Optimization of Partial Alkylation of 3-Methyi-3,7-dihydro-1H-purine-2,6-dione and its 8-Alkyl Derivatives

A. RYBÁR, G. BAŠNÁKOVÁ, and A. STAŇOVÁ
Institute of Chemistry, Slovak Academy of Sciences, CS-842 38 Bratislava

Received 20 March 1992

Abstract

7-Alkyl-3-methyl-3,7-dihydro-1H-purine-2,6-diones and their 8-alkyl derivatives were obtained from 3-methyl-3,7-dihydro-1 H -purine-2,6-dione and its 8 -alkyl derivatives by partial alkylation with alkyl $\left(\mathrm{C}_{2}-\mathrm{C}_{4}\right)$ bromides in the presence of potassium carbonate in dimethylformamide.

Only few papers have so far described partial alkylation of 3-methyl-3,7-dihydro-1H-purine-2,6dione and its 8 -substituted derivatives $/$ to the corresponding 7 -alkyl derivatives II. Thus, methylation of 3-methyl-3,7-dihydro-1H-purine-2,6-dione la [1], its 8 -methyl derivative lb [2], and 8-hydroxymethyl derivative [3] in the form of their sodium salts was reported with dimethyl sulfate in aqueous or dilute alcoholic media. A common disadvantage of these methods is the incomplete conversion of the start-
of 7-alkyl derivatives // in our previous paper [4]; these pyrimidinediones furnished unequivocally derivatives // with the alkyl in position 7 of the purine skeleton after the imidazole ring was fused in the first step.

As found, conversion of the starting / to 7-alkyl derivatives /I was substantially higher and portion of the unwanted 1,7-dialkyl compounds III with respect to the monoalkyl derivatives /I lower when compared with the procedure proceeding in aque-

θ	f
CH_{3}	CH_{3}
$\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{4} \mathrm{H}_{9}$
ℓ	m
CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$
CH_{3}	CH_{3}

ing I to 7 -alkyl derivative II and a concurrent formation of the 1,7-dialkyl derivative III. Methylation of e.g. Ib and Ic applying the method according to [3] afforded 7-methyl derivatives II ℓ, IIm (60-63 \%), 1,7-dimethyl derivatives III ℓ, IIIm (26-30 \%) in addition to the unreacted starting material (7-10 $\%)$. Even the methylation with less reactive alkyl $\left(\mathrm{C}_{2}-\mathrm{C}_{4}\right)$ bromides in a dilute alcoholic medium resulted in a parallel formation of monoalkyl II and dialkyl derivatives III; nonetheless, the portion of the unreacted starting I can make up 40% (e.g. with butylation of $l d)$. This was the reason why we chose the procedure via 5-alkylamino-6-amino-1-methyl-2,4(1H,3H)-pyrimidinediones in preparation
ous or dilute alcoholic media, provided the partial alkylation was carried out in an aprotic solvent, most favourably in dimethylformamide in the presence of alkali metal carbonate. The compounds I and $\|$ form such soluble salts in aqueous solutions and consequently, they can be separated from derivatives III by extraction of their chloroform or dichloromethane solutions or suspension of $l a, l b$ with an aqueous solution of the respective alkali metal hydroxide. It was necessary to find reaction conditions to meet requirements for purity of the compound II (at least 98.5 \% with maximum 0.8% of the starting Π, if the partial alkylation of compounds I should be an alternative method to
that described in [4]. The high resolution liquid chromatography of both the reaction mixture and products // showed that a 25% excess of the alkylation agent is satisfactory when introducing methyl, ethyl or propyl group in position 7. Introduction of a butyl group according to the analogous method required an up to 40% excess of the alkylating agent. The starting substance / reacted, according to our method, almost quantitatively and the monoalkylated derivative II was separated from the unwanted twice alkylated III by dissolving alkali metal salt of II; with only 15% excess of the alkylating agent the content of the unreacted $/$ in compound $/ /$ rose to 2-5 \%.
Experiments to separate the unreacted starting / by crystallization were successful using ethanol or 2-propanol only with compounds Ila and II . Compounds with longer alkyls, as e.g. Ilj resisted separation even when employing toluene, cyclohexane, or carbon tetrachloride. Experiments to remove the unreacted la from llb by a several hour stirring with a 20 -fold equivalent of ammonium hydroxide
resulted in ca. 20% losses; the unreacted $l a$ in an amount up to 1.5% could be removed by this procedure by approximately one half.

