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The paper deals with the physical adsorption from gaseous phase on
heterogeneous solid surfaces. The monolayer adsorption isotherms for single
gases, obtained by solving the fundamental integral equation for Jovanovi¢
local isotherm and quasi-gaussian energy distributions, are discussed. These
isotherm equations may be extended to multilayer adsorption of single gases
and mixed-gas adsorption on heterogeneous solid surfaces.

B pabGote onucaHa cdu3HyecKas agcopbuusi M3 ra3oo6pa3Hoi asbl Ha
reTeporeHHbIX TBEPAbIX noBepxHocTsAX. O6cyxnaoTcs agcopOUHOHHbIE
M30TEPMbl MOHOMOJIEKYJISIPHOTO ClIOSl AJIsi MPOCTBIX ra3oB, MOJIyYeHHbIE pe-
LIEHHEM OCHOBHOTO MHTErpajbHOTO ypaBHeHHs MOBaHOBMUA ISt IOKANbLHO#M
U30TEPMbI M KBa3M-raycCOBOH 3HEPTrMH pachnpefesieHHsi. JTH ypaBHEHHs
H30TEPM MOTYT NPUMEHATbCA K aficOpOLUH MHOTOMOJIEKYISPHOTO ClOs MpocC-
ThIX ra3oB M K afcopOuUMM CMeLIaHHBIX ra3oB Ha reTePOTreHHBIX TBEPABIX
MOBEPXHOCTSX.

The isotherm equations describing physical adsorption of single gases on
heterogeneous solid surfaces are usually derived by means of the fundamental
integral equation [1, 2]

o(p)= | 6p. o) Fle) de (1)

where 6,(p) and 6(p, €) are the overall and local adsorption isotherms, respec-
tively, p is the equilibrium pressure, ¢ is the adsorption energy, F(¢) is the energy
distribution function normalized to unity, and A is the integration region. Eqn (1)
was usually solved with respect to 6,(p) by using Langmuir local isotherm and
different energy distribution functions [1]. The other equation used for describing
the local adsorption is so-called Jovanovié¢ equation [3]

6(p, e)=1—exp (— Kp) (2)

Chem. Papers 40 (3) 339—347 (1986) 339



M. JARONIEC, J. IOTROWSKA

where

€
K= K’exp (1—27") (3)
and K° is the pre-exponential factor connected with the molecular partition
functions of the adsorbate molecules in the surface and bulk phases. Many attempts
have been made to derive eqn (2) in terms of the statistical thermodynamics and
adsorption kinetics theory [3—11] but its theoretical foundations are still contro-
versial [12].

It is worthwhile to mention that already in 1911 Schmidt [13] proposed an
equation which leads to Jovanovi¢ adsorption isotherm. His idea has been recently
undertaken by Misra [11]. Also, in 1946 Temkin and Levich [14] proposed the
Jovanovi¢-type isotherm equation for describing the adsorption kinetics (see also
the references [15—17]). Their theoretical considerations have been applied by
Budrugeac [10] for deriving the isotherm eqn (2). Moreover, eqn (2) has been
widely examined by using gas adsorption data [18—20]. Eqn (2) was also applied
to derive the relationships describing gas chromatographic data [21, 22]. Its
extension to mixed-gas adsorption was proposed by Jaroniec [23, 24], Popa and
Segal [25]. An experimental verification of Jovanovi¢-type equations describing
mixed-gas adsorption has been recently presented by Longauer et al. [26].

Many authors [27—34] used eqn (2) for describing the local adsorption isotherm
appearing in the integral eqn ( 1). In Ref. [27, 28] the condensation approximation
method was used to solve the integral eqn (1) with Jovanovi¢ eqn (2). The
numerical methods of solving the integral eqn (1) with the local isotherm (2) were
discussed by Rudziriski and Jaroniec [29]. However, analytical solutions of eqn (1)
for constant and exponential energy distributions were presented by Misra [30].
The isotherm equations derived by Misra [30] were also extended to multilayer gas
adsorption [34] and mixed-gas adsorption on heterogeneous surfaces [35—37].
Unfortunately, Misra [30] solved eqn (1) with the local isotherm (2) only for two
simple energy distributions, which are not typical distributions obtained from
experimental adsorption data. In this paper, we shall discuss analytical solutions of
the integral eqn (1) with the local isotherm (2) for quasi-gaussian energy
distributions, which are typical for many gas—solid adsorption systems [1].

