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The paper deals with the physical adsorption from gaseous phase on 
heterogeneous solid surfaces. The monolayer adsorption isotherms for single 
gases, obtained by solving the fundamental integral equation for Jovanovič 
local isotherm and quasi-gaussian energy distributions, are discussed. These 
isotherm equations may be extended to multilayer adsorption of single gases 
and mixed-gas adsorption on heterogeneous solid surfaces. 

В работе описана физическая адсорбция из газообразной фазы на 
гетерогенных твердых поверхностях. Обсуждаются адсорбционные 
изотермы мономолекулярного слоя для простых газов, полученные ре
шением основного интегрального уравнения Йовановица для локальной 
изотермы и квази-гауссовой энергии распределения. Эти уравнения 
изотерм могут применяться к адсорбции многомолекулярного слоя прос
тых газов и к адсорбции смешанных газов на гетерогенных твердых 
поверхностях. 

The isotherm equations describing physical adsorption of single gases on 
heterogeneous solid surfaces are usually derived by means of the fundamental 
integral equation [1, 2] 

0,(р) = /д 0(P, e)F(e)de (1) 

where в,(р) and 0(/?, e) are the overall and local adsorption isotherms, respec
tively, p is the equilibrium pressure, e is the adsorption energy, F(e) is the energy 
distribution function normalized to unity, and A is the integration region. Eqn (1) 
was usually solved with respect to 6t(p) by using Langmuir local isotherm and 
different energy distribution functions [1]. The other equation used for describing 
the local adsorption is so-called Jovanovič equation [3] 

0(p, e ) = l - e x p ( - K p ) (2) 
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where 

K=K°exp(-^;) (3) 

and K° is the pre-exponential factor connected with the molecular partition 
functions of the adsorbate molecules in the surface and bulk phases. Many attempts 
have been made to derive eqn (2) in terms of the statistical thermodynamics and 
adsorption kinetics theory [3—11] but its theoretical foundations are still contro
versial [12]. 

It is worthwhile to mention that already in 1911 Schmidt [13] proposed an 
equation which leads to Jovanovič adsorption isotherm. His idea has been recently 
undertaken by Misra [11]. Also, in 1946 Temkin and Levich [14] proposed the 
Jovanovič-type isotherm equation for describing the adsorption kinetics (see also 
the references [15—17]). Their theoretical considerations have been applied by 
Budrugeac [10] for deriving the isotherm eqn (2). Moreover, eqn (2) has been 
widely examined by using gas adsorption data [18—20]. Eqn (2) was also applied 
to derive the relationships describing gas chromatographic data [21, 22]. Its 
extension to mixed-gas adsorption was proposed by Jaroniec [23, 24], Popa and 
Segal [25]. An experimental verification of Jovanovič-type equations describing 
mixed-gas adsorption has been recently presented by Longauer et al. [26]. 

Many authors [27—34] used eqn (2) for describing the local adsorption isotherm 
appearing in the integral eqn (1). In Ref. [27, 28] the condensation approximation 
method was used to solve the integral eqn (1) with Jovanovič eqn (2). The 
numerical methods of solving the integral eqn (I) with the local isotherm (2) were 
discussed by Rudziňski and Jaroniec [29]. However, analytical solutions of eqn ( i) 
for constant and exponential energy distributions were presented by Misra [30]. 
The isotherm equations derived by Misra [30] were also extended to multilayer gas 
adsorption [34] and mixed-gas adsorption on heterogeneous surfaces [35—37]. 
Unfortunately, Misra [30] solved eqn (1) with the local isotherm (2) only for two 
simple energy distributions, which are not typical distributions obtained from 
experimental adsorption data. In this paper, we shall discuss analytical solutions of 
the integral eqn (1) with the local isotherm (2) for quasi-gaussian energy 
distributions, which are typical for many gas—solid adsorption systems [1]. 

Monolayer adsorption of single gases 

The integral representation of the overall adsorption isotherm for Jovanovič 
local behaviour may be expressed as follows 

0,(p) = 1 - J " exp ( - Kp) F(e) de (4) 
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where e' is the minimum adsorption energy. Eqn (4) has been obtained from eqns 
(I) and (2). 

