ture was stirred at room temperature for 10 min. The reaction mixture was poured into cold water (50 cm<sup>3</sup>). Precipitated 2-aminobenzimidazole was filtered off, dried and crystallized from the ethanol—water mixture. Yield 75 mg (93 %), m.p. = 233-235 °C. The properties of obtained product are identical with an authentic sample [7, 8].

This work arose under financial support of the Slovak Grant Agency for Science.

#### REFERENCES

- 1. Woodcock, D., in *Systemic Fungicides*. (Marshal, R. W., Editor.) P. 60. Longman, London, 1977.
- Banks, B. J., Walshe, N. D., and Witty, M. J., in *Comprehensive Heterocyclic Chemistry*, Part I, p. 202. (Katritzky, A. R. and Rees, C. W., Editors.) Pergamon Press, Oxford, 1984.
- The Pesticide Manual. (Worthing, C. R., Editor.) P. 32. The British Crop Protecting Council, London, 1979.
- Omar, A. M. M. E., Habib, N. S., and Aboulwafa, O. M., Synthesis 1977, 864.
- 5. Ram, S., Wise, D. S., and Townsend, L. B., *Heterocycles* 22, 1789 (1984).

- Hritzová, O. and Kristian, P., Collect. Czech. Chem. Commun. 43, 3258 (1978).
- The Aldrich Library of Infrared Spectra, Edition III. (Pouchert, Ch. J., Editor.) P. 1272 A. Aldrich Chemical Company, Milwaukee, Wisconsin, 1981.
- The Aldrich Library of NMR Spectra, Vol. 8. (Pouchert, Ch. J. and Campbell, J. R., Editors.) P. 89 A. Aldrich Chemical Company, Milwaukee, Wisconsin, 1974.
- 9. Dixon, A. E., J. Chem. Soc. 67, 565 (1895).
- 10. Brit. 880807 (1958); Chem. Abstr. 53, 5134 (1959).
- 11. Johnson, T. B. and Chernoff, L. H., *J. Am. Chem. Soc.* 34, 164 (1912).
- 12. Hoggaharth, E., J. Chem. Soc. 1949, 1160.
- 13. Boeger, M. and Drabek, J., Ger. 3,504,016 (1985); Chem. Abstr. 103, P 215196r (1985).
- Smith, H. E., Cook, S. L., and Waren, M. E., J. Org. Chem. 29, 2261 (1944).
- Kristian, P., Dzurilla, M., and Kováč, Š., Chem. Zvesti 23, 173 (1969).
- Kutschy, P., Dzurilla, M., Ficeri, V., and Koščik, D., Collect. Czech. Chem. Commun. 58, 575 (1993).
- Dzurilla, M., Kristian, P., and Jurkechová, A., Chem. Zvesti 32, 402 (1978).
- Lipp, M., Allacker, F., and Koenen, G., Chem. Ber. 91, 1660 (1958).
- 19. Kutschy, P., Imrich, J., and Bernát, J., Synthesis 1983, 929.

Translated by P. Kutschy

# Synthesis and the <sup>13</sup>C NMR Spectra of *N*,*N*<sup>2</sup>-Disubstituted Benzoylthioureas and Their Seleno and Oxo Analogues

J. IMRICH, T. BUŠOVÁ, P. KRISTIAN, and J. DŽARA

Department of Organic Chemistry, Faculty of Natural Sciences, P. J. Šafárik University, SK-041 67 Košice

#### Received 29 December 1992

The influence of substituents on the <sup>13</sup>C NMR chemical shift values of the aromatic ring carbons and -CO-NH-C(=X) groups (X = S, Se, O) of a series of 27 *N*-benzoyl-*N*'-(Y-aryl) and -*N*'-alkylthioureas, selenoureas, ureas, thiourethanes and isothioureas was investigated. As found, the substituents in *N*-benzoyl-*N*'-(4-Y-phenyl)thio(seleno)ureas do not considerably influence the <sup>13</sup>C NMR chemical shifts of C=X and C=O carbons; the marked substituent effect is observed for the aromatic ring carbons only. This conclusion was also confirmed by correlations with  $\chi_s$  and  $\sigma_p^+$  constants of substituents. Differences between the benzoyl  $\delta$ (CO) values of *N*'-monosubstituted and *N'*,*N*'-disubstituted thioureas indicate the existence of an intramolecular hydrogen bond in the acylthiourea grouping, namely between the benzoyl-*N*'-(4-Y-phenyl)selenoureas are higher than those of the analogous C=S carbons of the corresponding thioureas. The <sup>13</sup>C spectral chemical shift increments  $\Delta\delta$  of —NHCSNHCOPh and —NHCSeNHCOPh groupings on the benzoen ring were calculated.