Monolayer adsorption of single gases

The integral representation of the overall adsorption isotherm for Jovanovié
local behaviour may be expressed as follows

6(p)=1- | exp (- Kp) F(e) de 4
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where €' is the minimum-adsorption energy. Eqn (4) has been obtained from eqns

(1) and (2).
Let us introduce the new variable
k=K-K’ (5
where
= K°exp (RT) (6)
and
RT
de—m dk (7)

The integration region (&', ®) is transformed on the interval (0, ) with respect to

k.
Thus, the integral eqn (4) may be rewritten as follows

0(p)=1-exp (—K'p) |~ exp (~ kp)G(K) dk (8)
where
a5 (£

Many of the physically realistic functions G(k) may be obtained from the following
general equation

G(k)= Nk™exp (— qk™) (10)

where N is the normalization factor and g, m, n are parameters greater than zero.
Eqns (8) and (10) give

6(p)=1-Nexp (~K'p) [ kmexp (~ kp— gk") dk (11)

Eqn (11) may be analytically solved for some sets of values of m and n. In the case
of n=1 and m greater than zero eqn (11) gives

m+1
6, =1—(—3—> exp (- K’ 12
P=1-(7L)" e (-K'p) (12)
In other words, eqn (12) is the solution of eqn (8) for gamma-type distribution
= 9™ mexp (=
G(k) T(m+1) k™ exp (- qk) (13)
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For m = 0 this distribution becomes a simple exponential decreasing function of k
G(k)= g exp (— gk) for k>0 (14)
However, the exponential distribution ( 14) transformed by means of eqns ( 3), (6),
and (9) gives the energy distribution F(g) of quasi-gaussian shape (Fig. 1).
Analytical form of the energy distribution obtained from eqn (14) is

Fl =4 (58) oo - e (55)-om ()] 29

= T 1 I
_ 0.6 i
- N
=
2 a4 -
-1 o
E
N
] ‘:"‘: 0.2 —
W
0 1 S~ 0.0
0.0 1.5 3.0 4.5 6.0
Kk-10%/pa” €/tks mot™h

Fig. 1. Distributions G(K— K') and F{(€) calculated according to eqns (14) and ( 15), respectively, for
K°=0.95x10"®Pa~!, K'=1.523x 107%,and q=53.3 Pa (the solid line) and 106.6 Pa
(the dashed line).

Fig. 2. Adsorption isotherms calculated ac-
cording to eqn (16) for K'=
L 1.523x 10~* Pa~' and g=53.3 Pa (the solid
0 500 1000 line), 75.0 Pa (the weakly dashed line), and
p/Pa 106.6 Pa (the strongly dashed line).
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The adsorption isotherm' corresponding to the energy distribution (15), which is
generated by eqn (14), may be obtained from eqn (12) and m=0; it is

ef(p)=1—(qj3p) exp (- K'p) (16)

The model adsorption isotherms calculated according to eqn (16) are shown in
Fig. 2; the adsorption increases with the greater adsorbent heterogeneity.

5, T T I
1.0

0.5

Fig. 3. Adsorption isotherms calculated accord-

ing to eqn (21) for parameters K'= 0.0 L ! L
1.5x 1072 Pa~" and q =2 x 10° PaZ (the dashed o =00 s00
line) and 2 x 10* Pa? (the solid line). p/Pa

The second important solution of eqn (11) is obtained for m=1 and n=2. For
these values of m and n eqn (10) produces the so-called Rayleigh-type distribution
function

G(k)=2qk exp (— qk?) (17)

This distribution gives the following equation for the overall adsorption isotherm

6.(p)=1—exp (- K'p) [l-g\/gj—exp (ﬁ) erf (ﬁ;)} (18)

where the symbol “erf” denotes the error function.

