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7, — (@), + ¢,) vibronic coupling (i =1, 2) in octahedral systems is
analyzed. The necessary potential constants of analytic formula (including
both quadratic vibronic term and anharmonicity of normal vibrations) are
evaluated from the numerical maps of the adiabatic potential surfaces by
applying a linear regression analysis. Numerical values are obtained for 29
hexahalo complexes using the CNDO—UHF method. Some trends in
characteristics of these Jahn—Teller active systems are found.

Anamusupyercs 7, — (a,, + ¢,) B3auMopeicTBue konebanuii (i = 1, 2)
B OKTasapuyeckux cucreMax. Heobxomumsble KOHCTAHTHI MOTEHIHATIOB U3
aHaJIMTHYECKOH GOpMYJIHI (BKJIFOYaFOLIEeH Kak KBaApaTHYHBIN KojebaTeb-
HBIH TEpM, TaKk ¥ aHTAaPMOHHUYHOCTh HOPMAJIbHBIX KOJIeGaHMil) BLIYHCIIEHBI
HCXOMS 3 YMCIIOBBIX KapT aAuabaTHYeCKUX TOBEPXHOCTEH MOTEHIMAILHOM
3HEPrUM C IPUMEHEHHEM JIMHEHHOTO PErPeCCHOHHOTO aHaiu3a. YHcoBrle
3HaYEHUs MOJIyYeHb! I 29 rekcarajloKOMILUIEKCOB C IMOMOIUBIO MeTona
CNDO—UHF. O6HapyxeHbl HEKOTOpble 3aKOHOMEPHOCTH B XapaKkTepHC-
THKax 3TUX SIH—Te/IepOBCKMX aKTUBHBIX CHCTEM.

The Jahn—Teller effect plays an important role in various areas of physics
and chemistry. It is connected with the existence of electron degeneracy as a
consequence of the electron-vibration (vibronic) interactions. The generally
accepted formulation of the Jahn—Teller theorem [1] consists of the assertion
that a nonlinear nuclear configuration in the degenerate electron state is
energetically unstable. This theorem implies the existence of, at least, one stable
nuclear configuration in which the electron degeneracy is removed so that the
system relaxes to an energetically more advantageous nondegenerate state. The
stable configurations of nuclei correspond to the minima of the adiabatic
potential surface (APS).

The theory of vibronic coupling is able to predict an analytic form of the APS
in the presence of electron degeneracy. The usual procedure is to consider the
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APS in a parametric form where some constants, specifying its shape, occur.
They may be obtained from experimental data. Another approach lies in the
direct quantum-chemical calculations of the total molecular energy for fixed
positions of nuclei thus yielding a continuous parametric function of nuclear
configurations [2]. In our previous paper [3] the analytic form of the APS was
derived for a three-mode 7, — (@), + ¢, + ¢,,) coupling scheme (i =1, 2;
7 = «, g). The vibronic coupling constants as well as the quadratic and cubic
force constants have been calculated for some hexahalo complexes by a purely
theoretical and nonempirical way. They resulted from a nonlinear regression
analysis applied to a numerical map of the APS calculated by the CNDO—
UHF version of the MO—LCAO—SCF method. As the nonlinear regression is
very time-consuming method, some restrictions are needed. Moreover, the
obtained results may depend on starting parameters and we usually cannot be
sure about their correctness.

Method
The octahedral ML, system has 15 normal modes of vibration belonging to
the z,, (coordinate Q,), ¢, (@, and Q5), ¢,, (Qs, Os, O¢), ¢,,,, and two sets of ¢,
irreducible representations. For a symmetrized direct product of ¢-type irreduc-

ible representations of wave functions (¢ = 7,,, 9,,, 7,, or ,,) the following
relation holds

(- ll=ay,+e, + b (1)

Consequently, only the coordinates Q,—Q; are vibronically active in the linear
coupling. In our previous paper [3] the following analytic form of the APS was
derived

