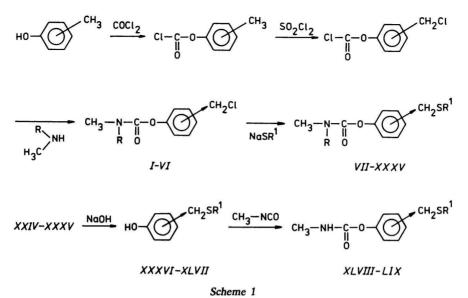
Synthesis and pesticidal activity of alkylthiomethylphenyl N-methyl- or N,N-dimethylcarbamates

V. KONEČNÝ

Research Institute of Chemical Technology, CS-831 06 Bratislava


Received 23 December 1983

A synthesis of alkylthiomethylphenyl N-methyl- or N,N-dimethylcarbamates is described. A pesticidal activity of all compounds prepared was determined. As compared with the standard used the most active on Aphis fabae were 2-(methylthiomethyl)phenyl N,N-dimethyl-, 2-(ethylthiomethyl)phenyl N,N-dimethyl-, 2-(isopropylthiomethyl)phenyl N,N-dimethyl-, 2-(methylthiomethyl)phenyl N-methyl-, 2-(ethylthiomethyl)phenyl N-methyl-, 3-(ethylthiomethyl)phenyl N-methyl-, 2-(propylthiomethyl)phenyl N-methyl-, and 2-(isopropylthiomethyl)phenyl N-methylcarbamates and on M. sanbornii (systemic activity) 2-(tert-butylthiomethyl)phenyl N-methyl- and 2-(ethylthioethylthiomethyl)phenyl N-methylcarbamates.

Описан синтез алкилтиометилфенил-N-метил- или N,N-диметилкарбаматов. Определена пестицидная активность всех полученных соединений. По сравнению с используемым стандартом наиболее активными по отношению к Aphis fabae оказались 2-(метилтиометил)фенил-N,N-диметил-, 2-(этилтиометил)фенил-N,N-диментил-, 2-(изопропилтиометил)фенил-N,N-диметил-, 2-(метилтиометил)фенил-N-метил-, 2-(этилтиометил)фенил-N-метил-, 3-(этилтиометил)фенил-N-метил-, 2-(пропилтиометил)фенил-N-метил- и 2-(изопропилтиометил)фенил-N-метилкарбаматы, а по отношению к M. sanbornii (систематическая активность) 2-[трет-бутилтиометил)фенил-N-метил- и 2-(этилтиометил)фенил-N-метилкарбаматы.

From the practical point of view a contact insecticidal agent ethiophencarp with an active compound 2-(ethylthiomethyl)phenyl N-methylcarbamate is known [1, 2]. In our work we focused the attention to the synthesis of analogical compounds with the aim to find pesticidal properties. The synthesis of compounds investigated is illustrated in Scheme 1.

Chloromethylphenyl N-methyl- or N,N-dimethylcarbamates (Table 1) were prepared by the reaction of chloromethylphenyl carbonates with amine and with an aqueous solution of amine, respectively. A preparation using a gaseous amine appeared to be more convenient, by which the yields were by 20 to 30 % higher and the products were more pure.

Table	1
1 doit	-

Compound	R	x		lc.)/% ind)/%	Yield	M.p./°C
			N	Cl	%	B.p./°C(p/Pa)
Ι	н	2	7.0	17.8	84.5	77—79
			7.1	18.0		
II	Н	3	7.0	17.8	88.4	81—82
			7.2	18.1		
III	н	4	7.0	17.8	81-85	100-102
			7.1	17.7		
IV	CH ₃	2	6.6	16.6	73.1	120-122(20)
			6.8	16.9		
V	CH ₃	3	6.6	16.6	79.2	115(20)
			6.5	16.5		
VI	CH₃	4	6.6	16.6	83.4	67(69)
			6.4	16.7		

X is the position of the CH₂Cl group on the benzene ring.