Eqn (10) for m=0 and n=2 produces Gaussian distribution; in this case K'
denotes the value for which the normal distribution reaches the maximum. The
normal distribution

G = exp (- k) (19)
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.

gives the adsorption isotherm of the following form

6.(p)=1-exp (—K'p) exp (£ )[1 erf (y)]/2 (20)

where erf (y) is the error function and y=(p —2gK')/(2 Vq). The term containing
the error function may be neglected and then we have

6(p)=1-cxp (—K'w{%) (21)

The model adsorption isotherms calculated according to eqn (21) are presented in
Fig. 3. The energy distribution function corresponding to the isotherm eqn (21),
obtained by transformation of eqn (19), is

1= 5 (55 o [ ) - (] 2

The distribution functions calculated according to eqns (19) and (22) are shown in
Fig. 4. As itis illustrated in the figure, the symmetrical function of k is transformed
to the asymmetrical function of ¢ with a widening in the direction of low adsorption
energies.

Monolayer mixed-gas adsorption

In Ref. [24] eqn (2) has been extended to mixed-gas adsorption on homogene-
ous solid surfaces. The extended form of eqn (2) may be written as follows

r
00 s =10 (5, K0 -
i=1
100f ' ,"‘\\ ' I r T
Y

80 |- in' \ B — 3
o \ ._.
a ' \ 2 7
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Fig. 4. Distributions G(K— K') and F(¢) calculated according to eqns (19) and (22), respectively, for
K°=095x10"%Pa~!, K'=1.5x10"2Pa~', and ¢q=3.555x10*Pa®> (the dashed line) and
8.888 x 10° Pa? (the solid line).
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where 0, denotes the total adsorption of r components, p; is the partial pressure of
the i-th component, and K is the constant (3) for the i-th gas. The generalized
integral equation, proposed by Jaroniec [35] for describing the.mixed-gas adsorp-
tion on heterogeneous surfaces, in the case of Jovanovi¢ local isotherm (23) gives
the following relationship

8,.(D1y Dar .r P)=1 —H 0..(p)) (24)

where 0,, is the total adsorption isotherm for r components on a heterogeneous
surface, and 6,,(p;) is the single-gas adsorption isotherm of the i-th component.
Thus, the monolayer mixed-gas adsorption isotherms for heterogeneous surfaces
may be obtained by using single-gas isotherms discussed in the previous section,
e.g. eqns (12), (16), (18), and (20). As an example we present the isotherm for
binary gas mixtures obtained by means of eqns (16) and (24)

0..dp1, p2) = f37‘[’ {— K1P1)+ exp (- Kip)—

4 _ 9
Gi+p @t P

where g; and K are the constants g and K, respectively, referring to the i-th
component.

The second possibility of extending eqn (23) to adsorption on heterogeneous
surfaces was discussed in Ref. [38]. This method may be applied to the systems
fulfilling the following condition

K,'/K1= A,' fOl‘ l=2, 3, R 3 (26)

exp (— Kip, — K;p,) (25)

and A, is the constant characteristic of the entire solid surface. According to this
method the single-gas isotherms, discussed in the previous section, may be
extended to the mixed-gas adsorption by replacing in them the constant K' by K;
and pressure p by the following expression

Xr=P1+zz(Ki/K1)Pi (27)

As an example we present the adsorption isotherm for binary gas mixtures
obtained by extending eqn (16) according to the method in question

0ulpy p)=1-—L g en [Ki(prign)|  (29)
(prie) :
G+\p+ K
The isotherm eqn (28) presented as a function of x, has quite analogous form as the
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single-gas adsorption isotherm ( 16). The second method leads to simpler isotherm
equations for mixed-gas adsorption and is usually used in practice [1].

Extension to multilayer adsorption

The monolayer single-gas and mixed-gas adsorption isotherms may be also
extended to multilayer adsorption. The method of their generalization may be
analogous to that presented in the review [1]. According to this method the
monolayer adsorption isotherms, derived for heterogeneous surfaces, should be
multiplied by the function describing the multilayer formation, which is assumed to
be independent of the adsorbent heterogeneity. This function for single-gas
adsorption has simple exponential form [18]

h(p) =exp (bp) (29)

where b is the constant characterizing the multilayer adsorption. For mixed-gas
adsorption the function describing multilayer formation may be written in the form
[24]

hr(ply sz ey pr)=exp (Zl bipi) (30)

where b; is the constant b referring to the i-th component.

The adsorption isotherms discussed in this paper may be also generalized to
liquid adsorption by utilizing the analogy between gas and liquid adsorption [1]. It
follows from the review [1] that isotherm equations describing gas and liquid
adsorption are analogous from the mathematical point of view. According to the
procedure discussed in the review [1] the isotherm equations for adsorption from
dilute solutions may be obtained from gas adsorption isotherms by replacing in
them the pressure p; by solute concentrations c;.