WO, O, O, Qs 05, Q0 = E° + K0, + %Km,Qf + %K,.‘(Q% + 0+
+ %K,,(Qi Q4O+ T, 0+ T, 000 + 0D+

+ TallQl(Q% + Qg + Qé) + ]:z¢'Q3(3Q% - g) + TtuQaQsQe +

+ T,,[0UQ; — V30 + QXQ; + /30, — 2020,] + ¢ @)
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where EP° is the total energy of system for reference nuclear configuration [Q°]
which corresponds to unperturbed octahedral geometry; K, is the linear force
constant vanishing for the optimal reference geometry; K, ,, K ,, and K, are the
harmonic force constants; 7,,,,, T..,T,,,, T.., T ,,, and T,,, are the anharmonicity

aaa’

constants; g is the vibronic correction term which may be obtained as the lowest
eigenvalue of the symmetric matrix V defined by the following elements

i =540 = V30 + %BH(Q% — 01 -230,0) +
+27.0(0,~30) + e Bil=201+ 03+ 0D
Vio = Var = 4,05 — Z.,0:06 + Z.,0,0¢ + B,10.05
Vi = Vo= 4,05 + 22,0405+ V30:) + Z.,0,0: + B0.0c
Voo = 2 A(Qs +30) + B0} — 01 +2130:0) +
+= Z,, 0i(Q; + /30, + \/-BH(Q“ 20% + 03)
Vs = Vo= Q0+ 37,040 =30 + 2000+ BLO:s

V33=_V11_V52 (3)

where A4, and 4, are the linear vibronic constants; B, , B,,, Z,,, Z,,, and Z,, are
the quadratlc vnbromc constants. For the sake of snmplxc1ty we may restrict to
the deformations of the D,, symmetry only. These ones are fully described by

Table 1

Some characteristics of the studied systems

System corllzfliegcl::::ilon Electron term
CrX¢~, MnX}- (.";, '(4:1,; +é,+7,,)
4 i
MnX:~, FeX} é Zz:
FeX{~, CoX}~ 4 ve; 7, .
CoX4™, NiX: 4 ‘7,
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Table 2

The calculated values of potential constants of the Ist row transition metal hexahalo complexes
with triple degenerate electron terms

A B Z K, K
System : = e
10°eV m™' 10°eV m™? 10°°eV m~? 10%eV m™! 10°eV m™2

'CrFi- —0.07233 —0.0556 —0.1540 0.001250 16.0363
'CrClg™ —0.07176 —0.1033 —0.1497 —0.00313 14.9068
'CrBrg' —0.10598 —0.0567 —0.1571 —0.000675 18.8566
'MnFé_ —0.40515 —0.2690 —0.893 0.0113 29.115
IMnClg~ —0.26454 —0.033 —0.102 0.01188 26.110
'MnBr}- —0.27908 —0.2539 —0.2513 0.0170 30.3507
"Cng_ —0.03211 —1.997 —0.003 0.00013 15.885
3CrCli- —0.02936 —1.965 —0.010 0.00165 14.881
3CrBr6_ —0.04941 —3.120 0.216 0.001582 18.707
MnF3- —-0.1914 —8.81 0.67 0.0230 29.00
3MnCL}- —0.1203 —7.52 0.24 0.0879 25.570
3MnBr6’ —0.1238 —8.18 —-0.76 0.0128 30.255
*MnF}- —0.0350 —2.33 3.02 —0.0222 17.95
MnCl$- —0.04768 —1.132 0.611 0.01693 20.813
ZMnBré' —0.07358 —1.199 0.249 0.00320 25.040
ZFng' —0.21168 —0.4467 —0.5663 0.00923 329818
FeCl3- —0.14987 —0.374 —0.295 0.10352 30.0153
’FeBr;~ —0.13509 —0.1320 —0.110 0.00250 34.7628
SFCFZ‘ —0.04412 —3.040 —0.26 0.00574 26.627
SFCCIZ' —0.04532 —2.539 —0.309 —0.01643 24453
SFCBrs— —0.05675 —4.010 —-0.213 —0.00164 28.644
’CoF3- —0.3479 —14.82 0.66 0.0284 43.40
’CoCl3™ —0.2633 —14.86 —4.55 —-0.0117 34.489
SCoBré' —0.1302 —-9.90 —2.56 —0.0086 40.33
‘CoFg¢~ —0.0929 1.62 —4.35 —0.0203 33.666
‘CoCl¢~ —0.06501 —0.078 —0.024 —0.01177 30.047
‘CoBri~ —0,0792 0.77 2.0 0.0154 33.92
NiF:~ —0.30749 —0.334 —0.565 0.01562 49.4560
4NiClé_ —0.15720 —0.432 0.295 0.01266 41.551