Nucleophilic substitution reactions of chloromethylphenyl N-methyl- or N,N-dimethylcarbamates with sodium thiophenolate, potassium rhodanide, sodium O--ethyl xantogenate, sodium N,N-dimethyldithiocarbamide, and sodium salt of O,O-dimethyldithiophosphoric acid afforded expected products (Table 2). The substantial difference was obtained by the reaction with sodium alkyl(alyl) mercaptide by which chloromethylphenyl N,N-dimethylcarbamates afforded expected compounds (Table 3) and chloromethylphenyl N-methylcarbamates afforded under the equal conditions a mixture of compounds from which the product was not possible to be isolated by common laboratory procedures (distillation under reduced pressure, crystallization, separation on the column of SiO_2). By this reaction various solvents as propanone, acetonitrile, ethyl acetate, benzene, toluene, tetrahydrofuran, dioxan, and other as well as various reaction conditions were examined, however without a desired result. Therefore, a new route of preparation of alkylthiomethylphenols via the reaction of alkylthiomethylphenyl N,N-dimethylcarbamates with an aqueous sodium hydroxide was searched.

It was found that in dependence on the $alkyl-S-CH_2$ substituent it is also necessary to choose reaction conditions and the ratio of sodium hydroxide to carbamate.

Compounds containing a primary alkyl group reacted faster than those containing a secondary and tertiary groups, respectively. As concerns the position of the ethylthiomethyl group on the benzene ring, compounds having this group in position 4 on the benzene ring reacted faster than those with an ethylthiomethyl group in position 2 and 3.

The mass ratio of sodium hydroxide to carbamate was changed from 5:1 to 10:1 and the reaction time ranged from 3 to 18 h. A survey of alkylthiomethylphenols prepared is given in Table 4. From alkylthiomethylphenols prepared by this route appropriate N-methylcarbamates were prepared (Table 5).

Infrared spectra of alkylthiomethylphenyl N-methyl carbamates (Table 6) showed two absorption bands, v(NH), in the region of $\tilde{v} = 3365 - 3467$ cm⁻¹ assigning to the two various conformations of the CH₃---NH---CO group. In the infrared spectra of alkylthiomethylphenols (Table 7) an intense wide band in the region of $\tilde{v} = 3378 - 3400$ cm⁻¹ is observed ascribing to the vibration of the OH group involved in the intramolecular hydrogen bonding, v(OH...S), and a band of the free OH group, v(OH), in the region of $\tilde{v} = 3600 - 3577$ cm⁻¹.

When studying the pesticidal activity of the prepared compounds it was found that those in tests on herbicidal activity in examined concentrations were inactive. A measurable fungicidal activity against *E. graminis, E. polyphaga, and P. infestans* was observed only with compounds VII, XIX, and XXI, however, they did not reach the activity of the used standards (Table 8). Some compounds showed a contact insecticidal activity against *A. fabae,* where compounds XLVIII, XLIX, and LIII were equally or more active than the used standard malathion, by which

Table	2
-------	---

Characterization of substituted phenyl N-methyl- or N,N-dimethylcarbamates

Compound R	р	R ¹	Y			lc.)/% ind)/%		Yield	
	ĸ	K	х	С	Н	N	S	%	M.p./°C
VII	н	CN	2	54.0	4.5	12.6	14.4	79.2	61—62
				54.1	4.6	12.5	14.6		
VIII	н	CN	3	54.0	4.5	12.6	11.4	80.2	51-52
				54.2	4.5	12.7	11.6		
IX	H	CN	4	54.0	4.5	12.6	14.4	77.6	72—74
				54.3	4.4	12.7	14.5		
X	н	C ₆ H₅	2	65.9	5.5	5.1	11.7	80.0	103-105
				66.0	5.6	5.0	11.9		
XI	н	C₀H₅	3	65.9	5.5	5.1	11.7	84.0	90—91
				66.1	5.5	5.0	11.8		
XII	н	C ₆ H ₅	4	65.9	5.5	5.1	11.7	80.9	82—84
				65.8	5.4	5.2	11.9		
XIII	Н	COC ₂ H ₅	2	50.5	3.5	4.9	22.5	93	99—100
		 S		50.7	3.6	5.0	22.7		
XIV	н	COC ₂ H ₅	3	50.5	3.5	4.9	22.5	88.4	81—83
		 S		50.4	3.4	5.1	22.6		
XV"	н	P(OCH ₃) ₂	2			4.6	19.9	58.2	s
		ll S				4.7	19.8		
XVI ^b	н	P(OCH ₃) ₂	3		—	4.6	19.9	64.2	
		∥ S				4.6	20.0	01.2	
XVII	н	CN(CH ₃) ₂	2	50.7	5.7	8.8	22.5	88.6	102-104
		ll S	(kongo	50.9	5.8	9.9	22.4		