Lithium, sodium, potassium or calcium carbonate were tried as alkaline components of the alkylation. The best results were obtained with potassium carbonate, whilst sodium carbonate was found suitable in the presence of alkali metal iodide. The amount of the unreacted $/$ exceeded the acceptable measure when applying lithium and especially calcium carbonates (e.g. with IIh up to 70% and 90% of Ic with the former and latter reagents, respectively). Calcium oxide also proved unsuitable with Ilh leaving 27-35 \% of the unreacted Ic. No advantages over our method brought the use of sodium salt of the starting I in dimethylformamide (e.g. by analogy with [5]).
The synthesized monoalkyl derivatives I/ were identical (as evidenced by chromatography and spectral measurements) with the corresponding compounds prepared according to [4]; they were

Table 1. Characterization, ${ }^{1} \mathrm{H}$ NMR and Mass Spectral Data of 7-Alkyl-3-methyl-3,7-dihydro-1H-purine-2,6-diones and Their 8-Alkyl Derivatives

Compound	Formula M_{r}	$\begin{gathered} w_{i} \text { (calc.)/\% } \\ w_{i}(\text { found }) / \% \end{gathered}$			Yield/\% Method	M.p $/{ }^{\circ} \mathrm{C}^{\text {a }}$	$\begin{gathered} \theta /{ }^{\circ} \mathrm{C} \\ \mathrm{t} / \mathrm{h} \end{gathered}$	Chemical shifts δ	$\begin{aligned} & \mathrm{M}^{+} \\ & \mathrm{m} / \mathrm{z} \end{aligned}$
		C	H	N					
11 a	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$	49.48	5.19	28.85	79	302-303		1.48 (t, 3H, C-CH3), 3.44 (s, 3H, N-3-CH3),	194
	194.2	49.25	5.27	28.80	A		5	4.33 ($\mathrm{q}, 2 \mathrm{H}, \mathrm{N}-7-\mathrm{CH}_{2}$), 8.16 (s, $1 \mathrm{H}, \mathrm{H}-8$),	
11 b	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$	51.91	5.81	26.91	84, 67	268-270	100, 80	0.91 (t, 3H, C-CH3), 1.88 (se, 2H, C-CH2-C),	208
	208.2	51.75	5.98	26.70	A, B		2, 2	$3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-3-\mathrm{CH}_{3}\right), 4.26\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{N}-7-\mathrm{CH}_{2}\right)$, 8.13 (s, $1 \mathrm{H}, \mathrm{H}-8$), 11.20 (br s, $1 \mathrm{H}, \mathrm{H}-1$)	
IIc	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	54.04	6.35	25.21	85	246-248	90	0.98 (t, 3H, C- CH_{3}), 1.34 (se, 2H, $\mathrm{N}-7-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{2}$),	222
	222.2	53.81	6.49	25.30	B		4	1.88 (qi, 2H, N-7-C- CH_{2}), 3.47 (s, $3 \mathrm{H}, \mathrm{N}-3-\mathrm{CH}_{3}$),	
								$\begin{aligned} & 4.33\left(t, 2 \mathrm{H}, \mathrm{~N}-7-\mathrm{CH}_{2}\right), 8.18 \text { (s, 1H, H-8), } \\ & 11.21 \text { (br s, } 1 \mathrm{H}, \mathrm{H}-1 \text {) } \end{aligned}$	
11 d					61	264-266	90		208
					A	260-262 ${ }^{\text {b }}$	5		
110					58	219-220	100		222
					A	218-219 ${ }^{\text {b }}$	3		
IIf					58	229-230	100		236
					B	231-232 ${ }^{\text {b }}$	4		
119					61	238-240	100		222
					A	237-238 ${ }^{\text {b }}$	3		
Ilh					72	183-185	100		236
					A	180-181 ${ }^{\text {b }}$	4		
$11 i$	$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$	57.58	7.25	22.39	66	205-207	100	$0.99\left(t, 3 \mathrm{H}, \mathrm{N}-7-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}\right), 1.36$ (t, 3H,	250
	250.3	57.49	7.03	22.51	B		5	$\left.\mathrm{C}-8-\mathrm{C}-\mathrm{CH}_{3}\right), 1.38$ ($\mathrm{se}, 2 \mathrm{H}, \mathrm{N}-7-\mathrm{C}-\mathrm{C}-\mathrm{CH}_{2}$),	
	.							1.76 (qi, $\left.2 \mathrm{H}, \mathrm{N}-7-\mathrm{C}-\mathrm{CH}_{2}\right), 2.83$ (q, $2 \mathrm{H}, \mathrm{C}-8-\mathrm{CH}_{2}$),	
								$3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{~N}-3-\mathrm{CH}_{3}\right), 4.25\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{~N}-7-\mathrm{CH}_{2}\right) \text {, }$ 11.08 (br s, $1 \mathrm{H}, \mathrm{H}-1$)	
IIj					54	175-176	100		250
					A	172-174 ${ }^{\text {b }}$	5		
$11 k$	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$	59.07	7.63	21.20	40	156-159	100	0.98 (t, 3H, N-7-C-C-C-CH3), 1.06 (t, 3H, C-8-	264
	264.3	58.85	7.77	21.45	B		8	$\mathrm{C}-\mathrm{C}-\mathrm{CH}_{3}$), 1.38 (se, 2H, N-7-C-C- CH_{2}),	
								$1.74\left(\mathrm{qi}, 2 \mathrm{H}, \mathrm{~N}-7-\mathrm{C}-\mathrm{CH}_{2}\right), 1.81(\mathrm{se}, 2 \mathrm{H}, \mathrm{C}-8-\mathrm{C}-$	
								$\left.\mathrm{CH}_{2}\right), 2.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{C}-8-\mathrm{CH}_{2}\right), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{~N}-3-\mathrm{CH}_{3}\right) \text {, }$ 4.27 (t, 2H, N-7-CH2), 11.08 (br s, 1H, H-1)	

