Coordination Complexes of S-Benzyl β -N-(Ferrocenyl)methylenedithiocarbazate

L. QING-SHAN, L. YONG-MIN, W. XIAO-LI, and M. YONG-XIANG*

National Laboratory of Applied Organic Chemistry, Lanzhou University, 730000 Lanzhou, China

Received 2 January 1996

S-Benzyl β -N-(ferrocenyl)methylenedithiocarbazate (HBfm) and its coordination complexes, M(Bfm)₂ · nH₂O (M = Cu²⁺, Ni²⁺, Co²⁺, Zn²⁺, Cd²⁺, Hg²⁺, and Mn²⁺) have been prepared by the reaction of HBfm with the transition metal(II) acetate in ethanol and are characterized by elemental analyses, molar conductivities, IR, NMR, UV spectra, and thermal analyses. The ligand coordinates to central ions in the thio-enolic form with the mole ratio 2:1.

Thio-Schiff bases and their metal complexes have received great attention during recent years [1-5]. A number of these metal chelates have shown anticancer and antitumour activities [6-8]. The bactericidal and fungicidal activities of the thio-Schiff bases may be due to the combination of the active thicketonic sulfur and the azomethine nitrogen with the fungi cells, as well as the inhibition to the fungi growth. Since the ligand is coordinated to the central metal atom through thicketonic sulfur and azomethine nitrogen and forms a chelate, perhaps it would increase fungitoxic action [9]. Many reports have shown that small changes in the ligands may lead to enhanced anticancer and antiviral activities of the metal complexes [10], e.g. the replacement of an aromatic group by the ferrocenyl moiety in penicillins and cephalosporins can improve their antibiotic activity [11, 12]. In the profound research of their inhibition effect on some bacteria and fungi, in this paper we report on the preparation and characterization of the S-benzyl β -N-(ferrocenyl)methylenedithiocarbazate (HBfm) and its complexes with some metal(II) ions.

EXPERIMENTAL

Materials and Measurements

All the solvents were dried by the previously reported method [13]. S-Benzyl dithiocarbazate and formylferrocene were prepared according to the literature method [14, 15]. All the solvents and other reagents were anal. grade.

IR spectra were recorded with a Nicolet-5DX spectrometer using KBr discs in the range 200-4000 cm⁻¹. UV spectra were measured with a Shimadzu

UV-240 spectrophotometer in the range 190—600 nm using a solution in DMF and NMR spectra on an FT-80A spectrophotometer using CDCl_3 and DMSO d_6 as the solvents and TMS as an internal standard. Conductivity measurements were performed with a DDS-IIA conductometer with DMF as the solvent at room temperature. TG analyses were carried out on a DuPont 1090 thermal analyzer between room temperature and 800 °C in a nitrogen atmosphere.

Preparation of S-Benzyl β -N-(Ferrocenyl)methylenedithiocarbazate (HBfm) and Complexes M(Bfm)₂ · nH₂O

A solution of formylferrocene (0.02 mol) in ethanol (50 cm³) was added to a solution of S-benzyl dithiocarbazate (0.022 mol) in ethanol (50 cm³) containing several drops of glacial acetic acid, and refluxed for 4 h. The dark red precipitate was filtered off after cooling, washed with cold ethanol, recrystallized with benzene and dried *in vacuo*. Yield 87 %, m.p. = 160—162 °C.

An anhydrous ethanolic solution (20 cm³) of $M(OAc)_2 \cdot nH_2O(0.5 \text{ mmol})$ (M = Cu²⁺, Ni²⁺, Co²⁺, Zn²⁺, Cd²⁺, Hg²⁺, and Mn²⁺) was added to an anhydrous ethanolic solution (20 cm³) of HBfm (1 mmol) and refluxed for 6 h. The dark red product was separated, washed with acetone and diethyl ether, and dried *in vacuo*. Yield > 80 %.

RESULTS AND DISCUSSION

The new complexes are dark-coloured solids, stable in the solid state, insoluble in water and nonpolar organic solvents, but soluble in polar organic solvents such as DMF, CHCl₃, and DMSO. The ele-

^{*} The author to whom the correspondence should be addressed.