Acylthioureas are known precursors of nitrogen or sulfur-containing heterocycles because of their reactive —CONHCSNH— grouping. Cyclization of acylthioureas can be well observed by <sup>13</sup>C NMR spectroscopy. This paper presents the study concerning the influence of substituents of the ---CONHC(=-X)NH--- grouping (X = S, Se, O) on the chemical shift values of C=-X and C=-O groups and aromatic ring carbons in the *N*-benzoyl-*N*'-substituted thioureas *I*, *II*, selenoureas *III*, and isothioureas *V*.

The analogous *N*-benzoyl-*N*'-(4-Y-phenyl)ureas — excepting the 4-methoxy and 4-methyl derivatives *IVa, IVb* — are only little soluble in both deutero-chloroform and hexadeuterodimethyl sulfoxide and therefore, their <sup>13</sup>C NMR spectra could not be measured.

*Pytela* and coworkers [1] reported a relatively weak transmission of the substituent effect in their <sup>13</sup>C NMR study with a series of *N*-(4-Y-benzoyl)-*N*'-phenyl- and -*N*'-methylthioureas except for the benzoyl system. *Jirman* and *Lyčka* [2] compared the <sup>15</sup>N NMR signals of mono- and diacylated ureas and thioureas and found a better transmission of the electron-accepting effect of the N-1 acyl on N-2 through the C=S group of thioureas than through the C=O group of ureas. This fact was rationalized by a greater capability of the C=S group to lower the electron density at both nitrogen atoms in relation to the CO group of ureas.

#### **EXPERIMENTAL**

The <sup>13</sup>C NMR spectra of samples in deuterochloroform containing tetramethylsilane were measured with a Tesla BS 567 spectrometer (25.156 MHz) at 27 °C. Compounds IVa, IVb were recorded in hexadeuterodimethyl sulfoxide at 70 °C and 110 °C; the  $\delta$  scale was calibrated against the highest peak of the solvent ( $\delta$  = 39.39). Concentration of the samples was approximately 0.35 mol dm<sup>-3</sup>. The broadband decoupled and the off-resonance spectra were run with each compound; moreover, proton-coupled spectra were taken with several compounds to identify and ascribe the respective signals. Digital resolution of the transformed spectrum was 0.93 Hz per point, *i.e.*  $\delta$  = 0.0369 per point. Measuring parameters: 3 µs (30°) pulse width, 3 s acquisition time, 1500 to 3000 accumulations, 7.6 kHz spectral width. 8K and 16K data memory size and 7 W decoupling power. Carbons in Tables 1 to 5 are numerated in accordance with formula I.

The compounds synthesized were characterized by comparing their melting points with those reported; new substances were identified by elemental analyses (C, H, N) — the results agreed with those calculated within  $\pm 0.3$  mass %.

## N-Benzoyl-N'-R-thioureas la-lh, lla-llg

The appropriate amine (0.15 mol) in dry acetone (15 cm<sup>3</sup>) was added during 3 min to the stirred solution of benzoyl isothiocyanate (0.1 mol) [3] in dry acetone (15 cm<sup>3</sup>). The required thioureas, separating on standing, were filtered off and crystallized from ethanol. This procedure was applied for obtaining compounds *la* (m.p. = 170–173 °C, 78 %), *lb–le* 

(melting points correspond to those given in [4–6]), *If* (m.p. = 145–147 °C, 65 %), *Ig* (m.p. = 159–160 °C, 82 %), *Ih* [7], *IIa* [8], *IIb* [9], *IIc* (m.p. = 121–122 °C, 43 %), *IId*, *IIe* [10], *IIf* [11], *IIg* (m.p. = 134–136 °C, 76 %).

