Properties of Iron(II) and Iron(III) Perchlorate Complexes with Triphenylphosphine Oxide

V. VANČOVÁ, I. ONDREJKOVIČOVÁ, and M. MELNÍK
Department of Inorganic Chemistry, Faculty of Chemical Technology, Slovak Technical University, CS-812 37 Bratislava

Received 2 July 1990

Abstract

$\alpha-\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ was prepared by the reaction of solution of iron(II) perchlorate hydrate and triphenylphosphine oxide in ethyl alcohol. β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ was prepared by the reaction of iron(III) perchlorate hydrate in acetonitrile solution with triphenylphosphine (PPh_{3}) and dioxygen. $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ was prepared by the reaction of ethanolic solution of iron(III) perchlorate hydrate with triphenylphosphine oxide. On the basis of spectral and magnetic properties of α - and β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ tetrahedral arrangement of ligands OPPh_{3} around $\mathrm{Fe}(\mathrm{II})$ atom is suggested. The degree of distortion is different for the α and β forms and this allows to characterize these complexes as distortion isomers. For $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ we propose a square-planar arrangement of ligands around the Fe (III) atom. In all studied complexes the ClO_{4} groups are attached by ionic bonding.

Fe(II) perchlorate complexes with triphenylphosphine oxide (OPPh_{3}) can be prepared either by a direct synthesis of the starting compounds in ethanol [1] or by an indirect reaction of triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ with oxygen and $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ at about $50^{\circ} \mathrm{C}$ in acetonitrile. The amount of substance ratio of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$ and PPh_{3} equals 1:4 [2]. In both cases a purple coloured complex of stoichiometric composition $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ was obtained.

On the other hand, the Fe (III) perchlorate complex with OPPh_{3} can be prepared only by the direct reaction of starting compounds [3] and it is a yellow powder of the composition $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$.

Despite of the fact that these complexes have been studied rather extensively their stereochemical arrangement is not quite clear. Yellow Fe (III) perchlorate complex with OPPh_{3} of the composition $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ was prepared for the first time in 1959 by Cotton et al. [4] by the reaction of iron(III) perchlorate hydrate and OPPh_{3} (the mole ratio of substances was 1:4). On the basis of indirect methods the cited authors came to the conclusion that the complex cation $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{3+}$ had a shape of a regular tetrahedron. One year later Bannister [5] expressed the opinion that the space configuration around $\mathrm{Fe}(\mathrm{III})$ in $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{3+}$ had not to be necessarily a tetrahedral one. Karayannis et al. [6, 7] studied $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ by infrared spectroscopy. They considered that the two bands at $\tilde{v}=429 \mathrm{~cm}^{-1}$ and $344 \mathrm{~cm}^{-1}$ belonging to the vibration $v((\mathrm{Fe}-$ O) (ligand)) were especially important. They assumed that this can be explained by the existence ${ }^{-}$
of pentacoordinated binuclear cation. The OPPh_{3} groups play the role both as bridging and terminal ligands. Absorption bands at $\tilde{v}=1080 \mathrm{~cm}^{-1}$ and $620 \mathrm{~cm}^{-1}$ corresponding to the $v_{3}\left(\mathrm{ClO}_{4}\right)$ and $v_{4}\left(\mathrm{ClO}_{4}\right)$ vibrations characterize the existence of ion-bonded perchlorate group with the symmetry T_{d}. In contradiction to the above mentioned, Cotton [3] came on the basis of IR, Raman, and EPR spectroscopy to the conclusion that the complex compound $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ contains a square-planar cation $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{3+}$
Similarly, the structure of the complex $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ is not clear as well. Karayannis et al. [6, 7] claim that this violet complex (which has been probably contaminated with a small amount of Fe (III)) contains tetracoordinated cation $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{2+}$. IR spectrum of the complex showed one band at $\tilde{v}=426 \mathrm{~cm}^{-1} v((\mathrm{Fe}-\mathrm{O})($ ligand $))$ and two bands at $\tilde{v}=1080 \mathrm{~cm}^{-1} v_{3}\left(\mathrm{ClO}_{4}\right)$ and 620 $\mathrm{cm}^{-1} v_{4}\left(\mathrm{ClO}_{4}\right)$ characterizing ion-bonded ClO_{4} group. The electronic spectrum of solid Fe (II) complex showed a simple broad band with the maximum at $\lambda=950 \mathrm{~nm}$. The cited authors judge that the symmetry of $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{2+}$ lies between \mathbf{T}_{d} and $\mathbf{D}_{4 h}$. However, in the case of white $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}[6,7]$ (probably pure, noncontaminated with Fe (III)) it follows from the values of $\tilde{v}(v((\mathrm{Fe}-\mathrm{O})($ ligand $)))=414 \mathrm{~cm}^{-1}$ and $336 \mathrm{~cm}^{-1}$ that this is a binuclear pentacoordinated $\mathrm{Fe}(\mathrm{II})$ complex with terminal as well as bridging OPPh_{3} molecules and noncoordinated ClO_{4} groups.
Hunter et al. [1] are of another opinion. They assumed that only one ClO_{4} group is coordinated on Fe (II) (this follows from the existence of two
bands at $\tilde{v}(v(\mathrm{Fe}-\mathrm{O}))=414 \mathrm{~cm}^{-1}$ and $\left.336 \mathrm{~cm}^{-1}\right)$. They assumed that in the complex compound [$\left.\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4} \mathrm{OClO}_{3}\right] \mathrm{ClO}_{4}$ the cation has a squarepyramidal structure.
These contradictions regarding the structure of the Fe (II) and Fe (III) perchlorate complexes with OPPh_{3} ligands, as well as the fact that we prepared a new β form of $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ stimulated our interest in a more detailed investigation of these complexes.