β -N-(FERROCENYL)METHYLENEDITHIOCARBAZATE

Table 1	. Т	he	Elemental	Analys	ses and	Some	Physical	Properties	of the	Ligand	and Its	Complexe
---------	-----	----	-----------	--------	---------	------	----------	------------	--------	--------	---------	----------

	Compound	Formula	Colour	$w_{ m i}({ m found})/\%$ $w_{ m i}({ m calc.})/\%$			Yield	M.p.	Λα	
				С	н	Ν	%	°C	$\Omega^{-1}~{ m cm}^2~{ m mol}^{-1}$	
	HBfm	$\mathrm{C_{19}H_{18}N_2S_2Fe}$	Red	57.90	4.60	7.31	87	160—162	4.15	
				57.87	4.60	7.11				
Ι	$Cu(Bfm)_2 \cdot H_2O$	$C_{38}H_{36}N_4OS_4Fe_2Cu$	Dark	52.79	4.04	6.74	82	174 - 176	2.35	
			red	52.57	4.18	6.45				
Π	$Ni(Bfm)_2$	$C_{38}H_{34}N_4S_4Fe_2Ni$	Dark	54.07	3.79	6.63	82	214 - 217	5.23	
			red	53.99	4.05	6.63				
III	$Co(Bfm)_2 \cdot 3H_2O$	C38H40N4O3S4Fe2Co	Dark	50.72	4.01	6.17	80	170 - 172	4.45	
	, ,		red	50.73	4.48	6.23				
IV	$Zn(Bfm)_2$	C38H34N4S4Fe2Zn	Dark	53.44	4.32	6.38	81	110-112	5.45	
	×		red	53.56	4.02	6.58				
V	Cd(Bfm) ₂	C38H34N4S4Fe2Cd	Red	50.53	3.71	6.23	82	126 - 128	4.78	
	()-	00 01 1 1 2 1		50.76	3.81	6.23				
VI	Hg(Bfm)2 · H2O	C28 H26 N4 OS4 Fea Hg	Brown	45 31	3 31	5 56	80	148-149	4.55	
		0381130114 0041 02116	Brown	45 40	3.60	5 57	00	110 110	1.00	
VII	$Mn(Bfm)_{n}$	Cas Hay NAS, Fee Mr.	Brown	54.46	3.88	6 78	80	164-168	4 50	
, 11	mm(Dim)2	0381134114041 C21011	DIOWII	54.92	4.07	6.66	00	104 -100	1.00	
				04.23	4.07	0.00				

a) Molar conductivities.

Table 2. Some Characteristic IR Data for the Ligand and Its Complexes

Compound	$\tilde{\nu}_{ m i}/{ m cm}^{-1}$								
	ν(O—H)	ν (N—H)	$\nu(C=S)$	ν(C=N)	$\nu(N-N)$	ν(C—S)	g(Fe—ring)	ν(M—S)	
HBfm	_	3081 w	1229 m	1597 vs	1084 m		487 vs	378 w	
Ι	3310 w, sh			1592 vs	1106 w	568 w	482 vs	378 w	
II				1584 vs	1105 w	564 w	484 vs	380 w	
III	3400 w, sh			1583 vs	1106 w	565 w	492 vs	381 w	
IV		—		1585 vs	1106 w	563 w	478 vs	372 w	
V				1591 vs	1106 w	561 w	480 vs	386 w	
VI	3415 w, sh			1590 vs	1106 w	564 w	485 vs	373 w	
VII		—	—	1590 vs	1106 w	563 w	480 vs	369 w	

vs - very strong, s - strong, m - medium, w - weak, sh - shoulder.

mental analyses and some physical properties of the ligand and its complexes are given in Table 1. The suggested structures of the complexes are shown in Fig. 1. The elemental analyses show the complexes have a 1:2 (metal:ligand) stoichiometry and the ligand HBfm coordinates to the metal ions in the thioenolic form as a bidentate donor. Their molar conductivity data, $2.35-5.45 \ \Omega^{-1} \ \mathrm{cm^2 \ mol^{-1}}$, show that all the complexes are nonelectrolytes [16], which is consistent with the suggested structures of complexes.

The important IR frequencies of the ligand and its complexes along with their relative assignments are given in Table 2. The bands of the ligand appearing at 3081 cm⁻¹, 1597 cm⁻¹, 1515 cm⁻¹, 1229 cm⁻¹, and 1084 cm⁻¹ may be assigned to the vibrations of ν (N—H), ν (C=N), δ (N—H), ν (C=S), and ν (N—N), respectively [17]. The ligand does not show any band of the ν (S—H) at about 2500 cm⁻¹, which implies that the ligand maintains the thione form in the solid state [18]. The IR spectra of the chelates show significant changes as compared with that of the ligand.