*N*-(4-Methylbenzoyl)-*N*'-phenylthiourea (*Ii*) was synthesized from 4-methylbenzoyl isothiocyanate and aniline according to [12]. *N*-Benzoyl-O-methylthiourethane (*IIh*) [13] and *N*-benzoyl-O-methylthiourethane (*IIi*) [13] were obtained from benzoyl isothiocyanate (20 mmol) and an equimolar amount of the respective alcohol by a 6 h reflux in dioxane (10 cm<sup>3</sup>). The precipitate, filtered after cooling, was dried and crystallized from hexane. Compound *IIj* was synthesized according to [14].

#### N-Benzoyl-N'-(4-Y-phenyl)selenoureas Illa—Illd [15]

Benzoyl chloride (0.2 mol) in dry acetone (5 cm<sup>3</sup>) was added dropwise to the stirred solution of KSeCN (0.2 mol) in dry acetone (30 cm<sup>3</sup>) and the precipitated KCl was removed after 10 min. The respective amine (0.2 mol) in acetone (30 cm<sup>3</sup>) was added to the filtrate with stirring and after 30 min the solution was poured into water (50 cm<sup>3</sup>). The precipitate was filtered off, washed with water and crystallized three times from ethanol. *Illa*: m.p. = 159–161 °C, yield 71 %; *Illb*: 139–141 °C, 73 %; *Illc*: 150–152 °C, 76 %; *Illd*: 164–166 °C, 83 %.

# *N*-Benzoyl-*N*<sup>'</sup>-(4-methoxyphenyl)urea (*IVa*) and -*N*<sup>'</sup>-(4-Methylphenyl)urea (*IVb*)

The title compounds were synthesized by reacting benzoyl isocyanate [16] and 4-anisidine or 4toluidine employing the procedure described for preparation of substances Ia-Ih. Other derivatives of urea *IV* (Z = O, Y = OH, H, Br, NO<sub>2</sub>) were not sufficiently soluble for the NMR measurements.

## *N*-Benzoyl-*N*<sup>'</sup>-(4-dimethylaminophenyl)-S-ethylisothiourea (*Va*) and -*N*<sup>'</sup>-phenyl-S-ethylisothiourea (*Vb*)

Thiourea *la* or *le* (5 mmol) was added slowly to LiH (6 mmol) suspended in dimethylformamide (50 cm<sup>3</sup>). The mixture was heated at 50 °C till the thiourea dissolved and then stirred till the liberation of hydrogen ceased (approx. 1 h); afterwards, ethyl iodide (5 mmol) was added, the mixture was stirred at room temperature for 1 h, filtered and poured slowly in an ice-cold water (100 cm<sup>3</sup>). The precipitate was filtered off, washed with water and dried. Yield of *Va* (m.p. = 153–155 °C) was 47 % and that of *Vb* (m.p. = 67–68 °C) 36 %.

#### **RESULTS AND DISCUSSION**

Derivatives of general formulas /-/V obtained by addition of amines or alcohols to benzoyl iso(thio, seleno)cvanates, soluble in CDCl<sub>2</sub> (with the exception of N-benzovl-N'-(4-Y-phenvl)ureas) are well crystallizing compounds. Thioureas I, II and ureas IVa, IVb were prepared from the relatively stable benzovl iso(thio)cvanates, the selenoureas Illa-IIId. obtained from the crude benzovl isoselenocvanate. have to be purified by a multiple crystallization. The attempts to S-alkylate thiourea Ih to the corresponding isothiourea failed, because cleavage of the starting N-benzoyl-N'-(4-nitrophenyl)thiourea (Ih) took place under the given reaction conditions.

The <sup>13</sup>C NMR spectral data of compounds prepared are listed in Tables 1 to 3. The chemical shift values were ascribed to the proper carbons according to signal multiplicities in the proton-coupled and offresonance spectra, as well as by comparing them with the values calculated by the increment method on the basis of empiric constants of substituents [17] and spectral chemical shift (SCS) constants of the --CONHCSNH--- grouping as obtained from the <sup>13</sup>C NMR spectrum of compound le. The chemical shifts of aliphatic carbons were assigned by analogy with the data reported in Ref. [18].