Let us introduce the new variable 

k=K-K' (5) 

where 

K' = K°txp(^Ť) (6) 

and 
D T 

dE=K4~kdk W 

The integration region (e', °°) is transformed on the interval (0, °°) with respect to 
k. 

Thus, the integral eqn (4) may be rewritten as follows 

0 , ( р ) = 1 - е х р ( - К » Г exp(-kp)G(k)dk (8) 
Jo 

where 

(9) G W =^F[ ,m„(* i£) 

Many of the physically realistic functions G(k) may be obtained from the following 
general equation 

G(k)=Nkmtxp(-qkn) (10) 

where Nis the normalization factor and q, m, n are parameters greater than zero. 
Eqns (8) and (10) give 

e , ( p ) = l - N e x p ( - K ' p ) Г fcmexp(-/cp-<7/c")dfc ( II ) 
Jo 

Eqn ( I I ) may be analytically solved for some sets of values of m and n. In the case 
of м = 1 and m greater than zero eqn (11) gives 

e,(p)=l" b+pY+1 exp ( _ K > ) ( 1 2 ) 
47 + pJ 

In other words, eqn (12) is the solution of eqn (8) for gamma-type distribution 

адвдГ+1)*"е1р("^ (í3) 
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For m = 0 this distribution becomes a simple exponential decreasing function of к 

G(k)=qexp(-qk) for fc>0 (14) 

However, the exponential distribution (14) transformed by means of eqns (3), (6), 
and (9) gives the energy distribution F(e) of quasi-gaussian shape (Fig. 1). 
Analytical form of the energy distribution obtained from eqn (14) is 

F(e)= RÍ exp Ш e x p { " qK° [eXp Ш " e x p Of, (15) 
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Fig. 1. Distributions G(K- К') and F(E) calculated according to eqns (14) and (15), respectively, for 
K° = 0.95 x 10"8 Pa"1, K' = 1.523 x 10"4, and g = 53.3 Pa (the solid line) and 106.6 Pa 

(the dashed line). 
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Fig. 2. Adsorption isotherms calculated ac
cording to eqn (16) for K' = 
1.523 x lO"4 Pa"1 and <? = 53.3 Pa (the solid 
line), 75.0 Pa (the weakly dashed line), and 

106.6 Pa (the strongly dashed line). 
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The adsorption isotherm corresponding to the energy distribution (15), which is 
generated by eqn (14), may be obtained from eqn (12) and m = 0; it is 

0, KP) = I - ( 
q + p 

e x p ( - K ' p ) (16) 

The model adsorption isotherms calculated according to eqn (16) are shown in 
Fig. 2; the adsorption increases with the greater adsorbent heterogeneity. 

Fig. 3. Adsorption isotherms calculated accord
ing to eqn (21) for parameters K' = 
1.5 x 10"2 Pa"1 and q = 2 x 106 Pa2 (the dashed 

line) and 2 x 104 Pa2 (the solid line). 
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The second important solution of eqn (11) is obtained for m = 1 and n = 2. For 
these values of m and n eqn (10) produces the so-called Rayleigh-type distribution 
function 

G(k) = 2qkexp(-qk2) (17) 

This distribution gives the following equation for the overall adsorption isotherm 

0 ,( P ) = l - e x P ( - K » [ l - | ^ - e x p ( £ ) e r f ( ^ ) ] (18) 

where the symbol "erf" denotes the error function. 
Eqn (10) for m = 0 and n = 2 produces Gaussian distribution; in this case K' 

denotes the value for which the normal distribution reaches the maximum. The 
normal distribution 

G(k) -ft exp ( - qk2) 
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gives the adsorption isotherm of the following form 

в,(р) = 1 - exp ( - K'p) exp [f-\ [1 - erf (у)]12 (20) 

where erf (у) is the error function and y = (p -2qK')/(2 Vq). The term containing 
the error function may be neglected and then we have 

e,(p)=l-cxp(-K'p + Q (21) 

The model adsorption isotherms calculated according to eqn {21) are presented in 
Fig. 3. The energy distribution function corresponding to the isotherm eqn {21), 
obtained by transformation of eqn {19), is 

The distribution functions calculated according to eqns (19) and {22) are shown in 
Fig. 4. As it is illustrated in the figure, the symmetrical function of к is transformed 
to the asymmetrical function of e with a widening in the direction of low adsorption 
energies. 