EXPERIMENTAL

$\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was prepared by dissolution of powder iron in perchloric acid [8]; it crystallized in the form of green needles. Elemental analysis: w_{Fe} (calc.) $=15.39 \%, w_{\mathrm{Fe}}$ (found) $=15.13 \%$. $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3} 12 \mathrm{H}_{2} \mathrm{O}$ was prepared by the reaction of $\mathrm{Fe}_{2} \mathrm{O}_{3} \quad x \mathrm{H}_{2} \mathrm{O}$ with perchloric acid. The substance crystallized as yellowish crystals. Elemental analysis: w_{Fe} (calc.) $=9.79 \%, w_{\mathrm{Fe}}$ (found) $=9.81$ $\% . \mathrm{OPPh}_{3}$ was prepared by catalytic oxidation of PPh_{3} with O_{2} in the presence of $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]\left(\mathrm{I}_{3}\right)_{2}$ [9]. Acetonitrile, anal. grade (Apolda, Germany) was used without any further treatment.

Content of $\mathrm{Fe}(\mathrm{II})$ in the prepared samples was determined spectrophotometrically using 2,2'-bipyridine. The content of $\mathrm{Fe}(\mathrm{III})$ was determined after dissolution of the sample in ethanol complexometrically with chelatone 3 and salicylic acid. Content of carbon and hydrogen was determined by elemental analysis.
The complex compound α - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ (violet) was prepared by a direct reaction of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2} \quad 6 \mathrm{H}_{2} \mathrm{O}$ with OPPh_{3} in ethanol [1]. The ratio of $n\left(\mathrm{OPPh}_{3}\right): n(\mathrm{Fe})$ was $4: 1$.
β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ (violet) was prepared indirectly from $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3} \quad 12 \mathrm{H}_{2} \mathrm{O}, \mathrm{PPh}_{3}$, and O_{2} at about $50^{\circ} \mathrm{C}$ in acetonitrile [2]. Analytical composition of α and β forms is identical and it corresponds to the calculated formula composition [1].
The complex compound $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ (yellow) was prepared by the reaction of $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{3}$. $\cdot 12 \mathrm{H}_{2} \mathrm{O}$ with $\mathrm{OPPh}_{3}\left(n\left(\mathrm{OPPh}_{3}\right): n(\mathrm{Fe})=4: 1\right)$ in ethanol. The results of analysis correspond to the calculated values [3, 10].