Compounds I---III with the not substituted N-benzoyl fragment reveal a typical tetrad of C-3 to C-6 signals in their <sup>13</sup>C NMR spectra; signal positions are - with the exception of C-6 - virtually independent of the replacement of C-S for C-Se and also of the change of the substituent at N'. The C-4 and

IVb

CH<sub>3</sub>

C-5 signals could be distinguished unambiguously from the doublet-triplet signal for C-4 carbons and the doublet-doublet signal for C-5 carbons in the proton-coupled spectra. Comparison of <sup>13</sup>C NMR shifts of carbons C=S, C-7 to C-10 of N-benzoyl-N'-(4-Y-phenvl)thioureas *la-lh* shows that the substituent effect of Y in position 4 is virtually restricted to <sup>13</sup>C NMR shifts of aromatic carbons only and influences very little the C=S chemical shifts ( $\delta$  = 177.83 for la in respect of  $\delta$  = 178.05 to 178.80 for *lb*—*lh*). Similar observation also holds for the series of selenoureas IIIa-IIId, where the substituent effect is seen with carbons C-7 to C-10, whilst the position of C—Se is almost constant ( $\delta$  = 180.15 to 180.37) except for IIIa ( $\delta$  = 179.02 — a little lower - analogous with la). The close range of <sup>13</sup>C NMR shifts of the C=S carbons of thiourea derivatives / (177.83 to 178.80) and C-Se carbons of selenourea derivatives III (179.02 to 180.37) indicates their chemical similarity. A little higher shift values  $\delta$ (C—Se) are associated probably with the higher polarity of the C-Se bond and the less perfect compensation of the partial positive charge at the C-Se carbon by the remaining moiety of the molecule [19, 20].

The <sup>13</sup>C NMR chemical shifts of aromatic C-7 carbons in the para position with respect to the substituent Y with compounds *la-lh* displayed a Hammet correlation dependence on the  $\sigma_{p}^{+}$  constants of substituents Y ( $\rho$  = 6.84, r = 0.966). This series also revealed an increasing trend of C-10 (ipso) shifts with rising electronegativity of the substituent  $\chi_s$  [21, 22]. The correlation parameters of eight compounds la-Ih ( $\rho = 18.94$ , r = 0.719) improved when the chemi-

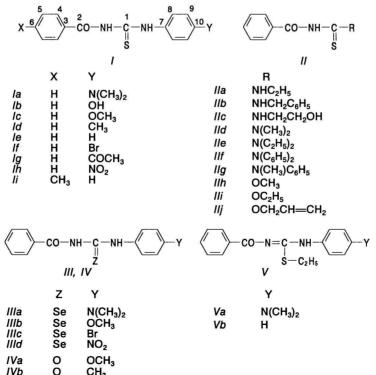



Table 1. <sup>13</sup>C NMR Chemical Shift  $\delta$  Values for (4-Y-phenyl)isothioureas Va, Vb