V. KONEČNÝ

				Table 2 (Continued)				
						alc.)/% ound)/%		Yield	M.p./°C
Compound	R	R ¹	х	C	Н	N	S	%	
XVIII	н	CN(CH₃)₂ ∥ S	3	50.7 50.8	5.7 5.9	9.8 9.7	22.5 22.7	90.2	82—84
XIX	CH₃	CN	2	50.4 50.6	4.5 4.4	12.6 12.8	14.4 14.5	79.8	61—62
XX	CH₃	CN	3	50.4 50.5	4.5 4.6	12.6 12.7	14.4 14.6	80.9	58—59
XXI	CH ₃	CN	4	50.4 50.6	4.5 4.5	12.6 12.8	14.4 14.3	76.2	60—62
XXII ^c	CH₃	P(OCH₃)₂ ∥ S	2	_		4.2 4.2	19.1 19.3	60.2	_
XXIIIª	CH₃	P(OCH₃)₂ ∥ S	3	-	-	4.2 4.2	19.1 19.3	62.7	

PESTICIDAL

ACTIVITY OF CARBAMATE DERIVATIVES

w_i(calc.)/w_i(found): a) 9.6/9.7 % P; b) 9.6/9.5 % P; c) 9.2/9.3 % P; d) 9.2/9.4 % P.

X is the position of the CH_2SR^1 group on the benzene ring.

T	à	b	le	3
1	а	D.	ie	2

Characterization of alkylthiomethylphenyl N,N-dimethylcarbamates

Compound R	D	v	w;(calc.)/% w;(found)/%				Yield	_	
	R	х	C	Н	N	S	%	B.p./°C(p /Pa)	
XXIV	CH₃	CH₃	2	58.6	6.7	6.2	14.2	76.8	130(13)
				58.5	6.6	6.3	14.3		
XXV	CH ₃	C ₂ H ₅	2	60.2	7.2	5.9	13.4	78.4	133(40)
				60.0	7.3	6.0	13.6		
XXVI	CH ₃	C ₂ H ₅	3	60.2	7.2	5.9	13.4	95.0	135(26)
				60.4	7.4	5.8	13.5		
XXVII	CH ₃	C₂H₅	4	60.2	7.2	5.9	13.4	80.2	
				60.3	7.2	5.8	13.3		
XXVIII	CH ₃	C ₃ H ₇	2	61.6	7.6	5.5	12.7	81.4	130(13)
				61.5	7.5	5.6	12.8		
XXIX	CH ₃	$CH(CH_3)_2$	2	61.6	7.6	5.5	12.7	75.8	128(13)
				61.8	7.7	5.6	12.9		
XXX	CH ₃	$CH_2CH=CH_2$	2	62.1	6.8	5.6	12.8	76.6	129(13)
				62.2	6.8	5.7	12.9		
XXXI	CH ₃	C₄H ₉	2	62.9	7.9	5.2	12.0	67.6	133(13)
				62.7	8.0	5.1	12.1		
XXXII	CH ₃	CH ₂ CH(CH ₃) ₂	2	62.9	7.9	5.2	12.0	86.0	129(6.5)
		1964 - 4 5 4 - 64 7 900		62.8	7.8	5.1	12.2		
XXXIII	CH ₃	CH(CH ₃)C ₂ H ₅	2	62.9	7.9	5.2	12.0	80.3	126(6.5)
				63.0	8.0	5.1	12.1		
XXXIV	CH ₃	C(CH ₃) ₃	2	62.9	7.9	5.2	12.0	61.9	127(13)
				63.1	7.9	5.1	12.1		
XXXV	CH ₃	CH ₂ CH ₂ SC ₂ H ₅	2	56.2	7.1	4.7	21.4	85.4	153(13)
				56.0	7.0	4.8	21.5		

