
ture was stirred at room temperature for 10 min. The 
reaction mixture was poured into cold water (50 cm3). 
Precipitated 2-aminobenzimidazole was filtered off, 
dried and crystallized from the ethanol—water mix­
ture. Yield 75 mg (93 %), m.p. = 233-235 °C. The 
properties of obtained product are identical with an 
authentic sample [7, 8]. 

This work arose under financial support of the Slovak Grant 
Agency for Science. 
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chemical shift values of C=X and C = 0 groups and 
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thioureas /, //, selenoureas ///, and isothioureas V. 
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The influence of substituents on the 13C NMR chemical shift values of the aromatic ring car­
bons and —CO—NH—C(=X)— groups (X = S, Se, O) of a series of 27 A/-benzoyl-A/'-(Y-aryl)-
and -A/'-alkylthioureas, selenoureas, ureas, thiourethanes and isothioureas was investigated. As 
found, the substituents in A/-benzoyl-A/'-(4-Y-phenyl)thio(seleno)ureas do not considerably influ­
ence the 13C NMR chemical shifts of C=X and C = 0 carbons; the marked substituent effect is 
observed for the aromatic ring carbons only. This conclusion was also confirmed by correlations 
with xsand о* constants of substituents. Differences between the benzoyl <5(CO) values of A/'-
monosubstituted and A/',A/'-disubstituted thioureas indicate the existence of an intramolecular 
hydrogen bond in the acylthiourea grouping, namely between the benzoyl CO and the N'H groups. 
The 13C NMR chemical shift values of C=Se carbons in A/-benzoyl-A/'-(4-Y-phenyl)selenoureas 
are higher than those of the analogous C=S carbons of the corresponding thioureas. The 13C 
spectral chemical shift increments A<5of —NHCSNHCOPh and —NHCSeNHCOPh groupings on 
the benzene ring were calculated. 
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DISUBSTITUTED BENZOYLTHIOUREAS 

The analogous /V-benzoyl-/V'-(4-Y-phenyl)ureas — 
excepting the 4-methoxy and 4-methyl derivatives 
IVa, IVb — are only little soluble in both deutero-
chloroform and hexadeuterodimethyl sulfoxide and 
therefore, their 13C NMR spectra could not be mea­
sured. 

Pytela and coworkers [1 ] reported a relatively weak 
transmission of the substituent effect in their 13C 
NMR study with a series of A/-(4-Y-benzoyl)-/V'-phe-
nyl- and -Л/'-methylthioureas except for the benzoyl 
system. Jirman and Lyčka [2] compared the 15N NMR 
signals of mono- and diacylated ureas and thioureas 
and found a better transmission of the electron-ac­
cepting effect of the N-1 acyl on N-2 through the 
C = S group of thioureas than through the C = 0 
group of ureas. This fact was rationalized by a grea­
ter capability of the C = S group to lower the elec­
tron density at both nitrogen atoms in relation to the 
CO group of ureas. 

EXPERIMENTAL 

The 13C NMR spectra of samples in deuterochlo-
roform containing tetramethylsilane were measured 
with a Tesla BS 567 spectrometer (25.156 MHz) at 
27 °C. Compounds IVa, IVb were recorded in hexa­
deuterodimethyl sulfoxide at 70 °C and 110 °C; the 
5 scale was calibrated against the highest peak of 
the solvent (5 = 39.39). Concentration of the sam­
ples was approximately 0.35 mol dm"3. The broad­
band decoupled and the off-resonance spectra were 
run with each compound; moreover, proton-coupled 
spectra were taken with several compounds to iden­
tify and ascribe the respective signals. Digital reso­
lution of the transformed spectrum was 0.93 Hz per 
point, i.e. S = 0.0369 per point. Measuring param­
eters: 3 |is (30°) pulse width, 3 s acquisition time, 
1500 to 3000 accumulations, 7.6 kHz spectral width, 
8K and 16K data memory size and 7 W decoupling 
power. Carbons in Tables 1 to 5 are numerated in 
accordance with formula /. 