es for N-Benzoyl-N'-(4-Y-phenyl)thioureas /a-/ and S-Ethyl-N-benzoyl-N'-

| 0        | J V                                           |        |        |        |         | δ       |        |         |        |         |         | 1.10/06/2     |
|----------|-----------------------------------------------|--------|--------|--------|---------|---------|--------|---------|--------|---------|---------|---------------|
| Compound | Y                                             | C-1    | C-2    | C-3    | C-4     | C-5     | C-6    | C-7     | C-8    | C-9     | C-10    | C-Y           |
| la       | N(CH <sub>3</sub> ) <sub>2</sub>              | 177.83 | 166.78 | 131.84 | 127.43  | 129.08  | 133.48 | 126.84  | 125.27 | 112.13  | 149.31  | 40.46         |
| lb       | OH                                            | 178.80 | 167.00 | 131.76 | 127.51  | 129.30  | 133.78 | 130.79  | 126.16 | 115.71  | 154.46  |               |
| lc       | OCH <sub>3</sub>                              | 178.48 | 166.91 | 131.67 | 127.49  | 129.14  | 133.61 | 130.63  | 125.78 | 114.06  | 158.17  | 55.46         |
| ld       | CH <sub>3</sub>                               | 178.35 | 166.93 | 131.69 | 127.51  | 129.15  | 133.63 | 135.12° | 124.08 | 129.45  | 136.77° | 21.13         |
| le       | н                                             | 178.27 | 166.93 | 131.62 | 127.51  | 129.15  | 133.63 | 137.66  | 124.00 | 128.85  | 126.84  |               |
| lf       | Br                                            | 178.33 | 166.98 | 131.45 | 127.49  | 129.21  | 133.84 | 136.68  | 125.48 | 131.97  | 119.96  |               |
| lg       | COCH <sub>3</sub>                             | 178.05 | 167.08 | 131.47 | 127.58  | 129.23  | 133.93 | 141.77  | 123.03 | 129.23  | 134.97  | 196.79, 26.58 |
| lĥ       | NO <sub>2</sub>                               | 178.20 | 167.15 | 131.24 | 127.58  | 129.38  | 134.15 | 143.26  | 124.60 | 123.18  | 145.17  |               |
| li       | Hª                                            | 178.42 | 166.85 | 128.92 | 127.51  | 129.90  | 144.76 | 137.66  | 124.08 | 128.85  | 126.84  | 21.65         |
| Va       | N(CH <sub>3</sub> ) <sub>2</sub> <sup>b</sup> | 174.39 | 176.26 | 137.96 | 129.60° | 128.03° | 131.69 | 125.20  | 127.44 | 112.21  | 149.91  | 40.39         |
| Vb       | Hď                                            | 173.20 | 176.48 | 137.66 | 129.60° | 128.11° | 131.91 | 136.69  | 126.09 | 129.23° | 127.66  |               |

a) X = CH<sub>3</sub>; b) 25.98 and 14.63 (SCH<sub>2</sub>CH<sub>3</sub>); c) the values can be interchanged; d) 25.98 and 14.56 (SCH<sub>2</sub>CH<sub>3</sub>).

Table 2. <sup>13</sup>C NMR Chemical Shift  $\delta$  Values for Substituted N-Benzoyl-N'-Alkylthioureas *IIa—IIg* and Substituted N-Benzoyl-Oalkylthiourethanes *IIh—IIj* 

| Com-             | R                                                |        |        |        |        | δ      |        |        |        |        |        |                 |       |
|------------------|--------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------|-------|
| pound            | n                                                | C-1    | C-2    | C-3    | C-4    | C-5    | C-6    | C-7    | C-8    | C-9    | C-10   | CH <sub>2</sub> | CH3   |
| ila              | NHC <sub>2</sub> H <sub>5</sub>                  | 179.62 | 167.00 | 131.91 | 127.51 | 129.08 | 133.41 |        |        |        |        | 40.69           | 13.59 |
| IIb              | NHCH <sub>2</sub> C <sub>6</sub> H <sub>5</sub>  | 180.07 | 166.85 | 131.77 | 127.51 | 129.08 | 133.48 | 136.24 | 127.88 | 128.85 | 127.88 | 49.79           |       |
| llc              | NHCH <sub>2</sub> CH <sub>2</sub> OH             | 180.89 | 166.93 | 132.06 | 127.58 | 129.15 | 133.48 |        |        |        |        | 48.00           |       |
|                  |                                                  |        |        |        |        |        |        |        |        |        |        | 60.69           |       |
| lld              | N(CH <sub>3</sub> ) <sub>2</sub>                 | 180.22 | 163.57 | 132.36 | 127.96 | 128.70 | 132.89 |        |        |        |        |                 | 43.00 |
|                  |                                                  |        |        |        |        |        |        |        |        |        |        |                 | 44.12 |
| lle              | $N(C_2H_5)_2$                                    | 179.69 | 164.09 | 132.73 | 127.88 | 128.70 | 132.73 |        |        |        |        | 47.70           | 11.57 |
|                  |                                                  |        |        |        |        |        |        |        |        |        |        | 47.70           | 13.14 |
| llf              | $N(C_6H_5)_2$                                    | 182.75 | 162.60 | 132.81 | 127.81 | 128.78 | 132.81 | 145.80 | 126.99 | 129.30 | 127.51 |                 |       |
| llg              | N(CH <sub>3</sub> )C <sub>6</sub> H <sub>5</sub> | 180.66 | 162.90 | 132.81 | 127.58 | 128.63 | 132.59 | 145.20 | 125.49 | 129.38 | 127.81 |                 | 45.54 |
| IIĥ              | OCH <sub>3</sub>                                 | 190.29 | 162.60 | 132.81 | 127.73 | 128.93 | 133.18 |        |        |        |        |                 | 59.43 |
| lli              | OC <sub>2</sub> H <sub>5</sub>                   | 189.40 | 163.05 | 132.88 | 127.81 | 128.85 | 133.03 |        |        |        |        | 69.21           | 13.66 |
| llj <sup>a</sup> | O-allyl                                          | 188.88 | 163.19 | 132.81 | 127.88 | 128.63 | 132.96 |        |        |        |        | 72.79           |       |

a) 130.42 and 119.30 (CH=CH<sub>2</sub>).