Table 4										
Characterization of alkylthiomethylphenols										
Compound	R'	x		w _i (calc.)/% w _i (found)/%		Yield	B.p./°C(p/Pa) M.p./°C			
Compound	R	~	С	Н	S	%	м.р./ С			
XXXVI	CH ₃	2	62.3	6.5	20.8	60.1	74—76(26)			
			62.4	6.4	21.0					
XXXVII	C ₂ H ₅	2	64.2	7.2	19.1	54.7	81-83(26)			
			64.3	7.3	19.3					
XXXVIII	C₂H₅	3	64.2	7.2	19.1	60.3	100-102(13)			
			64.4	7.1	19.3					
XXXIX	C₂H₅	4	64.2	7.2	19.1	50.2	114-116(52)			
			64.3	7.3	19.0					
XL	C ₃ H ₇	2	65.9	7.7	17.6	76.8	8486(13)			
			66.0	7.6	17.8					
XLI	CH(CH ₃) ₂	2	65.9	7.7	17.6	80.2	80-81(6.5)			
			66.1	7.8	17.5					
XLII	$CH_2CH=CH_2$	2	66.6	6.7	17.8	57.1	85-86(13)			
			66.8	6.8	17.9					
XLIII	C₄H₀	2	67.3	8.2	16.3	47.2	96—98(13)			
			67.4	8.3	16.2					
XLIV	CH ₂ CH(CH ₃) ₂	2	67.3	8.2	16.3	56.3	104—106(42)			
	0112011(01-0)2		67.5	8.2	16.5					
XLV	CH(CH ₃)C ₂ H ₅	2	67.3	8.2	16.3	55.5	90—92(13)			
			67.2	8.3	16.4					
XLVI	C(CH ₃) ₃	2	67.3	8.2	16.3	73.8	69—70			
/LD • 1	-(67.4	8.4	16.5					
XLVII	CH ₂ CH ₂ SC ₂ H ₅	2	57.9	7.1	28.0	86.5	141—143(26)			
		-	58.0	7.0	28.2					

PESTICIDAL ACTIVITY OF CARBAMATE DERIVATIVES

419

Table 5	

Characterization of alkylthiomethylphenyl N-methylcarbamates

Compound R	-	21	v		5. S.	lc.)/% nd)/%		Yield	M.p./°C
	R	\mathbf{R}^{1}	х	С	Н	N	S	%	м.р./ С
XLVIII	н	CH3	2	56.8	6.2	6.6	15.2	97.0	50—52
				56.9	6.4	6.8	15.3		
XLIX	н	C ₂ H ₅	2	58.6	6.7	6.2	14.2	96.0	43-45
				58.7	6.9	6.4	14.3		
L	н	C ₂ H ₅	3	58.6	6.7	6.2	14.2	98.0	44—46
				58.5	6.8	6.3	14.5		
LI	н	C_2H_5	4	58.6	6.7	6.2	14.2	96.0	91-93
				58.7	6.8	6.1	14.4		
LII	н	C_3H_7	2	60.2	7.2	5.9	13.4	98.0	60—62
				60.1	7.3	6.0	13.3		
LIII	н	CH(CH ₃) ₂	2	60.2	7.2	5.9	13.4	97.0	6668
				60.3	7.4	5.9	13.5		
LIV	н	$CH_2CH=CH_2$	2	60.7	6.4	5.9	13.5	98.0	37-40
				60.6	6.3	5.8	13.2		
LV	н	C₄H ₉	2	61.6	7.6	5.5	12.7	96.0	3436
				61.7	7.7	5.4	12.9		
LVI	н	CH ₂ CH(CH ₃) ₂	2	61.6	7.6	5.5	12.7	95.0	59-61
DVI			_	61.5	7.7	5.6	12.9		
LVII	Н	CH(CH ₃)C ₂ H ₅	2	61.6	7.6	5.5	12.7	94.0	44-46
2				61.8	7.7	5.5	12.6		
LVIII	н	C(CH ₃) ₃	2	61.6	7.6	5.5	12.7	91.0	8385
2		- () /)		61.4	7.5	5.4	12.6		
LIX	н	CH ₂ CH ₂ SC ₂ H ₅	2	54.7	6.7	4.9	22.5	97.0	29-31
				54.8	6.8	4.8	22.7		

