2-Alkylthio-6-(3-nitrobenzoylamino)benzothiazoles and their antimycobacterial activity

^aE. SIDÓOVÁ and ^bŽ. ODLEROVÁ

^a Institute of Chemistry, Komenský University, CS-842 15 Bratislava

^b Research Institute of Preventive Medicine, Centre for Epidemiology and Microbiology, CS-833 01 Bratislava

Received 14 March 1986

Dedicated to Professor RNDr. V. Sutoris, CSc., in honour of his 60th birthday

- 2-Alkylthio-6-(3-nitrobenzoylamino)benzothiazoles obtained from 6-(3-nitrobenzoylamino)-2-benzothiazolinethione were found to exhibit a less pronounced antimycobacterial activity against *Mycobacterium tuberculosis* $H_{37}R_{\nu}$ and *M. kansasii* than 2-alkylthio-6-benzoylaminobenzothiazoles.
- 2-Алкилтио-6-(3-нитробензоиламино)бензотиазолы, полученные из 6-(3-нитробензоиламино)-2-бензотиазолинтиона, обладают менее выраженной антимикобактериальной активностью по отношению к $Mycobacterium\ tuberculosis\ H_{37}R_n$ и $M.\ kansasii$, чем 2-алкилтио-6-бензоиламинобензотиазолы.

Some 2-alkylthio-6-benzoylaminobenzothiazoles reveal antimycobacterial activity against typical and atypical tubercular mycobacteria [1] and therefore, the effect of nitro group in position 3 at the benzoyl substituent on the antimycobacterial activity was investigated.

Starting material for the synthesis of this series of compounds was 6-amino-2-benzothiazolinethione [2]. Acylation of the latter with 3-nitrobenzoyl chloride in pyridine afforded 6-(3-nitrobenzoylamino)-2-benzothiazolinethione (I) similarly as with acylation of the not nitrated analogue [1]. Dissolution of I in potassium hydroxide furnished the potassium salt of 6-(3-nitrobenzoylamino)-2-mercaptobenzothiazole analogously as reported with 6-benzoylamino-2-benzothiazolinethione and 6-(bicyclo[2.2.1]hept-5-ene-2,3-dicarboximido)-2-benzothiazolinethione [3]. The potassium salt was alkylated with alkyl halogenides to give 2-alkylthio-6-(3-nitrobenzoylamino)benzothiazoles II—XVII (Scheme 1, Table 1). The structure of 2-methylthio-6-(3-nitrobenzoylamino)benzothiazole was verified by preparation of this compound by an independent procedure from 6-amino-2-methylthiobenzothiazole [4] and 3-nitrobenzoyl chloride.

2-Alkylthio-6-(3-nitrobenzoylamino)benzothiazoles were tested for antimycobacterial activity against Mycobacterium tuberculosis $H_{37}R_v$ and M. kansasii

Chem. Papers 40 (6) 801-806 (1986)

Table 1
2-Alkylthio-6-(3-nitrobenzoylamino)benzothiazoles

Compound	Alkyl	Formula	M,	w _i (calc.)/% w _i (found)/%				Yield/%	M.p./°C
				С	Н	N	S		
···							•		
II	CH ₃	$C_{15}H_{11}N_3O_3S_2$	345.4	52.16	3.21	12.17	18.57	53.6	179—180
				51.99	2.95	12.24	18.47		
III	C ₂ H ₅	$C_{16}H_{13}N_3O_3S_2$	359.4	53.47	3.65	11.69	17.84	56.9	155—157
				53.17	3.37	11.68	17.69		N.
IV	(CH2)2CH3	$C_{17}H_{15}N_3O_3S_2$	373.5	54.67	4.05	11.25	17.17	59.0	142—144
				54.44	3.78	11.14	16.90		
$oldsymbol{V}$	$CH_2(CH_3)_2$	$C_{17}H_{15}N_3O_3S_2$	373.5	54.67	4.05	11.25	17.17	63.0	154—156
				54.65	4.01	11.39	17.22		
VI	(CH ₂) ₃ CH ₃	$C_{18}H_{17}N_3O_3S_2$	387.5	55.80	4.42	10.84	16.55	69.7	138-140
				55.68	4.34	10.94	16.66		
VII	CH ₂ CH(CH ₃) ₂	$C_{18}H_{17}N_3O_3S_2$	387.5	55.80	4.42	10.84	16.55	72.3	131—133
	- 1			55.53	4.32	10.88	16.61		
VIII	CH(CH ₃)C ₂ H ₅	$C_{18}H_{17}N_3O_3S_2$	387.5	55.80	4.42	10.84	16.55	64.5	151—153
	,			55.84	4.31	10.75	16.44		U
IX	(CH2)4CH3	$C_{19}H_{19}N_3O_3S_2$	401.5	56.84	4.77	10.47	15.97	67.1	125-126
	10. S18-00.05 E			56.55	4.74	10.44	15.96		