12
The R-factor is defined as R = [Z(W;" — W,-‘)Z/Z(W,-‘)Z]

axial (r,) and equatorial (r,) metal—ligand distances. So we have

Ql =\/§(ra+2re_3r°)
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Table 2 (Continued)

K, T, T, T, Correlation P
10®eV m™? 10°eVm-* 10%eV m~? 10°eV m~3 coefficient

10.5245 —3.585 —9.517 —2.147 1.000000 0.00049

9.0491 —3.2892 —8.747 —2.469 1.000000 0.00066
10.9532 —4.011 —9.679 —1.722 1.000000 0.00041
20.232 —6.547 —18.20 —3.41 0.999999 0.00097
17.729 —6.241 —14.85 —2.00 1.000000 0.00044
19.4792 —7.265 —15.78 —4.41 1.000000 0.00047

9.353 —1.48 ~-74 —28.02 0.999926 0.00883

7.742 —2.04 -10.9 —28.28 0.999884 0.01066

9.280 —1.94 —20 —44.3 0.999882 0.01152
15.26 —6.3 0.4 —79.0 0.999695 0.01983
13.528 —0.3 -179 —100.9 0.999427 0.02357
14.637 —7.34 —39.3 —115.6 0.999944 0.00973
14.07 46.6 27 —36.3 0.997517 0.10009
14.174 —5.119 —14.7 —16.4 0.999981 0.00564
16.645 —6.93 2.05 —16.96 0.999994 0.00271
24.0392 —7.422 —23.44 —10.42 0.999998 0.00160
21.069 —6.891 —20.01 —5.29 0.999999 0.00123
22.4145 —17.641 —18.77 —4.291 1.000000 0.00045
15.437 —6.88 —225 —34.06 0.999973 0.00660
13.774 —5.453 —19.3 —32.40 0.999994 0.00343
14.492 —2.34 —19.5 —59.6 0.999799 0.01547
27.66 6.7 102.1 135.8 0.999897 0.12349
21.050 4.35 —-22.6 —195.8 0.999959 0.00806
17.58 6.5 —48.0 —124.5 0.999929 0.01103
25.70 —1.56 —126.8 422 0.999801 0.01797
20.567 —6.80 —17.1 8.9 0.999992 0.00349
23.05 —8.7 14.1 32.7 0.999954 0.00852
37.1262 —12.744 —31.89 —8.07 1.000000 0.00049
28.018 —9.872 —12.6 —12.42 0.999993 0.00321

Q4=Q5=Q6=O 4)

and the APS becomes
1 1
W(QI’ QJ) = Eo + Kan + EKaaQiz + EKHQ% + ]:laan3 + ]:uteQg -
~T.05+s(4, +Z,0)0; + sB,03 )

where we may assign s = 1 for the elongated octahedron and s = —1/2 for the
compressed one.
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Table 3

The calculated characteristics of APS extreme points for hexahalo complexes of the lst row
transition metals with triple degenerate electron terms

