5-Benzyloxy-4-oxo-4*H*-pyran-2-carboxisopropylamide (*VIII*)

VI (0.0018 mol) was dissolved in minimum of absolute acetone. Isopropylamine (0.16 cm³) and triethylamine (0.27 cm³) were added. Mixture was stirred at laboratory temperature for 1 h, then mixed with excess of water and extracted with benzene. Evaporation of solvent gave solid product. Raw material was crystallized from benzene.

N-(4-Methylphenyl) amide of 5-benzyloxy-4-oxo-4H-pyran-2-carboxylic acid (IX) was prepared by analogous method.

REFERENCES

- ↑. Robiquet, A., Ann. 5, 95 (1833).
- 2. Japan 67, 1176 (1963); Chem. Abstr. 66, 84748y (1967).
- 3. Belg. 625, 114 (1963); Chem. Abstr. 60, 10651g (1964).
- 4. Belg. 651, 427 (1965); Chem. Abstr. 64, 9688f (1966).
- 5. Bowden, K., Heilbron, I. M., Jones, E. R. H., and Weedon, B. C. L., *J. Chem. Soc.* 1946, 39.

- 6. Weinhaus, H., Ber. 47, 322 (1914).
- 7. Japan 7005, 775 (1970); Chem. Abstr. 72, 132522t (1970).
- Nakagawa, K., Konaka, R., and Nakata, T., J. Org. Chem. 27, 1597 (1962).
- Campaigne, E. and Lesuer W. M., J. Am. Chem. Soc. 70, 1557 (1948).
- 10. Becker, H. D., Acta Chem. Scand. 16, 78 (1962).
- 11. Looker, J. H. and Shaneyfelt D. L., *J. Org. Chem.* 27, 1894 (1962).
- 12. Eur. 341, 948 (1989); Chem. Abstr. 113, 6031j (1990).
- 13. Jakopčic, K., Kojic, J., Orhanovic, Z., Stiplošek, Z., and Nagl, A., J. Heterocycl. Chem. 29, 107 (1992).
- 14. Kalyanam, N., Likhate, M. L., and Fuhrer, H., Indian J. Chem., B 30, 358 (1991).
- 15. Garkusha, G. A. and Kutornenko, G. A., *Zh. Obshch. Khim.* 31, 2573 (1961).
- Thomas, A. F. and Marxer, A., Helv. Chim. Acta 43, 469 (1960).
- 17. Campbell, K. N., Ackerman, J. F., and Campbell, B. K., J. Org. Chem. 15, 221 (1950).
- Curtis, R. G., Heilbron, I., Jones, E. R. H., and Woods, G. F., J. Chem. Soc. 1953, 457.
- 19. Fatiadi, A. J., Synthesis 1976, 67.
- Keil, B., Laboratorní technika organické chemie. (Laboratory Technique of Organic Chemistry.) P. 430. Academia, Prague, 1954.

Translated by J. Bransová

Synthesis and Antimycobacterial Effect of 3-Formylchromone *N*-Aroyl- or *N*-Alkylcarbonylhydrazones

^aH. M. EL-SHAAER, ^bM. LÁCOVÁ, ^cŽ. ODLEROVÁ, and ^bM. FURDÍK

^aDepartment of Chemistry, Ain Shams University, Cairo, Egypt

^bDepartment of Organic Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava

^cInstitute of Preventive Medicine, SK-833 01 Bratislava

Received 2 October 1992

Accepted for publication 6 July 1994

3-Formylchromone *N*-aroyl- or *N*-alkylcarbonylhydrazones were prepared by condensation reaction of 3-formylchromones with hydrazine derivatives in ethanol and toluene-*p*-sulfonic acid as catalyst. Some of the prepared compounds were tested against typical and atypical *Mycobacterium tuberculosis*.

Biological activities of chromone derivatives render them of considerable pharmaceutical and chemical interest [1]. In this work we describe the synthesis of 3-formylchromone *N*-aroylhydrazones and 3-formylchromone *N*alkylcarbonylhydrazones because many of hydrazide derivatives are of pharmacological importance [2], and also 3-formylchromones show interesting pharmacological activities [3—5], so we were interested to synthesize some new derivatives of chromones with prediction of new pharmacological activities.

4-Oxo-4*H*-1-benzopyrans in their reactions with phenylhydrazine behave like α , β -unsaturated ketones

and the nucleophile attacks at C-2 (Michael addition) with the opening of the pyrone ring to give pyrazole derivatives [6, 7].