V. KONEČNÝ

a 1	\tilde{v}_{i} (CHCl ₃ —CCl ₄)/cm ⁻¹									
Compound	v(C=O)	ν(C—O)	v(SCN)	ν(C—N)	ν(N—H)					
I	1742	1150	_	1483	3462					
II	1740	1152		1484	3460					
III	1740	1152	_	1483	3461					
IV	1716	1156		1382						
	1726	1155		1384	_					
V	1702	1164	_	1381						
	1712	1163		1380						
VI	1713	1164		1372						
	1721	1164		1378	_					
VII	1742	1180	2156	1487	3454					
VIII	1740	1152	2156	1488	3452					
IX	1741	1160	2160	1486	3453					
X	1742	1175		1482	3460					
XI	1743	1172		1484	3461					
XII	1744	1176		1482	3460					
XIX	1718	1162	2150	1388						
XX	1720	1166	2152	1390						
XXI	1719	1164	2151	1386	÷					
XXIV	1716	1163		1387						
	1723	1160	_		_					
XXV	1721	1172		1384						
XXVI	1724	1168		1388						
XXVII	1722	1166	3 	1387						
XXVIII	1724	1171		1391						
XXIX	1722	1170	10 	1393						
XXX	1724	1167	_	1390						
XXXI	1726	1168		1392						
XXXII	1724	1158	// <u></u>	1381						
XXXIII	1719	1156	2	1387	_					
XXXIV	1717	1154		1381	—					
XXXV	1727	1162		1387	—					
XLVIII	1737	1171	_	1423	3457					
					3360					
XLIX	1748	1176		1482	3467					
					3358					
L	1734	1150	—	1480	3463					
201710	usenen ben etalis				3365					
LI	1729	1190		1495	3460					
	618-6375/20105am	SPACES MADE SILE			3353					
LII	1729	1171		1478	3454					
		wower' 10 / 704			3351					

Infrared spectral data of compounds studied

Compound		v _i (C	CHCl₃—CCl₄)/c	m ⁻¹	
	v(C=O)	ν(CΟ)	v(SCN)	ν(C—N)	v(N—H)
LIII	1738	1177		1483	3460
					3361
LIV	1740	1175		1483	3459
					3357
LV	1741	1182		1483	3463
					3362
LVI	1739	1176	—	1484	3466
					3350
LVII	1733	1174		1475	3457
					3358
LVIII	1749	1173	_	1478	3466
					3360
LIX	1741	1178	_	1483	3465
					3350

Table 6 (Continued)

Infrared spect	al data of alkylthiomethylphenols
----------------	-----------------------------------

Compound	$\hat{v}_1(CHCl_3-CCl_4)/cm^{-1}$				
Compound	v(O—H)	v(OHS)	v(C=C)	δ(CH₃)	v(CO)
XXXVI	3585	3303	1576	1476	1226
	3600	3320	1574	1471	1229
XXXVII	3583	3300	1577	1449	1227
	3600	3324	1573	1447	1229
XXXVIII	3583	3329	1584	1448	1269
	3600	3340	1585	1449	1270
XXXIX	3588	3340	1601	1436	1256
	3600	3378	1591	1436	1254
XL	3583	3314	1573	1478	1227
	3600	3324	1579	1480	1216
XLI	3382	3321	1576	1478	1226
	3600	3324	1579	1481	1217
XLII	3584	3316	1577	1478	1228
	3600	3344	1577	1481	1217
XLIII	3577	3300	1574	1477	1229
	3600	3302	1570	1478	1216
XLIV	3593	3302	1578	1482	1226
	3600	3326	1578	1482	1232