E. SIDÓOVÁ, Z. ODLEROVÁ

Table 1 (Continued)

Compound	Alkyl	Formula	M _r	w _i (calc.)/% w _i (found)/%				Yield/%	M.p./℃
				· C	Н	N	S		
X	(CH ₂) ₂ CH(CH ₃) ₂ CH ₂ —CH ₂	$C_{19}H_{19}N_3O_3S_2$	401.5	56.84 56.58	4.77 4.73	10.47 10.54	15.97 15.80	72.5	149—151
XI	CH2-CH2	$C_{19}H_{17}N_3O_3S_2$	399.5	57.12 56.83	4.29 4.15	10.52 10.50	16.05 15.89	77.5	149—151
XII	(CH ₂) ₅ CH ₃	$C_{20}H_{21}N_3O_3S_2\\$	415.5	57.81 57.56	5.09 5.10	10.11 10.11	15.43 15.59	60.2	118—121
XIII	(CH ₂) ₆ CH ₃	$C_{21}H_{23}N_3O_3S_2$	429.6	58.72 58.64	5.40 5.39	9.78 9.97	14.93 14.99	73.3	126—127
XIV	$(CH_2)_7CH_3$	$C_{22}H_{25}N_3O_3S_2$	443.6	59.57 59.47	5.68 5.74	9.47 9.52	14.46 14.49	83.3	107—109
XV	(CH2)8CH3	$C_{23}H_{27}N_3O_3S_2$	457.6	60.37 60.10	5.95 5.95	9.18 9.16	14.01 13.71	87.4	108—110
XVI	CH ₂ C ₆ H ₅	$C_{21}H_{15}N_3O_3S_2$	421.5	59.84 59.79	3.59 3.60	9.97 10.05	15.21 15.22	94.9	200—201
XVII	CH₂CH₂OH	$C_{16}H_{13}N_3O_4S_2$	375.4	51.19 51.27	3.49 3.44	11.19 11.24	17.08 17.06	50.6	182—183

$$H_{2}N \longrightarrow S C = S \xrightarrow{3-NO_{2}-C_{6}H_{4}-COCl} C_{5}H_{5}N \longrightarrow CO-NH \longrightarrow S C = S$$

$$II-XVII$$

Scheme 1

PKG 8 and their effect was contrasted with those of isonicotinoyl hydrazide (INH) and analogous 2-alkylthio-6-benzoylaminobenzothiazoles [1]. A more significant effect against the above-mentioned strains of mycobacteria was shown by derivatives of 2-alkylthio-6-benzoylaminobenzothiazoles with alkyls possessing 2 to 5 carbons, whilst in the synthesized series a higher effect was observed with sec-butyl, n-pentyl, cyclopentyl, 2-hydroxyethyl, and n-hexyl derivatives (Table 2). The total effect of the latter derivatives is weaker, in other words substitution of the benzoyl group of 2-alkylthio-6-benzoylaminobenzothiazoles by a nitro group in position 3 was without positive effect on the antimycobacterial activity.

Experimental

The antimycobacterial activity was determined on a liquid semisynthetic Sula substrate by a dilution test [5]. The solvent used was dimethyl sulfoxide. The final concentration of compounds was 5 μ g cm⁻³, 10 μ g cm⁻³, 25 μ g cm⁻³, 50 μ g cm⁻³, and 100 μ g cm⁻³. Mycobacterium tuberculosis $H_{37}R_{\nu}$ and M. kansasii PKG 8 were microorganisms from the collection of the Research Institute of Preventive Medicine. The results were evaluated after a 14-day incubation at 37 °C and contrasted with isonicotinoyl hydrazide (INH, Isoniazid, Jenapharm, GDR) (Table 2).