Table 3. <sup>13</sup>C NMR Chemical Shift δ Values for *N*-Benzoyl-*N*'-(4-Y-phenyl)selenoureas *IIIa—IIId* and *N*-Benzoyl-N'-(4-Y-phenyl)ureas *IVa*, *IVb* 

| <b>0</b> |                                  |        |        |                     |                     |         | δ      |        |         |         |                     |                                |
|----------|----------------------------------|--------|--------|---------------------|---------------------|---------|--------|--------|---------|---------|---------------------|--------------------------------|
| Compoun  | a r                              | C-1    | C-2    | C-3                 | C-4                 | C-5     | C-6    | C-7    | C-8     | C-9     | C-10                | C-Y<br>40.46<br>55.47<br>54.92 |
| Illa     | N(CH <sub>3</sub> ) <sub>2</sub> | 179.02 | 166.85 | 131.46              | 127.51              | 129.23  | 133.71 | 127.51 | 125.57  | 111.98  | 149.68              | 40.46                          |
| IIIb     | OCH <sub>3</sub>                 | 180.15 | 166.93 | 131.47              | 127.59              | 129.16  | 133.79 | 131.32 | 126.17  | 114.15  | 158.65              | 55.47                          |
| IIIc     | Br                               | 180.37 | 167.08 | 131.47              | 127.66              | 129.30  | 134.01 | 137.74 | 126.09  | 132.21  | 120.79              |                                |
| IIId     | NO <sub>2</sub>                  | 180.37 | 167.15 | 130.94              | 127.66              | 129.45  | 134.38 | 143.76 | 124.67ª | 124.08ª | 145.88              |                                |
| IVa°     | OCH <sub>3</sub>                 | 150.63 | 168.17 | 132.12              | 127.71 <sup>ª</sup> | 128.01* | 132.34 | 130.25 | 121.22  | 113.83  | 155.48              | 54.92                          |
| IVb°     | CH <sub>3</sub>                  | 150.33 | 168.10 | 132.12 <sup>b</sup> | 127.64ª             | 127.93ª | 132.41 | 134.65 | 119.50  | 128.76  | 132.26 <sup>b</sup> | 19.76                          |

a, b) The values can be interchanged; c) in DMSO-d<sub>6</sub>.

cal shift value for C-10 of the derivative *lf* (Y = Br) ( $\rho$  = 16.38, *r* = 0.844) was omitted. This improvement was rationalized [22] by the fact that bromine belongs to another period than the remaining seven substituents Y.

The chemical shift values of carbonyl carbons C-2 of derivatives *Ia—Ii*, *IIa—IIc*, and *IIIa—IIId* were almost identical (166.78 to 167.15); on the other hand, these values for thioureas and thiourethanes (*IId—IIj*) were found to be by 2 to 4 lower (162.60 to

164.09), which evidences clearly the existence of an intramolecular hydrogen bond between the C-2 carbonyl and the N'—H of the *N*-benzoyl-N'-monosubstituted thioureas Ia-Ii, IIa-IIc and selenoureas IIIa-IIId. The <sup>13</sup>C NMR chemical shift values  $\delta$ (C=S) of N'-alkyl-, dialkyl-, diaryl-, and alkylarylthioureas IIa-IIg showed a greater variability (179.62 to 182.75) than compounds Ia-Ii. As anticipated, the chemical shifts of C-1 carbons of thiourethanes IIh-IIj (188.88 to 190.29), ureas IVa, IVb (150.33 to

