chem. 10, 1 (1973).
- 16. Wells, P. R., Ehrenson, S., and Taft, R. W., Progr. Phys. Org. Chem. 6, 147 (1968).
- Kristian, P., Antoš, K., Vlachová, D., and Zahradník, R., Collect. Czechoslov. Chem. Commun. 28, 1651 (1963).

Translated by J. Kuthan