6-(3-Nitrobenzoylamino)-2-benzothiazolinethione (I)

Pyridine (50 cm³) was added to 6-amino-2-benzothiazolinethione (18.2 g; 0.1 mol) and 3-nitrobenzoyl chloride (18.6 g; 0.1 mol) at room temperature. The exothermal reaction was completed by a 3 h reflux, the mixture was moderately cooled and filled with cold water up to 800 cm³. The title product separated from the stirred solution in form of fine yellowish

Table 2

Antimycobacterial activity (MIC/(μg cm⁻³)) of 2-alkylthio-6-(3-nitrobenzoylamino)benzothiazoles (3-NO₂), analogous 2-alkylthio-6-benzoylaminobenzothiazoles (3-H), and isonicotinoyl hydrazide (INH)

Compound	M. tuberculo	sis H ₁₇ R,	M. kansasii PKG 8		
Compound	3-NO ₂	3-Н	3-NO ₂	3-Н	
II	>100	>200	>100	>200	
III	>100	103.6	>100	>103.6	
IV	>100	108.2	>100	108.2	
V	>100	12.1	>100	12.1	
VI	>100	>112.9	>100	>112.9	
VII	>100	12.6	>100	12.6	
VIII	25 (10)	1.3	10	4.1	
IX	10	117.8	25	>117.8	
\boldsymbol{X}	>100	>117.8	>100	>117.8	
XI	10	>116.8	25	13.0	
XII	50	>122.1	100	>122.1	
XIII	100	>127.1	100	>127.1	
XIV	100	>131.6	>100	>131.6	
XV	>100	>136.2	>100	>136.2	
XVI	>100	>124.0	>100	>124.0	
XVII	50	3.9	>100	3.9	
INH	1	0.5	25	1.6	

MIC — minimum inhibitory concentration; the partial inhibitory concentration is given in parentheses.

granules, which were first washed with hot water, then with dilute hydrochloric acid, and finally with hot water. Yield = 32.3 g (97.4 %), m.p. = 275— $277 ^{\circ}$ C.

For $C_{14}H_9N_3O_3S_2$ ($M_r = 331.4$) $w_i(calc.)$: 50.74 % C, 2.74 % H, 12.68 % N, 19.35 % S; $w_i(found)$: 50.82 % C, 2.79 % H, 12.56 % N, 19.14 % S.

2-Alkylthio-6-(3-nitrobenzoylamino)benzothiazoles (II—XVII)

Potassium hydroxide (0.7 g; 0.11 mol) dissolved in water (8 cm^3) and the respective alkyl halogenide (11 mmol) were added to a solution of I (3.3 g; 10 mmol) in ethanol (50 cm^3) . The mixture was refluxed for 10 min, decoloured with charcoal and cooled. The separated crystalline product was washed with 50 % ethanol and crystallized from acetone to which charcoal was added. (Derivatives with higher alkyls were dissolved by addition of ethanol to acetone.)

2-Methylthio-6-(3-nitrobenzoylamino)benzothiazole (II)

Pyridine (15 cm³) was added to a mixture consisting of 6-amino-2-methylthiobenzo-thiazole [4] (5.9 g; 30 mmol) and 3-nitrobenzoyl chloride (5.6 g; 30 mmol) at an ambient

temperature. The mixture was then refluxed for 3 min, moderately cooled, poured on crushed ice and filled with cold water up to 600 cm^3 . The separated crystals were washed with dilute hydrochloric acid, warm water and crystallized from acetone using charcoal. Yield = 5.8 g (56 %), m.p. = 179 - 180 °C. The mixed melting point with 2-methylthio-6-(3-nitrobenzoylamino)benzothiazole prepared from 6-(3-nitrobenzoylamino)-2-benzothiazolinethione did not show any depression.

Acknowledgements. Our thanks are due to colleagues of Analytical Department (Head Ing. E. Greiplová) for elemental analyses.

References

- 1. Sidóová, E., Odlerová, Ž., and Špaldonová, R., Chem. Papers 39, 543 (1985).
- 2. Blöckinger, G. and Sutoris, V., Czechoslov. 168746 (1975).
- 3. Sidóová, E., Odlerová, Ž., Perjéssy, A., and Blöckinger, G., Chem. Zvesti 34, 269 (1980).
- 4. Sidóová, E., Odlerová, Ž., Volná, F., and Blöckinger, G., Chem. Zvesti 33, 830 (1979).
- 5. Odlerová, Ž., Medvecký, R., and Hammelová, E., Stud. Pneumol. Phthiseol. Czechoslov. 36, 507 (1976).

Translated by Z. Votický