The compounds synthesized were characterized 
by comparing their melting points with those reported; 
new substances were identified by elemental analy­
ses (C, H, N) — the results agreed with those cal­
culated within ± 0.3 mass %. 

/V-Benzoyl-Л/ -R-thioureas la—Ih, lla—llg 

The appropriate amine (0.15 mol) in dry acetone 
(15 cm3) was added during 3 min to the stirred so­
lution of benzoyl isothiocyanate (0.1 mol) [3] in dry 
acetone (15 cm3). The required thioureas, separat­
ing on standing, were filtered off and crystallized from 
ethanol. This procedure was applied for obtaining 
compounds la (m.p. = 170—173 °C, 78 %), lb—le 
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(melting points correspond to those given in [4—6]), 
If (m.p. = 145-147 °C, 65 %), Ig (m.p. = 159-160 °C, 
82 %), Ih [7], IIa [8], IIb [9], He (m.p. = 121-122 °C, 
43 %), lid, He [10], Hf [11], Hg (m.p. = 134-136 °C, 
76 %). 

/V-(4-Methylbenzoyl)-/V'-phenylthiourea (//) was 
synthesized from 4-methylbenzoyl isothiocyanate 
and aniline according to [12]. /V-Benzoyl-O-methyl-
thiourethane (llh) [13] and /V-benzoyl-O-methylthio-
urethane (III) [13] were obtained from benzoyl isothio­
cyanate (20 mmol) and an equimolar amount of the 
respective alcohol by a 6 h reflux in dioxane (10 cm3). 
The precipitate, filtered after cooling, was dried and 
crystallized from hexane. Compound /// was synthe­
sized according to [14]. 

Ar-Benzoyl-A/'-(4-Y-phenyl)selenoureas Ilia—Hid [15] 

Benzoyl chloride (0.2 mol) in dry acetone (5 cm3) 
was added dropwise to the stirred solution of KSeCN 
(0.2 mol) in dry acetone (30 cm3) and the precipi­
tated KCl was removed after 10 min. The respec­
tive amine (0.2 mol) in acetone (30 cm3) was added 
to the filtrate with stirring and after 30 min the solu­
tion was poured into water (50 cm3). The precipitate 
was filtered off, washed with water and crystallized 
three times from ethanol. Ilia: m.p. = 159—161 °C, 
yield 71 %; Hlb: 139-141 °C, 73 %; lllc: 150-152 °C, 
76 %; Hid: 164-166 °C, 83 %. 

A/-Benzoyl-A/'-(4-methoxyphenyl)urea (IVa) and 
-A/'-(4-Methylphenyl)urea (IVb) 

The title compounds were synthesized by react­
ing benzoyl isocyanate [16] and 4-anisidine or 4-
toluidine employing the procedure described for pre­
paration of substances la—Ih. Other derivatives of 
urea IV (Z = O, Y = OH, H, Br, N02) were not suffi­
ciently soluble for the NMR measurements. 

W-Benzoyl-W-(4-dimethylaminophenyl)-S-ethyl-
isothiourea (Va) and -ЛГ-phenyl-S-ethylisothio-
urea (Mb) 

Thiourea la or le (5 mmol) was added slowly to 
LiH (6 mmol) suspended in dimethylformamide (50 
cm3). The mixture was heated at 50 eC till the thio­
urea dissolved and then stirred till the liberation of 
hydrogen ceased (approx. 1 h); afterwards, ethyl 
iodide (5 mmol) was added, the mixture was stirred 
at room temperature for 1 h, filtered and poured 
slowly in an ice-cold water (100 cm3). The precipi­
tate was filtered off, washed with water and dried. 
Yield of Va (m.p. - 153-155 °C) was 47 % and that 
of Vb (m.p. = 67-68 °C) 36 %. 
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RESULTS AND DISCUSSION 