a 1		$ar{m{ u}}_{i}($	CHCl ₃ —CCl ₄)/o	cm ⁻¹	
Compound	ν(O—H)	v(OHS)	v(C=C)	δ(CH3)	v(C—O)
XLV	3585	3300	1576	1478	1226
	3600	3300	1570	1472	1231
XLVI	3584	3316	1573	1478	1226
	3600	3329	1576	1482	1226
XLVII	3590	3329	1577	1478	1231
	3600	3341	1577	1479	1236

Ta	ble	71	(Continued)	
			commaca,	

Fungicidal activity of some compounds				
Compound –	ED ₅₀ /ppm			
Compound =	P. infestans	E. graminis	E. polyphaga	
VII		120.0	95.5	
XIX	_	1000.0	83.5	
XXI	380	38.5	3650.0	
dinocap — standard	_	24.5	3.16	
mancozeb	73	—		

the most active compound N-methyl-O-(2-isopropylthiomethyl)phenyl carbamate LIII was 2.8 times more active than a standard. The activity of the standard was reached also by compounds XXIV, XXV, XXIX, L, and LII. In systemic insecticidal activity against M. sanbornii only compounds XLVIII and XLIX were 2.5 to 3 times more active than the used standard thiometon. From the remaining compounds only compound XXIV was interesting. Some compounds showed a measurable acaricidal activity against T. urticae, however, none of them showed interesting activity (Table 9). In other tests on M. domestica, S. granarius, and T. urticae compounds in concentrations used were practically inactive.

Summarising it can be stated that the most active were compounds N-methyl-O-(2-methylthiomethyl)phenyl carbamate XLVIII and N-methyl-O-(2-ethylthiomethyl)phenyl carbamate XLIX and there is no large difference in activity of these compounds. In contact insecticidal tests an interesting activity showed

	LC ₅₀ /%			
Compound -	A. fabae	M. sanbornii*	T. urticae	
VII	0.06	0.5	0.5	
VIII	0.07	0.5	0.5	
IX	0.06	0.5	0.5	
X	0.08	0.5	0.5	
XI	0.04	0.5	0.01	
XII	0.05	0.5	0.5	
XIII	0.05	0.5	0.10	
XV	0.05	0.40	0.01	
XXII	0.07	0.30	0.1	
XXIV	0.00195	0.051	0.10	
XXV	0.0033	0.5	0.1	
XXVI	0.08	0.5	0.1	
XXVIII	0.01	0.5	0.1	
XXIX	0.0036	0.5	0.1	
XXX	0.01	0.5	0.1	
XXXI	0.04	0.5	0.1	
XXXII	0.01	0.5	0.1	
XXXIII	0.03	0.5	0.1	
XXXIV	0.012	0.5	0.1	
XXXV	0.010	0.5	0.10	
XLVIII	0.0016	0.007	0.10	
XLIX	0.0013	0.0052	0.025	
L	0.0096	0.40	0.010	
LI	0.1	0.5	0.05	
LII	0.0036	0.5	0.1	
LIII	0.00057	0.5	0.1	
LIV	0.010	0.5	0.04	
LVI	0.010	0.08	0.05	
LIX	0.03	0.5	0.1	
alathion	0.0016			
niometon		0.0178	_	
arbophenothion	—	_	0.0003	

Insecticidal and acaricidal activities of some prepared compounds

* Systemic activity.

2-(isopropylthiomethyl)phenyl N-methylcarbamate LIII. From the practical point of view compound XLVIII was very interesting, however from the technical-ecological point of view it has a disadvantage in the use of methanethiol.