In our study we found that the 3-formylchromones (*I*) were reacted with hydrazide derivatives (*II*) in ethanol and toluene-*p*-sulfonic acid as catalyst at

temperature 50—60 °C to give 3-formylchromone *N*aroyl- or · *N*-alkylcarbonylhydrazones (*IIIa—IIIp*) (Scheme 1). The starting aldehydes for compounds *IIIn*, *IIIo*, and *IIIp* were prepared according to [8].

The structure of compounds *IIIa—IIIp* was confirmed by IR spectra (Table 1) and ¹H NMR spectra

Table 1. Characteristic Data of Compounds III and IV

	w _i (calc.)/%			%			IR [*] , $\tilde{\nu}$ /cm ⁻¹		
Compound	Formula	и	/ _I (found)/	%	Yield	М. р.	v(CO) (s)	v(CO)	v(NH)
	<i>M</i> _r	С	Н	Ν	%	⊃°	Pyrone	Amide	
Illa	C ₁₇ H ₁₂ N ₂ O ₄ 308.29	66.23 66.35	3.92 3.95	9.09 8.96	58	222224	1620	1653	3251
IIIb	C ₁₆ H ₁₁ N ₃ O ₃ 293.28	65.53 65.64	3.78 3.73	14.33 14.41	50	198—201	1642	1700	3200
IIIc	C ₁₆ H ₁₈ N ₂ O ₃ 286.33	67.12 67.15	6.34 6.32	9.78 9.99	61	218—220	1634	1690	3280
IIId	C ₂₇ H ₄₀ N ₂ O ₃ 440.63	73.60 73.70	9.15 8.94	6.36 5.98	45	145—147	1628	1687	3280
llle	C ₁₈ H ₁₄ N ₂ O ₄ 322.32	67.07 67.28	4.38 4.22	8.69 8.58	56	220—222	1618	1641	3236
IIIf	C ₁₈ H ₁₄ N ₂ O ₆ 354.32	61.02 61.09	3.98 4.03	7.91 7.74	50	215—217	1627	1647	3251
IIIg	C ₁₇ H ₁₃ N ₃ O ₃ 307.31	66.44 66.69	4.26 4.38	13.67 13.48	52	207—209	1634	1671	3184
IIIh**	C ₁₆ H ₁₀ CIN ₃ O ₃ 327.73	58.64 58.38	3.07 3.16	12.82 12.94	56	208—210	1644	1687	3279
IIIi	C ₁₅ H ₁₆ N ₂ O ₄ 288.30	62.49 62.53	5.59 5.69	9.72 9.89	61	223—225	1620	1664	3213
IIIj	C ₂₆ H ₃₈ N₂O₄ 442.60	70.56 70.42	8.65 8.86	6.33 6.15	46	199—201	1621	1665	3221
llik	C ₁₇ H ₁₂ N₂O₅ 324.29	62.96 62.98	3.73 3.73	8.64 8.24	50	240—242	1617	1649	3153
1111	C ₁₇ H ₁₂ N ₂ O ₇ 356.29	57.31 57.54	3.39 3.48	7.86 8.14	49	239—240	1629	1645	3144
IIIm	C ₁₆ H ₁₁ N ₃ O ₄ 309.28	62.14 61.80	3.58 3.58	13.58 13.12	50	250—252	1625	1694	3267
IIIn	C ₁₆ H ₁₁ N ₃ O ₅ 325.3	59.08 58.84	3.39 3.40	12.92 12.68	64	254—255	1615	1690	3260
Illo	C ₂₂ H ₂₃ N₃O₄ 393.3	67.20 66.90	5.85 5.77	10.69 10.36	71	231—233	1618	1688	3156
IIIp	C ₁₇ H ₁₂ N ₂ O ₅ 324.3	62.96 62.63	3.70 3.71	8.64 8.39	62	262263	1612	1649	3150 3065
IVa	C ₁₁ H ₁₀ N ₂ O ₃ 218.1	60.55 60.28	4.58 4.56	12.84 12.72	73	279—281	-	-	-
/Vb***	C ₁₀ H ₈ N ₂ O₄ 220.18	54.55 54.20	3.63 3.67	12.72 12.42	68	304—306	-	-	-

*In paraffin oil. **% Cl w₁(calc.), w₁(found): 10.82, 10.87. ***IR for $Vb \tilde{v}$ /cm⁻¹: 3332 (br), 3465 (br) v(OH); 1610, 1615 v(C=N).