References

1. Jaroniec, M., Advan. Colloid Interface Sci. 18, 149 (1983).

2. Jaroniec, M., Patrykiejew, A., and Boréwko, M., Progr. Surface Membrane Sci. 14,1 (1981).
3. Jovanovi¢, D. S., Colloid Polym. Sci. 235, 1203 (1969).

4. Cerofolini, G. F., Z. Phys. Chem. (Frankfurt) 259, 314 (1978).

5. Jaroniec, M., Colloid Polym. Sci. 254,601 (1976).

6. Rudziniski, W. and Wojciechowski, B. W., Colloid Polym. Sci. 255, 869 (1977).

7. Rudzifiski, W. and Wojciechowski, B. W., Colloid Polym. Sci. 255, 1086 (1977).

346 Chem. Papers 40 (3) 339—347 (1986)



ADSORPTION HETEROGENEOUS SURFACES

38

. Cerofolini, G. F., J. Colloid Interface Sci. 68, 101 (1979).
. Vlad, M. and Segal, E., Surface Sci. 79, 608 (1979).

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Budrugeac, P., Rev. Roum. Chim. 25, 487 (1980).

Misra, D. N., J. Colloid Interface Sci. 77, 543 (1980).

Hazlett,J.D.,Hsu, C. C.,and Wojciechowski, B. W., J. Chem. Soc., Faraday Trans. I 75,602 (1979).
Schmidt, G. C., Z. Phys. Chem. 77,641 (1911); 78,667 (1912).

Temkin, M. and Levich, V., Zh. Fiz. Khim. 20, 1441 (1946).

Jaroniec, M., Vacuum 28, 17 (1978).

Jaroniec, M., J. Chem. Soc., Faraday Trans. II 74,1292 (1978).

Jaroniec, M., Thin Solid Films 71,273 (1980).

Jovanovié, D. S., Colloid Polym. Sci. 235, 1214 (1969).

Jaroniec, J. A. and Jaroniec, M., Izv. Akad. Nauk SSSR, Ser. Khim. 80, 1246 (1980).

Jaroniec, J. A., Jaroniec, M., and Kaminska, K., Przem. Chem. 58, 363 (1979).

Suprynowicz, Z., Jaroniec, M., and Gawdzik, J., Chromatographia 9, 161 (1976).

Jaroniec, J. A., Jaroniec, M., and Gawdzik, J., J. Appl. Chem. Biotechnol. 27, 248 (1977).
Jaroniec, M., Chem. Zvesti 29, 512 (1975).

Jaroniec, M., Chem. Zvesti 30, 658 (1976).

Popa, V. and Segal, E., Rev. Roum. Chim. 21,977 (1976).

Longauer, J., llavsky, J., and Brunovska, A., Chem. Zvesti 37,453 (1983).

Rudzinski, W. and Jaroniec, M., Ann. Soc. Chim. Polonorum 49, 165 (1975).

Jaroniec, M., Sokotowski, S., and Cerofolini, G. F., Thin Solid Films 31, 321 (1976).

Rudzifiski, W. and Jaroniec, M., Surface Sci. 42, 552 (1974).

Misra, D. N., J. Colloid Interface Sci. 43, 85 (1973).

Landman, U. and Montroll, E. W., J. Chem. Phys. 64, 1762 (1976).

Sokotowski, S., Jaroniec, M., and Waksmundzki, A., Ann. Soc. Chim. Polonorum 50, 1149 (1976).
Sokotowski, S. and Jaroniec, M., Colloid Polym. Sci. 255, 374 (1977).

Jaroniec, M., Sokotowski, S., and Waksmundzki, A., Ann. Soc. Chim. Polonorum 50, 779 (1976).
Jaroniec, M., J. Colloid Interface Sci. 53,422 (1975). |

Jaroniec, M. and Toth, J., Acta Chim. Hung. 91, 153 (1976).

Jaroniec, M., Toth, J., and Rudzinski, W., Acta Chim. Hung. 94, 35 (1977).

Jaroniec, M., Narkiewicz, J., and Rudzinski, W., J. Colloid Interface Sci. 65,9 (1978).

Chem. Papers 40 (3) 339—347 (1986) 347