Experimental

Infrared spectra of compounds prepared were recorded with a UR-20 (Zeiss, Jena) instrument. The wavenumber calibration was checked against the spectrum of polystyrene. The spectra were recorded in trichloromethane and some of them in tetrachloromethane $(c = 20-60 \text{ mmol dm}^{-3}, \text{ cell thickness } 0.89 \text{ mm}).$

Fungicidal activity of the prepared compounds was tested by both the *in vitro* and *in vivo* methods. Inherent activity was investigated by the glass slide method on spores of fungi Sclerotinia fructicola (WINT.) and by the Sharvell method using captan (trichloromethyl-thio)-4-cyclohexene-1,2-dicarboximide) as standard on Aspergillus niger TIEGH. and Cladosporium cucumericum ELL. et ARTH. Antipowdery mildew activity was followed on Erysiphe graminis (on the living plants of spring barley, sort Dunajský trh) using dinocap (2-(1-methylheptyl)-4,6-dinitrophenyl (E)-2-butenoate) as standard and on tomatoes (Phytophtora infestans DE BY) using mancozeb (a mixture of manganese(II) and zinc(II) 1,2-ethanediylbis(carbamodithioates)) as standard according to the known methods [3].

The mordant activity was determined on dead caryopsis of rye infected by conidia of *Fusarium nivale* using dithiocyanomethane as standard after the known methods [4].

Herbicidal activity was investigated by the preemergent (into the soil) and postemergent (to the leaf) application methods using testing objects: Avena sativa L., Polygonum persicaria L., Fagopyrum sagitatum L., and Sinapis alba L. after the known methods [5].

According to previously published methods [3, 6] the prepared compounds were tested on contact insecticidal activity on *Musca domestica*, *Sitophylus granarius*, and *Aphis fabae* SCOP using fenitrothion (O,O-dimethyl O-(3-methyl-4-nitrophenyl)thiophosphate) as standard; on systemic insecticidal activity on *Macrosiphoniella sanbornii* THEOB., on *Chrysan-themum indicum* using thiomethon (S-[2-(ethylthio)ethyl] O,O-dimethyl dithiophosphate) as standard; on acaricidal activity on females *Tetranychus urticae* KOCH and on ovicidal activity on eggs of *T. urticae*) using carbophenothion (S-[(4-chlorophenyl)thiomethyl] O,O-diethyl dithiophosphate) as standard.

Cresyl chlorocarbonates

To cresol (3.38 mol) and N,N-dimethylaniline (3.38 mol) in toluene (600 cm³) fosgene (3.4 mol) dissolved in toluene (400 cm³) was added with stirring at -5 to 0 °C during 2 h. Then the reaction mixture was stirred at the same temperature for 1 h and at 15—20 °C for 2 h. The excluded N,N-dimethylanilinium chloride was separated by filtration and washed with toluene on the filter. Combined toluene filtrates were concentrated under reduced pressure and the rest was redistilled.

2-Methylphenyl chlorocarbonate: b.p. = 88 °C at 1.3 Pa, yield = 77.8 %; 3-methylphenyl chlorocarbonate: b.p. = 93 °C at 1.6 Pa, yield = 81.3 %; 4-methylphenyl chlorocarbonate: b.p. = 91 °C at 1.3 Pa, yield = 79.4 %.

Chloromethylphenyl chlorocarbonates

To methylphenyl chlorocarbonate (2.03 mol), phosphorus trichloride (0.049 mol), and benzamide (0.00576 mol) sulfuryl chloride (2.46 mol) was slowly added with stirring at 130 to 135 °C during 5 h. During addition hydrogen chloride and sulfur dioxide evolved. After cooling the reaction mixture was filtered and distilled under diminished pressure.

2-(Chloromethyl)phenyl chlorocarbonate: b.p. = 71—74 °C at 13.3 Pa, yield = 50.1 %; 3-(chloromethyl)phenyl chlorocarbonate: b.p. = 81—82 °C at 26.6 Pa, yield = 48.2 %; 4-(chloromethyl)phenyl chlorocarbonate: b.p. = 73—75 °C at 13.3 Pa, yield = 49.0 %.