[^0]characterized by melting points, elemental analyses, mass and ${ }^{1} \mathrm{H}$ NMR spectra (Table 1).
The prevailing majority of 1,7-dialkyl derivatives III ($\mathrm{R}^{1} \neq \mathrm{H}$, reaction by-products) obtained by this reaction are low-melting and even glassy compounds crystallizing with difficulty. Due to small amounts they were characterized only by the molecular ion peaks; the values found were in accordance with the calculated ones.

EXPERIMENTAL

Melting points are uncorrected, samples for analyses were dried over phosphorus pentaoxide at $100{ }^{\circ} \mathrm{C}(65 \mathrm{~Pa})$ for 8 h . The mass and ${ }^{1} \mathrm{H}$ NMR spectra were recorded with Jeol $100 \mathrm{D}(70 \mathrm{eV}$, $100 \mu \mathrm{~A}$) and Bruker AM-300 (deuterochloroform solution containing tetramethylsilane as internal reference) apparatuses, respectively. Reaction courses and purity of products were monitored by thin-layer chromatography (Silufol UV_{254} sheets, Kavalier, Votice) in chloroform-methanol ($\varphi_{\mathrm{r}}=$ $9: 1$), or high-performance liquid chromatography ($15 \mathrm{~cm} \times 0.3 \mathrm{~cm}$ column packed with Separon SGX RPS (Tessek, CSFR), mobile phase water-acetonitrile, $\varphi_{r}=7: 3$, flow rate $0.2 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$, detection with UV_{278} light).

7-Alkyl-3-methyl-3,7-dihydro-1H-purine-2,6diones and Their 8-Substituted Derivatives Ila-IIk

Method A. Alkyl bromide (12.5 mmol) was added to a stirred suspension of the respective compound $I(10 \mathrm{mmol})$ and potassium carbonate ($1.72 \mathrm{~g} ; 12.5$ mmol) in dimethylformamide ($20 \mathrm{~cm}^{3}$); reaction temperatures and times are listed in Table 1.

Dimethylformamide was distilled off under diminished pressure and the dry residue was dissolved in dichloromethane ($10 \mathrm{~cm}^{3}$), water ($15 \mathrm{~cm}^{3}$), and 1 M aqueous sodium hydroxide ($15 \mathrm{~cm}^{3}$) with stirring. The aqueous layer was separated, extracted with dichloromethane ($3 \times 15 \mathrm{~cm}^{3}$), filtered and neutralized with acetic acid or by introduction of carbon dioxide. The separated product $/ /$ was filtered off, washed with ice-cold water and dried at $100^{\circ} \mathrm{C}$ under reduced pressure.
Method B. This procedure was analogous to the preceding one with the exception that for 10 mmol of $/ 14 \mathrm{mmol}$ of alkyl bromide and 14 mmol of potassium carbonate were employed.
Samples for analyses were purified either by crystallization from methanol or ethanol, or by dissolution in $1-2 \mathrm{M}$ sodium hydroxide at $60-65^{\circ} \mathrm{C}$, addition of charcoal, filtration and precipitation with dilute hydrochloric acid at $60-65^{\circ} \mathrm{C}$. The melting points of purified compounds I/ are presented in Table 1. The melting points of not purified compounds were by $4-8{ }^{\circ} \mathrm{C}$ lower.

Acknowledgements. The authors wish to thank Dr. J. Alföldi, A. Gembická, K. Paule, and V. Hladký for measurements of NMR spectra, mass spectra, elemental analyses, and valuable assistance, respectively.

REFERENCES

1. Bredereck, H., von Schuh, H. G., and Martini, A., Chem. Ber. 83, 201 (1950).
2. Golovchinskaya, E. S., Zh. Prikl. Khim. (Leningrad) 30, 1374 (1957); Chem. Abstr. 52, 5425 (1958).
3. Bredereck, H., Siegel, E., and Föhlisch, B., Chem. Ber. 95, 407 (1962).
4. Rybár, A., Hesek, D., Szemes, F., Alföldi, J., and Tegza, M., Collect. Czech. Chem. Commun. 55, 2257 (1990).
5. Hesek, D., Tegza, M., Rybár, A., and Považanec, F., Synthesis 1989, 681.

Translated by Z. Voticky

[^0]: a) In a sealed capillary; b) reported in Ref. [4].