**Table 4.** <sup>13</sup>C SCS Increments  $\Delta \delta$  of the C<sub>6</sub>H<sub>5</sub>—CO—NH—C(=Z)—NH (Z = S, Se, O) Grouping on the Benzene Ring and the Standard Deviation s

|                                  | $\Delta\delta$         |                    |       |       |       |                                |     |       |       |       |  |  |
|----------------------------------|------------------------|--------------------|-------|-------|-------|--------------------------------|-----|-------|-------|-------|--|--|
| х                                | C <sub>6</sub> H₅—CO—N | C <sub>6</sub> H₅— | -CO-N | H—CSe | e—NH— | C <sub>6</sub> H₅—CO—NH—CO—NH— |     |       |       |       |  |  |
|                                  | i o                    | m p                |       | 0     | т     | ρ                              | 1   | 0     | т     | p     |  |  |
| N(CH <sub>3</sub> ) <sub>2</sub> | 10.1 - 4.0             | - 0.7 - 1.6        | 10.8  | - 3.7 | - 0.8 | - 1.2                          |     |       |       |       |  |  |
| OH                               | 9.6 - 3.7              | - 0.1 - 0.9        |       |       |       |                                |     |       |       |       |  |  |
| OCH <sub>3</sub>                 | 10.2 - 3.6             | 0.3 - 0.5          | 10.9  | - 3.2 | 0.4   | - 0.1                          | 9.9 | - 8.2 | 0.0   | - 3.2 |  |  |
| CH <sub>3</sub>                  | 9.7 - 4.4              | 0.3 - 1.0          |       |       |       |                                | 9.3 | - 9.0 | - 0.3 | - 5.5 |  |  |
| н                                | 9.2 - 4.5              | 0.4 – 1.7          |       |       |       |                                |     |       |       |       |  |  |
| Br                               | 9.2 - 5.2              | 0.2 - 3.1          | 10.2  | - 4.6 | 0.4   | - 2.3                          |     |       |       |       |  |  |
| COCH <sub>3</sub>                | 9.1 - 5.7              | 0.5 – 2.8          |       |       |       |                                |     |       |       |       |  |  |
| NO <sub>2</sub>                  | 8.8 - 4.7              | 0.0 - 2.9          | 9.3   | - 4.6 | 0.9   | - 2.2                          |     |       |       |       |  |  |
| Mean values                      | 9.5 - 4.5              | 0.1 - 1.8          | 10.3  | - 4.0 | 0.2   | - 1.4                          | 9.6 | - 8.6 | - 0.2 | - 4.4 |  |  |
| S                                | 0.5 0.7                | 0.4 1.0            | 0.8   | 0.7   | 0.7   | 1.1                            | 0.4 | 0.6   | 0.3   | 1.6   |  |  |

i - ipso, o - ortho, m - meta, p - para, s - standard deviation.

**Table 5.** <sup>13</sup>C SCS Increments  $\Delta\delta$  of the —CO—NH—C(=Z)— NH—R (Z = S, Se, O) Grouping on the Benzene Ring and the Standard Deviation *s* 

| 7  | -     | ipso           |     | ort            | ho  | me             | ta  | para           |     |
|----|-------|----------------|-----|----------------|-----|----------------|-----|----------------|-----|
| Z  | R     | $\Delta\delta$ | s   | $\Delta\delta$ | s   | $\Delta\delta$ | s   | $\Delta\delta$ | S   |
| s  | Aryl  | 3.1            | 0.2 | - 1.0          | 0.0 | 0.7            | 0.1 | 6.3            | 0.2 |
| S  | Alkyl | 3.9            | 0.4 | - 0.8          | 0.2 | 0.4            | 0.2 | 4.6            | 0.4 |
| Se | Aryl  | 2.8            | 0.3 | - 0.9          | 0.1 | 0.8            | 0.1 | 5.5            | 0.3 |
| 0  | Aryl  | 3.6            | 0.0 | - 0.8          | 0.0 | - 0.5          | 0.1 | 3.9            | 0.0 |

150.63), and isothioureas *Va*, *Vb* (173.20 to 174.39) differ considerably, but only the chemical shift values for C-2 of thioureas (176.26 to 176.48) were quite different from those of compounds *I*—*IV* (162.26 to 167.15). The probable reason for this enhancement is the existence of a conjugated isothiourea system  $C_6H_5$ — $C(=O)N=C(SC_2H_5)$ —NH— $C_6H_4$ —Y deshielding the carbonyl carbon [23].