(Chloromethyl)phenyl N-methyl- or N,N-dimethylcarbamates (I-VI)

To (chloromethyl)phenyl chlorocarbonate (1 mol) in 1,1,2-trichloroethene (300 cm^3) methylamine and dimethylamine was introduced under the level of the solution during 2 h at -5 to 5 °C with stirring. After addition the stirring was continued at 10 to 15 °C for 30 min. The reaction mixture was poured into ice water (1200 cm^3) under stirring. The organic layer was washed with water (300 cm^3) and dried with anhydrous CaCl₂. After distillation of 1,1,2-trichloroethene the rest was purified by crystallization from cyclohexane or by distillation under reduced pressure (Table 1).

Substituted phenyl N-methyl- or N,N-dimethylcarbamates (VII-XXIII)

To (chloromethyl)phenyl N-methyl- or N,N-dimethylcarbamate (0.1 mol) in acetonitrile (100 cm³) potassium rhodanide, sodium thiophenolate, sodium O-ethylxantogenate, sodium N,N-dimethyldithiocarbamide or sodium salt of O,O-dimethyldithiophosphoric acid (0.11 mol) was added under stirring. The stirring was continued for 2 to 4 h at the boiling point of the reaction mixture. After cooling the reaction mixture was poured into water (500 cm³) under stirring by which a solid or an oily compound was excluded. The solid compound was purified by crystallization from cyclohexane, toluene or ethanol. In the case of the oily compound toluene (150 cm³) was added, the mixture was dried over anhydrous sodium sulfate, toluene was distilled off under reduced pressure and the rest was dried at 80 °C at 13.3 Pa (Table 2).

Alkylthiomethylphenyl N,N-dimethylcarbamates (XXIV—XXXV)

To (chloromethyl)phenyl N,N-dimethylcarbamate (0.1 mol) in acetonitrile (100 cm³) sodium thiolate (0.11 mol) as a suspension in toluene (100 cm³) was added. The reaction mixture was stirred under reflux for 2 h and after cooling washed with water (twice with 200 cm³) and with sodium carbonate (100 cm³ of 5 % solution). After drying over anhydrous sodium sulfate toluene was distilled off under reduced pressure and the rest was distilled (Table 3).

Alkylthiomethylphenols (XXXVI-XLVII)

After dissolving sodium hydroxide (0.745 to 1.49 mol) in water (120 cm^3) alkylthiomethylphenyl N,N-dimethylcarbamate (0.149 mol) was added. The reaction mixture was maintained at a boiling point for 3 to 18 h until the solution was clear. The reaction mixture was acidified (pH=1) by hydrochloric acid (15 %). The excluded alkylthiomethylphenol was extracted with toluene (120 cm^3) . After drying over anhydrous sodium sulfate toluene was distilled off under reduced pressure and the rest was distilled (Table 4).

Alkylthiomethylphenyl N-methylcarbamates (XLVIII-LIX)

To alkylthiomethylphenol (0.1 mol) and triethylamine (0.5 cm³) in benzene (100 cm³) methylisothiocyanate (0.11 mol) in benzene (30 cm³) was added at 10 to 15 °C under stirring. The stirring was continued for 1 h at 40 °C and for 1 h at 80 °C. Benzene was distilled off under reduced pressure and at the end of distillation at 80 °C at 13.3 Pa and the rest was purified by crystallization from hexane (Table 5).

References

- 1. Hoffmann, H., Hammann, I., and Unterstenhöfer, G., Ger. (GDR) 85219 (1971).
- 2. Farm Chemical Handbook. (Harold H. Shepard, Editor.) P. D 72 (1977).
- 3. Demečko, J. and Konečný, V., Agrochémia (Bratislava) 10, 127 (1970).
- 4. Konečný, V., Demečko, J., and Sutoris, V., Acta Fac. Rerum Natur. Univ. Comenianae (Chimia) 20, 39 (1974).
- 5. Furdík, M., Konečný, V., Šály, A., and Truchlik, Š., Acta Fac. Rerum Natur. Univ. Comenianae (Chimia) 12, 45 (1968).
- 6. Drábek, J., Pastorek, I., and Konečný, V., J. Sci. Food Agr. 20, 152 (1969).

Translated by S. Kováč