8 Minimum
System 10-m (o4 5 r s Eyr
107" m 1072 m 1072 m 1072 m 10~%eV
'CrFi- 234.60 —0.0116 —0.6829 235.384 234.201 0.25
'CrCl- 262.320 0.0167 —0.7801 263.228 261.876 0.28
'CrBr}- 272.590 0.0003 —0.9620 273.701 272.035 0.51
anFg,_ 207.949 —0.075 —1.961 210.183 206.786 3.97
'MnCl3- 239.542 —0.039 —1.493 241.251 238.664 1.97
'MnBrﬁ" 254.308 —0.0573 —1.409 255.911 253.471 1.96
3CrFi- 234.60 —0.0006 —0.244 234.882 234.459 0.04
3CrCly- 262.335 —0.0108 —0.2563 262.627 262.183 0.04
*CrBri- 272.590 0.0123 —0.3278 272.974 272.406 0.08
3MnF6' 207.955 —0.058 —0.065 208.630 207.578 0.58
*MnCL}- 239.668 -0.339 —0.438 240.035 239.277 0.41
3MnBr:- 254.306 —0.026 —0.051 254.77 254.04 0.26
*MnF}- 219.643 0.157 —0.214 219.954 219.583 0.05
*MnCl¢- 249.397 —0.0722 —0.2895 249.702 249.200 0.07
*MnBr}- 262.472 —0.0090 —0.390 262.919 262.243 0.14
*FeF3 204.355 —0.0375 —0.8585 205.331 203.844 0.91
*FeCl3- 235.702 —0.348 —0.691 236.358 235.161 0.52
FeBr;" 251.035 —0.00716 —0.5977 251.722 250.687 0.40
SFeFi~ 217.635 —0.0232 —0.207 217.865 217.506 0.05
SFeCli- 245.821 0.0646 —0.243 246.127 245.707 0.06
SFeBré' 259.742 0.0043 —0.257 260.041 259.595 0.07
5CoF3~ 199.352 —0.0463 —0.634 200.065 198.967 1.09
’CoCl3- 230.798 —0.0290 1.063 229.559 231.400 0.82
5CoBri~ 247.505 —0.001 —0.361 247.922 247.296 0.23
‘CoF¢~ 207.3676 0.0143 —0.402 207.838 207.141 0.19
4CoCl¢- 237.759 0.0392 —0.312 238.136 237.595 0.10
4CoBr¢~ 253.4837 —0.0244 —0.360 253.889 253.266 0.14
‘NiF3~ 191.882 0.0266 —0.8178 192.777 191.361 1.26
NiCL3- 224,901 —0.0257 —0.5478 225.523 224.574 0.43

r; — extreme axial metal—ligand distance, r; — extreme equatorial metal—ligand distance,
r°® — optimum metal—ligand distance for ideal octahedron.

Having derived this analytic form of APS the values of potential constants
may be evaluated from the points of numerical map W7 (Q,, Q,), obtained by a
quantum-chemical calculation of the total molecular energy for fixed nuclear
coordinates. For this purpose the simple linear regression method may be used.
The fitting is realized by the weighted least-squares method

F=Y[WHQ, Q) — W@, @)F w? = min ©)
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Table 3 (Continued)

Saddle point

i 5 r re Eyr
107" m 107" m 10°"%m 10" m 10" eV

—0.0087 0.3447 234.198 234.795 0.06
—0.0072 0.0200 261.867 262.559 0.07
0.0028 0.4852 272.031 272.872 0.13
—0.0478 1.005 206.769 208.510 1.02
—0.0438 0.745 238.664 239954 0.50
—0.0563 0.7219 253.451 254.702 0.51
—0.0006 0.213 234.354 234.723 0.02
—0.0107 0.245 262.047 262.472 0.02
0.0107 0.3715 272.165 272.809 0.05
—0.067 1.065 206.698 208.542 0.56
—-0.339 0.724 238.694 239.948 0.39
—0.045 0.697 253.483 254.690 0.24
0.135 0.163 219.510 219.792 0.02
—0.078 0.179 249.158 249.469 0.03
—0.0117 0.236 262.194 262.604 0.04
—0.0238 0.4461 203.828 204.600 0.24
—0.3146 0.361 235.144 235.770 0.13
—0.00717 0.3026 250.683 251.207 0.10
—0.0222 0.175 217.423 217.727 0.02
0.0663 0.198 245.620 245.962 0.03
0.0052 0.259 259.445 259.894 0.04
—0.0333 1.019 198.162 199.927 0.96
—0.0715 —0.5577 231.427 230.460 0.72
0.0057 0.645 246.762 247.880 0.23
0.0504 0.168 207.194 207.485 0.04
0.0392 0.1590 237.591 237.867 0.03
—0.0405 0.1657 253.267 253.563 0.04
0.0303 0.4167 191.353 192.075 0.32
—0.0292 0.2836 224.562 225.053 0.11

where W?(Q,, Q,) are the approximate energies calculated for a trial set of
potential constants from the analytic form of APS. The statistical weights w;

were chosen in accordance with the metric weighting concept

W= (@} + 0"