Apparatuses Used for the Study of Properties

Infrared spectra of the complex compounds were measured in the region of $\tilde{v}=200-4000$ cm^{-1} in nujol suspension by a Specord $\mathrm{M}-80$ apparatus. Also electronic spectra were measured in nujol suspension in the region of $\lambda=300$ 800 nm by apparatus Beckman 12. Magnetic susceptibility of investigated polycrystallic com-
plexes was measured by Gouy method using electronic balances of the type Cahn RM-2 in the temperature range from 77 to 293 K . Intensity of magnetic field was $787.8 \mathrm{kA} \mathrm{m}^{-1} . \mathrm{HgCo}(\mathrm{SCN})_{4}$ was used as a standard [11]. Correction on diamagnetism of studied complexes was calculated by using Pascal constants [12]. The values of magnetic moments were calculated according to the equation

$$
\mu_{\text {eff }}=2.83\left(\chi_{\mathrm{m}}^{\text {corr }} T\right)^{1 / 2}
$$

RESULTS AND DISCUSSION

Complexes $\alpha-, \quad \beta$ - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2} \quad$ and $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ were investigated by IR and electronic spectroscopy. Temperature dependence of their magnetic susceptibility was measured as well. IR spectra of α - and β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ showed bands corresponding to an ion-bonded ClO_{4} group, viz. asymmetric stretching vibration at $\tilde{v}\left(v_{3}\right)=1080 \mathrm{~cm}^{-1}$ and symmetric bending vibration at $\tilde{v}\left(v_{4}\right)=618 \mathrm{~cm}^{-1}$ Also in the IR spectrum of $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ are the bands at $\tilde{v}\left(v_{3}\right)=1088 \mathrm{~cm}^{-1}$ and $\tilde{v}\left(v_{4}\right)=620 \mathrm{~cm}^{-1}$, which points to ionic bond of perchlorate group. Vibrations v_{3} and v_{4} for the free ClO_{4} anion have the values of wavenumbers $1120 \mathrm{~cm}^{-1}$ and 625 cm^{-1}, respectively [13]. Vibration $v(\dot{\mathrm{P}}-\mathrm{O})$ is shifted towards lower energies, as a result of OPPh_{3} coordination with respect to the central atom $\mathrm{Fe}(\mathrm{II})$ or Fe (III) (through oxygen atom), about 34 and $36 \mathrm{~cm}^{-1}$, respectively, i.e. to the value of $\tilde{v}(v(\mathrm{P}-$ O)) $=1148 \mathrm{~cm}^{-1}$ for iron(II) complexes and to $\tilde{v}(v(\mathrm{P}-\mathrm{O}))=1146 \mathrm{~cm}^{-1}$ for iron(III) complexes.
The bands lying in the region of $\tilde{v} / \mathrm{cm}^{-1}: 1436$, 1120, 996-993, and 722-720, correspond to the vibrations of triphenylphosphine as well and they are not influenced by coordination on Fe (II) or Fe (III). Their attachment is in good agreement with the literature [14]. Stretching vibrations v (Fe(II)-O) and $v(\mathrm{Fe}(\mathrm{III})-\mathrm{O})$ are in the region of wavenumbers 433 and $340 \mathrm{~cm}^{-1}$ and 426 and $350 \mathrm{~cm}^{-1}$, respectively.
Magnetic susceptibility of investigated complexes was measured in the temperature range $77-293 \mathrm{~K}$. Dependences of molar magnetic susceptibility χ_{m} and its reciprocal value on temperature for all studied complexes are shown in Figs. $1 a, b$, and c. It follows that in all three cases the temperature dependence behaves according to the Curie-Weiss law