Derivatives of general formulas I—IV obtained by 
addition of amines or alcohols to benzoyl iso(thio, 
seleno)cyanates, soluble in CDCI3 (with the excep­
tion of /V-benzoyl-/V'-(4-Y-phenyl)ureas) are well 
crystallizing compounds. Thioureas /, // and ureas 
IVa, IVb were prepared from the relatively stable 
benzoyl iso(thio)cyanates, the selenoureas Ilia—Hid, 
obtained from the crude benzoyl isoselenocyanate, 
have to be purified by a multiple crystallization. The 
attempts to S-alkylate thiourea Ih to the correspond­
ing isothiourea failed, because cleavage of the start­
ing A/-benzoyl-A/'-(4-nitrophenyl)thiourea (Ih) took 
place under the given reaction conditions. 

The 13C NMR spectral data of compounds prepared 
are listed in Tables 1 to 3. The chemical shift val­
ues were ascribed to the proper carbons according 
to signal multiplicities in the proton-coupled and off-
resonance spectra, as well as by comparing them 
with the values calculated by the increment method 
on the basis of empiric constants of substituents [17] 
and spectral chemical shift (SCS) constants of the 
—CONHCSNH— grouping as obtained from the 13C 
NMR spectrum of compound /e. The chemical shifts 
of aliphatic carbons were assigned by analogy with 
the data reported in Ref. [18]. 

Compounds /—/// with the not substituted /V-benzoyl 
fragment reveal a typical tetrad of C-3 to C-6 sig­
nals in their 13C NMR spectra; signal positions are 
— with the exception of C-6 — virtually indepen­
dent of the replacement of C=S for C=Se and also 
of the change of the substituent at N'. The C-4 and 

i 
CO-NH-C-NH— (' 

C-5 signals could be distinguished unambiguously 
from the doublet-triplet signal for C-4 carbons and 
the doublet-doublet signal for C-5 carbons in the pro­
ton-coupled spectra. Comparison of 13C NMR shifts 
of carbons C=S, C-7 to C-10 of /V-benzoyl-/V'-(4-
Y-phenyl)thioureas /a—Ih shows that the substituent 
effect of Y in position 4 is virtually restricted to 13C 
NMR shifts of aromatic carbons only and influences 
very little the C = S chemical shifts (8 = 177.83 for 
la in respect of 5= 178.05 to 178.80 for lb—Ih). Simi­
lar observation also holds for the series of 
selenoureas Ilia—Hid, where the substituent effect 
is seen with carbons C-7 to C-10, whilst the posi­
tion of C=Se is almost constant (8 = 180.15 to 
180.37) except for Ilia (8 = 179.02 — a little lower 
— analogous with /a). The close range of 13C NMR 
shifts of the C = S carbons of thiourea derivatives / 
(177.83 to 178.80) and C=Se carbons of selenourea 
derivatives /// (179.02 to 180.37) indicates their 
chemical similarity. A little higher shift values 
<5(C=Se) are associated probably with the higher 
polarity of the C=Se bond and the less perfect com­
pensation of the partial positive charge at the C=Se 
carbon by the remaining moiety of the molecule [19,20]. 

The 13C NMR chemical shifts of aromatic C-7 car­
bons in the para position with respect to the substi­
tuent Y with compounds la—Ih displayed a Hammet 
correlation dependence on the <JP

+ constants of sub­
stituents Y (p = 6.84, r = 0.966). This series also 
revealed an increasing trend of C-10 (ipso) shifts with 
rising electronegativity of the substituent Xs [21, 22]. 
The correlation parameters of eight compounds la— 
Ih (p = 18.94, r = 0.719) improved when the chemi-

la 
lb 
Ic 
Id 
le 
If 
ig 
Ih 
li 

f> \ = / 
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lllb 
lllc 
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H 
H 
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CH3 