)

where @, and Q, are displacement coordinates for a given point of the APS.
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Results and discussion

The values of vibronic and force constants have been calculated for 29
complexes of ML type (L = F~, Cl~, Br™). These systems are characterized in
Table 1. Two-dimensional numerical maps W;(Q,, Q) (33—42 points for each
system) were obtained by the semiempirical CNDO—UHF version [4—6] of the
MO—LCAO—SCF method. The energy cut-off was 10~°eV. From the ob-
tained values of potential constants (K, X,,, X, . T,,,,T..,T.,A,B,,Z,)the
extreme points of the APS (Q} and Q3) were determined. Consequently, the Jahn
—Teller stabilization energies were obtained as follows

Eqx=W(-K,/K,. 0)— Wi 09 ©))

The quality of the regression was measured by statistical characteristics. The
standard deviations of individual potential constants, the correlation coefficient,
and the discrepancy R-factor belong to them. Table 2 shows the values of
calculated potential constants which are presented in significant number of
digits (the order of the last digit being higher than the standard deviation). They
will be discussed together with calculated characteristics of the APS extreme
points as they appear in Table 3.

i) The harmonic force constants fulfil the relation K, > K,, so the ¢, mode
may be considered as a “soft” mode. In other words, the tetragonal or ortho-
rhombic distortions are more “profitable”” than the symmetric stretching. The
same holds for systems with &, electron terms [2].

il) The two-mode quadratic vibronic constant Z, adopts significant values.
It may be of the same order as the quadratic vibronic constant B,,. Thus the
importance of this term is clearly demonstrated. Also the cubic force constants
(T,,..T, ,and T ) adopt significant values so that the anharmonicity effects are
not negligible. The same conclusion was pointed out for octahedral complexes
with &, electron term [2].

iii) Higher values of harmonic force constants (K,,, K ) occur in M(III)
complexes compared to M(I1) systems. The same holds for the vibronic constant
A_; its value is more negative in higher oxidation state also when comparing
various central atoms. Consequently, the Jahn—Teller stabilization energies of
M(III) complexes are higher than those of the M(II) ones.

iv) The value of harmonic force constant K, increases with the proton

aa

number of central atom (similarly as in the case of double electron degeneracy
[2D).

v) The effect of spin multiplicity is demonstrated on Cr(Il) and Mn(III)
complexes: Increasing number of unpaired electrons implies decreasing values
of K, A, and Z, constants. On the other hand, in systems with higher
multiplicities the values of B, vibronic constants are much more negative (this
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holds also for various central atoms). As a consequence, increasing number of
unpaired electrons is connected with decreasing Jahn—Teller stabilization ener-
gies. Similar effect in octahedral complexes with double degenerate electron
terms is interpreted [2] as a consequence of the asymmetry of the corresponding
electron configuration. )

vi) The calculated degree of tetragonal distortion Q; (10~"*—10""m) is
lower in comparison with analogous complexes having double degenerate elec-
tron state [2]. Since Q5 is negative for the energy minimum (except *CoCl;~), the
elongated form of the tetragonal bipyramid represents the equilibrium geometry
of the complexes under study.

vii) The values of Jahn—Teller stabilization energies E,; span the range of
107° — 10~ *eV and are lower than in the case of analogous complexes with
double degenerate electron terms (107*—10""eV) [2].

viil) The values of E;; are also functions of the polarity of the metal—ligand
bonds: they increase in the ligand series F, Cl, Br for M(II) complexes (except
“CoF¢™) but decrease for the M(III) ones.

Finally, it must be mentioned that the CNDQ)/2 version of the MO—LCAO
—SCF method used has its quantitative limitations. For example, the stretching
force constants are overestimated by a factor of two and the vibronic constants
are probably underestimated. Consequently, the Jahn—Teller distortions and
stabilization energies may be underestimated. Nevertheless, the trends in the
calculated force constants, vibronic constants, coordinates of stationary points,
and stabilization energies seem to be correct. On the other hand, the solid state
influences are responsible for amplification of these quantities in real systems.
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