$$
\chi_{\mathrm{m}}^{\text {corr }}=\frac{C}{T-\Theta}
$$

Fig. 1. Dependence of molar magnetic susceptibility χ_{m} and of its reciprocal value on temperature. a) $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3} ; C=4.52 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}, \Theta=0.1$ K. b) $\alpha-\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2} ; C=3.64 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}, \Theta=$ -13.4 K . c) $\beta-\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2} ; C=3.66 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$, $\Theta=-8.1 \mathrm{~K}$.
where C and Θ are the Curie and Weiss constant, respectively. The values of magnetic moments at ambient temperature (Table 1) show that the investigated complexes belong to the class of the high-spin substances. The values $5.92 \mu_{8}$ for five and $4.90 \mu_{\mathrm{B}}$ for four uncoupled electrons point at spin-orbital contributions. While the value of magnetic moment $6.02 \mu_{\mathrm{B}}$ at 291 K observed for $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ practically does not change with temperature ($6.00 \mu_{\mathrm{B}}$ at 77 K), in the case of iron(II) complexes α - and β-Fe $\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$, it slowly decreases (Table 1). Of course the behaviour is reflected also in the numerical values of the Weiss constants. It can be seen that the value of Weiss constant for the α complex is slightly higher than for the β one, which suggests a somewhat greater antiferromagnetic interaction in the case of α form in comparison with β form. Comparison of the values of magnetic moment of these two isomeric iron(II) complexes (Table 1) shows that in the whole investigated temperature range this value is lower for α form, which can be explained by a greater distortion around the $\mathrm{Fe}(\mathrm{II})$ atom in α - than in β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$. At higher degree of distortion the energy difference between two cooperating forms increases and this results in decreasing of the value of magnetic moment.

Electronic spectrum of $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ in UV region shows one remarkable maximum at $\lambda=$ 335 nm . There is no band in the visible region of spectrum.

On the basis of spectral and magnetic properties of $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$ we assume a planar coordination in the vicinity of Fe (III) atom. On the structure of this coordination four molecules of OPPh_{3} bonded to the Fe (III) atom through oxygen donor atoms take part. ClO_{4}^{-}ions are probably attached to the complex cation $\left[\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right) 4_{4}\right]^{3+}$ only by hydrogen bonds.

Electronic spectra of α - and β-Fe $\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ are different. While the electronic spectrum of β form shows two bands, one at $\lambda=335 \mathrm{~nm}$ and the second, very broad and asymmetrically centred around $520 \mathrm{~nm}, \alpha$ form gives three bands: one at $\lambda=335 \mathrm{~nm}$, the second with higher maxi-

Table 1. Magnetic Data of Complexes

Complex	Magnetic moment $\mu_{\text {ont }} / \mu_{\mathrm{B}}$	Curie constant C	$\begin{gathered} \text { Weiss } \\ \text { constant } \theta \\ \hline \end{gathered}$	Diamagnetic correction
	(at $T / K)$	$\mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}$	K	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$
$\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{3}$	6.02 ± 0.02 (291)	4.52	0.1	- 739
	6.00 ± 0.02 (77)			
$\alpha-\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$	5.27 ± 0.02 (293)	3.64	- 13.4	- 708
	5.05 ± 0.02 (77)			
$\beta-\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$	5.33 ± 0.02 (289)	3.66	-8.1	- 708
	5.24 ± 0.02 (77)			