Compound	δ
Ille	11.96 (s, 1H, NH), 8.80 (s, 1H, H-2), 8.63 (s, 1H, H-9), 6.92—8.06 (m, 7H, H _{arom}), 2.45 (s, 3H, CH ₃)
IIIg	12.11 (s, 1H, NH), 8.65—8.82 (m, 4H, H-2, H-9, H-15), 7.64—7.91 (m, 5H, H _{arom}), 2.45 (s, 3H, CH ₃)
IIIh	12.15 (s, 1H, NH), 8.74—8.89 (m, 4H, H-2, H-9, H-15), 7.84—8.06 (m, 5H, H _{arom})
IVa	10.4 (br, 1H, OH-2'), 9.64 (s, 1H, H-5), 9.02 (br, 1H, NOH), 7.79 (d, 1H, H-6'), 7.49 (dd, 1H, H-4', $J_{6',4'}$ = 2.1 Hz, $J_{4',5'}$ = 8.4 Hz), 7.37 (s, 1H, H-3), 7.29 (d, 1H, H-3'), 2.40 (s, 3H, CH ₃)
IVb	10.48 (br, 1H, OH-2'), 9.89 (br, 1H, OH-5'), 9.65 (s, 1H, H-5), 8.92 (br, 1H, NOH), 7.36 (s, 1H, H-3),

7.33 (d, 1H, H-6'), 7.27 (d, 1H, H-3'), 7.09 (dd, H-4', J_{6',4'} = 3.0 Hz, J_{4',3'} = 7.9 Hz)

Table 2. ¹H NMR spectra of Compounds IIIe, IIIg, IIIh, IVa, and IVb

Compounds IIIe, IIIg, IIIh were measured on Tesla BS 487 A instrument (80 Hz) in DMSO. Compounds IVa, IVb were measured on Varian VXR-300 apparatus in DMSO.

(Table 2). The IR spectra of *N*-(2-hydroxybenzoyl)hydrazones (*IIIa*, *IIIe*, *IIIk*, *IIIp*) indicated strong band at $\tilde{v} = 1617$ —1620 cm⁻¹ for carbonyl group of pyrone, band at $\tilde{v} = 1641$ —1653 cm⁻¹ of v(CO) amide and broad band centred at $\tilde{v} = 3153$ —3251 cm⁻¹ of v(NH) and v(OH) groups. The other derivatives of *III* possess the similar IR values.

The ¹H NMR spectra of *N*-(2-hydroxybenzoyl)hydrazone (*IIIe*) showed a singlet signal at δ = 8.80 of H-2 and a singlet signal at δ = 8.63 of H-9. Also the ¹H NMR spectra of hydrazones *IIIg*, *IIIh* showed multiplet signals at δ = 8.65—8.89 of H-2, H-9, and H-15.

In our study we found that the reaction between equimolar quantities of hydrazones *IIIg* or *IIIm* and hydroxyammonium chloride in pyridine gave derivatives of isoxazole *IVa* and *IVb* after removal of the hydrazide group (Formula 1).

The structure of prepared isoxazole derivatives was confirmed by ¹H NMR spectra (Table 2).

Some derivatives of the prepared compounds were tested against *Mycobacterium tuberculosis* ($H_{37}R_V$), *Mycobacterium kansasii* (PKG₈), *Mycobacterium avium* (80/72), and *Mycobacterium fortuitum* (1021).

In the test we used six compounds (*IIIb*, *IIIf*, *IIIg*, *IIIi*, *IIII*, *IIIm*) at concentrations $\rho/(\mu g \text{ cm}^{-3})$ 1, 10, 25, 50, and 100 using Isoniazid as compared sample. The results of the test on typical and atypical mycobacteria showed that the *N*-(4-pyridinecarbonyl)hydrazone derivatives *IIIb*, *IIIg*, *IIIm* exhibit activity against typical *Mycobacterium* (H₃₇R_v) as Isoniazid and the other derivatives *IIIf*, *IIIi*, *IIII* are inactive.

EXPERIMENTAL

The IR spectra were measured on a Specord 75 IR (Zeiss, Jena) apparatus in the region $\tilde{v} = 400$ —4000 cm⁻¹ using suspension in paraffin oil. Instruments for measurements of ¹H NMR spectra are given in Table 2.

The experimental method for testing on typical and atypical mycobacteria was used according to the published method [9].