-CO-Nh 

III, 
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Table 1. 13C NMR Chemical Shift S Values for A/-Benzoyl-A/'-(4-Y-phenyl)thioureas la—I and S-Ethyl-A/-benzoyl-AT-
(4-Y-phenyl)isothioureas Va, Vb 

Compound Y 

la 
lb 
Ic 
Id 
le 
If 

ig 
Ih 
li 

Va 
Vb 

N(CH3)2 

OH 
OCH3 
CH3 

H 
Br 

COCH3 
N02 

Ha 

N(CH3)2
b 

Hd 

C-1 

177.83 
178.80 
178.48 
178.35 
178.27 
178.33 
178.05 
178.20 
178.42 
174.39 
173.20 

C-2 

166.78 
167.00 
166.91 
166.93 
166.93 
166.98 
167.08 
167.15 
166.85 
176.26 
176.48 

C-3 

131.84 
131.76 
131.67 
131.69 
131.62 
131.45 
131.47 
131.24 
128.92 
137.96 
137.66 

C-4 

127.43 
127.51 
127.49 
127.51 
127.51 
127.49 
127.58 
127.58 
127.51 
129.60c 

129.60c 

Ö 

C-5 

129.08 
129.30 
129.14 
129.15 
129.15 
129.21 
129.23 
129.38 
129.90 
128.03c 

128.11е 

C-6 

133.48 
133.78 
133.61 
133.63 
133.63 
133.84 
133.93 
134.15 
144.76 
131.69 
131.91 

C-7 

126.84 
130.79 
130.63 
135.12е 

137.66 
136.68 
141.77 
143.26 
137.66 
125.20 
136.69 

C-8 

125.27 
126.16 
125.78 
124.08 
124.00 
125.48 
123.03 
124.60 
124.08 
127.44 
126.09 

C-9 

112.13 
115.71 
114.06 
129.45 
128.85 
131.97 
129.23 
123.18 
128.85 
112.21 
129.23е 

C-10 

149.31 
154.46 
158.17 
136.77е 

126.84 
119.96 
134.97 
145.17 
126.84 
149.91 
127.66 

C-Y 

40.46 

55.46 
21.13 

196.79, 26.58 

21.65 
40.39 

a) X = CH3; b) 25.98 and 14.63 (SCH2CH3); c) the values can be interchanged; d) 25.98 and 14.56 (SCH2CH3). 

Table 2. 13C NMR Chemical Shift Ö Values for Substituted /V-Benzoyl-A/'-Alkylthioureas IIa—lig and Substituted /V-Benzoyl-O-
alkylthiourethanes llh—llj 

Com­
pound 

Ha 
lib 
lie 

lid 

lie 

llf 

iig 
llh 
III 
ИГ 

R 

NHC2H5 

NHCH2C6H5 

NHCH2CH2OH 

N(CH3)2 

N(C2H5)2 

N(C6H5)2 

N(CH3)C6H5 

OCH3 

OC2H5 

O-allyl 

C-1 

179.62 
180.07 
180.89 

180.22 

179.69 

182.75 
180.66 
190.29 
189.40 
188.88 

C-2 

167.00 
166.85 
166.93 

163.57 

164.09 

162.60 
162.90 
162.60 
163.05 
163.19 

C-3 

131.91 
131.77 
132.06 

132.36 

132.73 

132.81 
132.81 
132.81 
132.88 
132.81 

C-4 

127.51 
127.51 
127.58 

127.96 

127.88 

127.81 
127.58 
127.73 
127.81 
127.88 

6 

C-5 

129.08 
129.08 
129.15 

128.70 

128.70 

128.78 
128.63 
128.93 
128.85 
128.63 

C-6 

133.41 
133.48 
133.48 

132.89 

132.73 

132.81 
132.59 
133.18 
133.03 
132.96 

C-7 

136.24 

145.80 
145.20 

C-8 

127.88 

126.99 
125.49 

C-9 

128.85 

129.30 
129.38 

C-10 

127.88 

127.51 
127.81 

CH2 

40.69 
49.79 
48.00 
60.69 

47.70 
47.70 

69.21 
72.79 

CH3 

13.59 

43.00 
44.12 
11.57 
13.14 

45.54 
59.43 
13.66 

a) 130.42 and 119.30 (CH=CH2). 