Monolayer mixed-gas adsorption 

In Ref. [24] eqn (2) has been extended to mixed-gas adsorption on homogene
ous solid surfaces. The extended form of eqn (2) may be written as follows 

0r(Pi, p2, ..., Pr) = 1 - exp ( - J Kiptj (23) 
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Fig. 4. Distributions G{K- K') and F(e) calculated according to eqns (19) and (22), respectively, for 
K° = 0.95xlO-8Pa-1, K ' ^ U x l O ^ P a " 1 , and <j = 3.555x 104 Pa2 (the dashed line) and 

8.888 x 103 Pa2 (the solid line). 
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where dr denotes the total adsorption of r components, /?, is the partial pressure of 
the i-th component, and K, is the constant (3) for the i-th gas. The generalized 
integral equation, proposed by Jaroniec [35] for describing themixed-gas adsorp
tion on heterogeneous surfaces, in the case of Jo vano vie local isotherm (23) gives 
the following relationship 

OUPuIh, ...,Рг) = 1 - П OM (24) 
i = l 

where 0M is the total adsorption isotherm for r components on a heterogeneous 
surface, and 0ř,,(pf) is the single-gas adsorption isotherm of the i-th component. 
Thus, the monolayer mixed-gas adsorption isotherms for heterogeneous surfaces 
may be obtained by using single-gas isotherms discussed in the previous section, 
e.g. eqns (12), (16), (18), and (20). As an example we present the isotherm for 
binary gas mixtures obtained by means of eqns (16) and (24) 

OUPu ft) = — J - exp ( - K'lPl) + — J - exp ( - K'2p2) -
4\ ~r ft q2-r ft 

- ^ • ^ e x p ( - K ; * - K ^ ( 2 5 ) 

where qt and K\ are the constants q and K, respectively, referring to the i-th 
component. 

The second possibility of extending eqn (23) to adsorption on heterogeneous 
surfaces was discussed in Ref. [38]. This method may be applied to the systems 
fulfilling the following condition 

Ki/K1 = Ai for /=2,3, . . . , r (26) 

and A, is the constant characteristic of the entire solid surface. According to this 
method the single-gas isotherms, discussed in the previous section, may be 
extended to the mixed-gas adsorption by replacing in them the constant K' by K[ 
and pressure p by the following expression 

xr=p1 + i(Ki/K1)pi (27) 
i=2 

As an example we present the adsorption isotherm for binary gas mixtures 
obtained by extending eqn (16) according to the method in question 

e2.(Pl, p2)=i qi
 K • exp [ к; ( P l + f p2) 

9. + (А + ^ й ) 
(28) 

The isotherm eqn (28) presented as a function of xr has quite analogous form as the 
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single-gas adsorption isotherm (16). The second method leads to simpler isotherm 
equations for mixed-gas adsorption and is usually used in practice [1]. 

Extension to multilayer adsorption 

The monolayer single-gas and mixed-gas adsorption isotherms may be also 
extended to multilayer adsorption. The method of their generalization may be 
analogous to that presented in the review [1]. According to this method the 
monolayer adsorption isotherms, derived for heterogeneous surfaces, should be 
multiplied by the function describing the multilayer formation, which is assumed to 
be independent of the adsorbent heterogeneity. This function for single-gas 
adsorption has simple exponential form [18] 

h(p) = exp(bp) (29) 

where b is the constant characterizing the multilayer adsorption. For mixed-gas 
adsorption the function describing multilayer formation may be written in the form 
[24] 

K(pu Pi, .-., Pr) = exp ( 2 bipj (30) 

where b, is the constant b referring to the i-th component. 
The adsorption isotherms discussed in this paper may be also generalized to 

liquid adsorption by utilizing the analogy between gas and liquid adsorption [1]. It 
follows from the review [1] that isotherm equations describing gas and liquid 
adsorption are analogous from the mathematical point of view. According to the 
procedure discussed in the review [1] the isotherm equations for adsorption from 
dilute solutions may be obtained from gas adsorption isotherms by replacing in 
them the pressure pt by solute concentrations c,. 
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