3-Formylchromone *N*-Aroyl- or *N*-Alkylcarbonylhydrazones *Illa—IIIp*

To solutions of 3-formylchromones (0.01 mol) in least amount of ethanol, solution of hydrazide derivatives (0.01 mol) in least amount of ethanol and one crystal of toluene-*p*-sulfonic acid were added. The mixture was stirred at temperature 50—60 °C for 30 min, filtered off, and the solid produced was boiled in ethanol, filtered off on hot to give *IIIa*—*IIIp* (Tables 1 and 2).

4-[(2-Hydroxyaryl)hydroxyiminomethyl]isoxazoles (IVa, IVb)

A mixture of *IIIg*, *IIIf* or *IIIk* (0.022 mol) in pyridine (3 cm³) and hydroxylammonium chloride (0.15 g; 0.22 mol) in water (1 cm³) was refluxed for 4 h. The cooled mixture was poured over crushed ice and acidified with acetic acid and the solid that separated, was filtered off and recrystallized from cyclohexane or dioxane.

Acknowledgements. The authors are indebted to Ing. E. Greiplová for elemental analysis, Dr. A. Perjéssy, DrSc. for IR spectral measurements, and Dr. Matulová for ¹H NMR measurements.

REFERENCES

 Nohara, A., in *Drugs Affecting the Respiratory System*. (Temple, D. L., Editor.) Chapter 7. American Chemical Society, Washington, 1980.

- 2. Bernstein, J., Am. Rev. Tuberc. 65, 357 (1980).
- Buděšinský, Z. and Protiva, M., Synthetické léčiva. (Synthetic Drugs.) Publishing House of the Czechoslovak Academy of Sciences, Prague, 1954.
- 4. Klutchko, S., Kaminsky, D., and von Strandtmann, M., U.S. 4,098,799,04 (1978); Chem. Abstr. 90, 22813 (1979).
- Nohara, A., Sugihara, H., and Ukawa, K., Jpn. Kokai Tokkyo Koho 78, 111 070 (1978); Chem. Abstr. 90, 54828 (1979).
- Schönberg, A. and Sidky, M. M., J. Am. Chem. Soc. 75, 5128 (1953).
- Baker, W., Horborne, J. B., and Ollis, W. D., J. Chem. Soc. 1952, 1305.
- 8. Furdík, M., *M.Sc. Thesis*. Faculty of Natural Sciences, Comenius University, Bratislava, 1992.
- Odlerová, Ž., Studia Pneumol. Phthiseol. Czechoslov. 36, 156 (1976).

Translated by M. Lácová

Preparation and Pesticide Properties of Some 1-Substituted (1*H*)-1,2,4-Triazoles

^aŠ. STANKOVSKÝ, ^aK. ŠPIRKOVÁ, ^aE. JEDLOVSKÁ, and ^bV. KONEČNÝ

^aDepartment of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, SK-812 37 Bratislava

^bResearch Institute of Chemical Technology, SK-831 06 Bratislava

Received 20 January 1994

The preparation, infrared and ¹H NMR spectra of five types of substituted 1-imidoyl-(1H)-1,2,4-triazoles are described. Herbicidal, fungicidal, and growth-regulating properties, tested on selected plants, are given.

So far, numerous pesticidally active compounds possessing the 1-substituted (1*H*)-1,2,4-triazole ring system have been prepared, and commercialized [1]. Triazoles with an imidoyl moiety have recently been added to this family of compounds (Formulas 1 and 2). Some diarylformamidinoyltriazoles [2] have been found to possess good fungicidal and nematocidal activity (type *II*, Formula 1), structures containing sulfonamide group were good herbicides [3], *S*-benzoylthiourea-substituted derivatives (type *V*, Formula 2) displayed bactericidal and fungicidal properties [4].

In our effort to enlarge the family of 1-substituted (1*H*)-1,2,4-triazoles we described the synthesis and biological properties of some azolylquinazolines [5], in which the imidoyl moiety was built in the pyrimidine ring. Now we describe another five types of imidoyl-triazoles, namely four *N*-phenylbenzimidoyltriazoles *la—ld*, nine *N*-phenylformamidinoyltriazoles *lla—lli*, and four bis-triazolyl derivatives, formally guanidines *llla—lld*. Compounds *IVa*, *IVb* are derivatives of *O*-methylthiourea, *Va*, *Vb* can be classified as *N*-phenylhydroxamoyltriazoles.