num at $\lambda=570 \mathrm{~nm}$ and the third one at $\lambda=925$ 1 m . Conspicuous band in the visible part of specrum, with maximum at about 520 and 570 nm ubserved for Fe (II) complexes can be characerized as charge-transfer [15]. Presence of ansther band with a maximum at $\lambda=925 \mathrm{~nm}$ α form) characterizes the symmetry of the $\left.\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\right]^{2+}$ cation between \mathbf{T}_{d} and $\mathrm{D}_{4 h}$ with legligible axial interaction [16, 17]. Absence of his band in the spectrum of β form is caused rrobably by "higher symmetry" than in the α form. This corresponds quite well with magnetic proprrties of these isomeric $\mathrm{Fe}(\mathrm{II})$ complexes.
On the basis of spectral and magnetic propyrties of α - and β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ we assume 1 tetrahedral arrangement around $\mathrm{Fe}(\mathrm{II})$ atoms. This arrangement has a different degree of disortion and is formed by OPPh_{3} molecules which are bonded to the iron(II) through oxygen donor itoms. ClO_{4}^{-}ions are probably attached by hyjrogen bonds. α - and β - $\mathrm{Fe}\left(\mathrm{OPPh}_{3}\right)_{4}\left(\mathrm{ClO}_{4}\right)_{2}$ forms yiffer by the degree of distortion of tetrahedron.「hus they belong to the distortion isomers which ire typical e.g. for Cu(II) complexes [18]. However, hey are not rare, they have been found also for inother central atoms like gold [19], titanium [20], liobium [21], and tantalum [22] complexes.

Acknowledgements. The authors wish to express their ratitude to Professor Mrozińsky from the Institute of Chemistry, Iniversity of Wroclaw for enabling them to carry out the neasurements of magnetic susceptibilities of studied comlexes.

REFERENCES

1. Hunter, S. H., Nyholm, R. S., and Rodley, G. A., Inorg. Chim. Acta 3, 631 (1969).
2. Ondrejkovičová, I., Vančová, V., and Ondrejovič, G., Chem.

Papers 45, 35 (1991).
3. Cotton, F. A. and Gibson, J. F., J. Chem. Soc., A 1971, 859.
4. Cotton, F. A., Bannister, E., Barnes, R., and Holm, R. H., Proc. Chem. Soc., London 1959, 158.
5. Bannister, E. and Cotton, F. A., J. Chem. Soc. 1960, 1878.
6. Karayannis, N. M., Mikulski, C. M., Strocko, M. J., Pytlewski, L. L., and Labes, M. M., J. Inorg. Nucl. Chem. 33, 2691 (1971).
7. Karayannis, N. M., Mikulski, C. M., Strocko, M. J., Pytlewski, L. L., and Labes, M. M., Inorg. Chim. Acta 8, 91 (1974).
8. Gmelins Handbuch der Anorganischen Chemie, System No. 59, Part B, Issue 2, p. 320.
9. Ondrejkovǐ̌ová, I. and Ondrejovič, G., Czechostov. 245880 (1986).
10. Brodie, A. M., Douglas, J. E., and Wilkins, C. J., J. Chem. Soc., A 1969, 1931.
11. Figgis, B. N. and Nyholm, R. S., J. Chem. Soc. 1958, 4190.
12. König, E., Magnetic Properties of Coordination and Organometallic Transition Metal Compounds, p. 328. SpringerVerlag, Berlin, 1966.
13. Horák, M. and Papoušek, D., Infračervená spektra a struktura molekul. (Infrared Spectra and Molecular Structure.) P. 755. Academia, Prague, 1976.
14. Corbridge, D. E. C., The Infrared Spectra of Phosphorus Compounds, p. 155. University of Leeds, 1967.
15. König, E. and Madeja, K., Inorg. Chem. 6, 48 (1967).
16. Karayannis, N. M., Owens, C., Pytlewski, L L, and Labes, M. M., J. Inorg. Nucl. Chem. 31, 2059 (1969).
17. Karayannis, N. M., Pytlewski, L. L, and Labes, M. M., Inorg. Chim. Acta 3, 415 (1969).
18. Gažo, J., Bersuker, I. B., Garaj, J., Kabešová, M., Kohout, J., Langfelderová, H., Melnik, M., Serátor, M., and Valach, F., Coord. Chem. Rev. 19, 253 (1976).
19. Melnik, M. and Parish, R. V., Coord. Chem. Rev. 70, 157 (1986).
20. Cozak, D. and Melnik, M., Coord. Chem. Rev. 74, 53 (1986).
21. Holloway, C. E. and Melnik, M., J. Organomet. Chem. 303, 1 (1986).
22. Holloway, C. E. and Melnik, M., J. Organomet. Chem. 303, 39 (1986).