Table 3. 13C NMR Chemical Shift 6 Values for A/-Benzoyl-A/'-(4-Y-phenyl)selenoureas Ilia—Hid and A/-Benzoyl-A/'-(4-Y-phenyl)ureas 
IVa, IVb 

Compound 

Ilia 
lllb 
lllc 
Hid 
IVac 

IVbc 

Y 

N(CH3)2 

OCH3 

Br 
N 0 2 

OCH3 

CH3 

C-1 

179.02 
180.15 
180.37 
180.37 
150.63 
150.33 

C-2 

166.85 
166.93 
167.08 
167.15 
168.17 
168.10 

C-3 

131.46 
131.47 
131.47 
130.94 
132.12 
132.12* 

C-4 

127.51 
127.59 
127.66 
127.66 
127.71е 

127.64я 

C-5 

129.23 
129.16 
129.30 
129.45 
128.01° 
127.93a 

5 

C-6 

133.71 
133.79 
134.01 
134.38 
132.34 
132.41 

C-7 

127.51 
131.32 
137.74 
143.76 
130.25 
134.65 

C-8 

125.57 
126.17 
126.09 
124.67a 

121.22 
119.50 

C-9 

111.98 
114.15 
132.21 
124.08s 

113.83 
128.76 

C-10 

149.68 
158.65 
120.79 
145.88 
155.48 
132.26b 

C-Y 

40.46 
55.47 

54.92 
19.76 

a, b) The values can be interchanged; c) in DMSO-oV 

cal shift value for C-10 of the derivative // (Y = Br) 
(p = 16.38, r = 0.844) was omitted. This improve­
ment was rationalized [22] by the fact that bromine 
belongs to another period than the remaining seven 
substituents Y. 

The chemical shift values of carbonyl carbons C-
2 of derivatives la—II, Ha—He, and Ilia—Hid were al­
most identical (166.78 to 167.15); on the other hand, 
these values for thioureas and thiourethanes (Hd— 
llj) were found to be by 2 to 4 lower (162.60 to 

164.09), which evidences clearly the existence of an 
intramolecular hydrogen bond between the C-2 car­
bonyl and the N'—H of the /V-benzoyl-A/'-mono-
substituted thioureas la—li, Ha—He and selenoureas 
llla-llld. The 13C NMR chemical shift values 5(C=S) 
of Л/'-alkyl-, dialkyl-, diaryl-, and alkylarylthioureas 
lla—llg showed a greater variability (179.62 to 
182.75) than compounds la—IL As anticipated, the 
chemical shifts of C-1 carbons of thiourethanes llh— 
llj (188.88 to 190.29), ureas IVa, IVb (150.33 to 
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Table 4. 13C SCS Increments AS of the C6H5—CO—NH—C(=Z)—NH (Z = S, Se, O) Grouping on the Benzene Ring and the 
Standard Deviation s 