The <sup>13</sup>C NMR chemical shifts of compounds under study served for calculation of <sup>13</sup>C SCS increments  $\Delta\delta$  of the C<sub>6</sub>H<sub>5</sub>--CO--NH--C(=Z)--NH--(Z = S, Se, O, Table 4) and -CO-NH-C(=Z)-NHR (Z = S, R = alkyl, aryl; Z = Se, R = aryl; Z = O, R = aryl, Table 5) groupings on the benzene ring. The results obtained showed similar SCS increments  $\Delta\delta$  of the carbonylthiourea and carbonylselenourea groupings on the benzene ring as did C<sub>6</sub>H<sub>5</sub>---CO---NH-C(=Z)-NH-(Z = S, Se) and -CO-NH-C(=Z)-NHR (Z = S, Se) substituents. Nonetheless, the carbonyl urea grouping C<sub>6</sub>H<sub>5</sub>—CO—NH—CO-NH- is characterized by a relatively strong shielding effect on the ortho (- 8.6) and para (- 4.4) carbons in the benzene ring when compared with that of thio and seleno analogues (Table 4); this finding is in accordance with the higher electron density observed at both benzoylurea nitrogens in regard to benzoylthioureas [2, 24].

This project was partly supported by the grant No. 1/990919/92.

#### REFERENCES

- 1. Pytela, O., Jirman, J., and Lyčka, A., *Collect. Czech. Chem. Commun.* 54, 2399 (1989).
- Jirman, J. and Lyčka, A., Collect. Czech. Chem. Commun. 52, 2474 (1987).
- Johnson, T. B. and Chernoff, L. J., J. Am. Chem. Soc. 34, 164 (1912).
- Douglass, I. B. and Dains, F. B., J. Am. Chem. Soc. 56, 1408 (1934).
- 5. Gach, I. G. and Nazarova, Z. U., *Zh. Obshch. Khim. 30,* 2183 (1960).
- Frank, Z. R. and Smith, P. A., Org. Synth., Coll. Vol. III, 735 (1955).
- Dyer, E. and Johnson, T. B., J. Am. Chem. Soc. 54, 777 (1932).
- 8. Dixon, A. E., J. Chem. Soc. (London) 75, 383 (1899).
- 9. Miquel, M. P., Ann. Chim. Phys. 11, 324 (1877).
- Vijayakumaran Nair, G., J. Indian Chem. Soc. 40, 953 (1963).
- 11. Dixon, A. E. and Taylor, J., *J. Chem. Soc.* (London) 93, 693 (1908).
- 12. Smith, P. A. and Kan, R. O., J. Org. Chem. 29, 2261 (1964).
- 13. Dixon, A. E., J. Chem. Soc. (London) 75, 375 (1899).
- Kutschy, P., Dzurilla, M., Koščik, D., and Kristian, P., Collect. Czech. Chem. Commun. 52, 1764 (1987).
- 15. Douglass, I. B., J. Am. Chem. Soc. 59, 740 (1937).
- Speziale, A. S. and Smith, K. R., J. Org. Chem. 28, 1805 (1963).
- Pretsch, E., Seibl, J., Simon, W., and Clerc, T., Tables of Spectral Data for Structure Determination of Organic Compounds, p. C212. Springer-Verlag, Berlin, 1983.
- Bremser, W., Ernst, L., Franke, B., Gerhards, R., and Hardt, R., Carbon-13 NMR Spectral Data. Verlag Chemie, Weinheim, 1981.
- Kristian, P. and Suchár, G., Collect. Czech. Chem. Commun. 37, 3066 (1972).
- Suchár, G. and Kristian, P., Collect. Czech. Chem. Commun. 40, 2998 (1975).
- 21. Spiesecke, H. and Schneider, W. G., J. Chem. Phys. 38, 2803 (1963).
- 22. Inamoto, N. et al., Tetrahedron Lett. 1976, 3707.
- 23. Walter, W. and Ruback, W., Liebigs Ann. Chem. 1982, 231.
- 24. Kaválek, J., El Bahaie, S., and Štěrba, V., *Collect. Czech. Chem. Commun.* 49, 2103 (1984).

Translated by Z. Votický