X 

N(CH3)2 

OH 
OCH3 
CH3 

H 
Br 

COCH3 
N02 

Mean values 
s 

C6H5—CO—NH—CS-

/ 
10.1 
9.6 

10.2 
9.7 
9.2 
9.2 
9.1 
8.8 
9.5 
0.5 

0 

- 4 . 0 
- 3 . 7 
- 3 . 6 
- 4 . 4 
- 4 . 5 
- 5 . 2 
- 5 . 7 
- 4 . 7 
- 4 . 5 

0.7 

/77 

- 0 . 7 
- 0 . 1 

0.3 
0.3 
0.4 
0.2 
0.5 
0.0 
0.1 
0.4 

- N H — 

P 

- 1 . 6 
- 0 . 9 
- 0 . 5 
- 1 . 0 
- 1 . 7 
- 3 . 1 
- 2 . 8 
- 2 . 9 
- 1 . 8 

1.0 

AÖ 

C6H5—CO—NH—CSe 

/ 
10.8 

10.9 

10.2 

9.3 
10.3 
0.8 

0 

- 3 . 7 -

- 3 . 2 

- 4 . 6 

- 4 . 6 
- 4 . 0 

0.7 

m 

•0.8 

0.4 

0.4 

0.9 
0.2 
0.7 

>—NH— 

P 

- 1.2 

- 0 . 1 

- 2 . 3 

- 2 . 2 
- 1 . 4 

1.1 

C6H5—CO—N H—CO-

/ 

9.9 
9.3 

9.6 
0.4 

0 

- 8 . 2 
- 9 . 0 

- 8 . 6 
0.6 

m 

0.0 
- 0 . 3 

- 0 . 2 
0.3 

- N H — 

P 

- 3 . 2 
- 5 . 5 

- 4 . 4 
1.6 

/ — ipso, o — ortho, m — meta, p — para, s — standard deviation. 

Table 5. 13C SCS Increments AS of the —CO—N H—C (=Z)— 
NH—R (Z = S, Se, O) Grouping on the Benzene Ring 
and the Standard Deviation s 

Z 

s 
s 
Se 
О 

R 

Aryl 
Alkyl 
Aryl 
Aryl 

ipso 

AS 

3.1 
3.9 
2.8 
3.6 

s 

0.2 
0.4 
0.3 
0.0 

ortho 

AÖ 

- 1 . 0 
- 0 . 8 
- 0 . 9 
- 0 . 8 

s 

0.0 
0.2 
0.1 
0.0 

meta 

AS 

0.7 
0.4 
0.8 

- 0 . 5 

s 

0.1 
0.2 
0.1 
0.1 

para 

AS 

6.3 
4.6 
5.5 
3.9 

s 

0.2 
0.4 
0.3 
0.0 

150.63), and isothioureas Va, Vb (173.20 to 174.39) 
differ considerably, but only the chemical shift val­
ues for C-2 of thioureas (176.26 to 176.48) were 
quite different from those of compounds I—IV (162.26 
to 167.15). The probable reason for this enhance­
ment is the existence of a conjugated isothiourea 
system C6H5—C(=0)N=C(SC2H5)—NH—C6H4—Y 
deshielding the carbonyl carbon [23]. 

The 13C NMR chemical shifts of compounds un­
der study served for calculation of 13C SCS incre­
ments A<5 of the C6H5—CO—NH—C(=Z)—NH— 
(Z = S, Se, O, Table 4) and —CO—NH—C(=Z)— 
NHR (Z - S, R - alkyl, aryl; Z = Se, R = aryl; Z = O, 
R = aryl, Table 5) groupings on the benzene ring. 
The results obtained showed similar SCS increments 
AS of the carbonylthiourea and carbonylselenourea 
groupings on the benzene ring as did C6H5—CO— 
NH—C(=Z)—NH— (Z = S, Se) and —CO—NH— 
C(=Z)—NHR (Z = S, Se) substituents. Nonetheless, 
the carbonyl urea grouping C6H5—CO—NH—CO— 
NH— is characterized by a relatively strong shield­
ing effect on the ortho (- 8.6) and para (- 4.4) car­
bons in the benzene ring when compared with that 
of thio and seleno analogues (Table 4); this finding 
is in accordance with the higher electron density 
observed at both benzoylurea nitrogens in regard to 
benzoylthioureas [2, 24]. 

This project was partly supported by the grant No. 1/990919/92. 
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