Fig. 1. Suggested structure of the complexes. $M = Cu^{2+}$, Ni^{2+} , Co^{2+} , Zn^{2+} , Cd^{2+} , Hg^{2+} , and Mn^{2+} , n = 0—3.

The bands $\nu(C=S)$, $\nu(N-H)$, and $\delta(N-H)$ disappear, which indicates that the ligand enolizes in solution and forms a bond between sulfur and metal(II) ions through replacing the proton in the mercapto group. The $\nu(N-N)$ is shifted to higher frequency and $\nu(C=N)$ to lower frequency. This information suggests that the azomethine nitrogen and thio-enolic sulfur

after deprotonation coordinate to the metal ion as a bidentate ligand. In addition, the characteristic frequencies of the ferrocenyl moiety appear at *ca.* 3073 cm⁻¹, 1469 cm⁻¹, 1068 cm⁻¹, 823 cm⁻¹, and 482 cm⁻¹. The appearance of ν (O—H) of water in complexes *I*, *III*, and *VI* shows that these results are in accord with their elemental analyses.

The UV spectral data of the ligand and its complexes are given in Table 3. The K band $(\pi - \pi^* \text{ transi$ $tion})$ and the R band $(n - \pi^* \text{ transition})$ of the ligand are observed at 284 nm and 333 nm, respectively, but in the complexes, a significant bathochromic shift occurred, resulting from chelation of the ligand to metal ion and forming a conjugate system which made $\pi - \pi^*$ and $n - \pi^*$ transitions easier. A broad and weak absorption of band III arises from transition of 3d electron on iron to nonbonding or antibonding orbitals of the cyclopentadienyl ring.

The ¹H NMR spectral data of the ligand and complex V are shown in Table 4. The signal of the N—H proton in the free ligand appears at $\delta = 10.43$ as a singlet, which disappears on deuteration of D₂O, however, in the spectra of the complexes it does not exist.

Table 4. ¹H NMR Data of the Ligand and Cd(Bfm)₂

Compound	Characte	ristic absorpt $\lambda({ m DMF})/{ m nm}$	ion bands	
	I	II	III	
HBfm	284	333	461	
Ι	308	349	463	
II	314	367	489	
III	315	366	486	
IV	289	342	480	
V	316	355	491	
VI		330	471	
VII	310	345	472	

Table 3. UV Data of the Ligand and Its Complexes

The result indicates that the ligand coordinates to the metal ions in the thio-enolic form.

The thermal properties of the ligand and some complexes were investigated by TG analyses and the data are listed in Table 5. The ligand begins to decompose at 170 °C and loses $SCH_2C_6H_5$, $C_2H_2N_2S$, and $C_{10}H_9$ at 170—230 °C, 230—490 °C, and 490—600 °C,

	adara araa		han a ar agus tarin a sa an	δ		
Compound	N—H	HC=N	C_5H_4	C_5H_5	CH_2	C_6H_5
HBfm	10.43 (s, 1H)	7.63 (s, 1H)	4.46 (m, 2H) 4.66 (m, 2H)	4.24 (s, 5H)	4.39 (s, 2H)	7.30—7.42 (m, 5H)
Cd(Bfm) ₂	_	7.65 (s, 2H)	4.48 (m, 4H) 4.92 (m, 4H)	4.17 (s, 10H)	4.39 (s, 4H)	7.29—7.39 (m, 10H)

s - singlet, m - multiplet.

Table 5. Thermal Analysis Data of the Ligand and Some Complexes

	Compound	Temperature interval °C	Leaving group	Mass loss/% w(found)/% (w(calc.)/%)
2	HBfm	170-230 230-490 490-600 up to 800	SCH_2Ph CH=N-NH-C=S $C_{10}H_9$ residual Fe	$\begin{array}{c} 32.0 \ (31.2) \\ 20.0 \ (21.6) \\ 33.0 \ (32.8) \\ 15.0 \ (14.2) \end{array}$
III	$Co(Bfm)_2 \cdot 3H_2O$	230—260 260—490 490—580 580—730 up to 800	two CH ₂ Ph and three H ₂ O two CH= N - N = C two C ₁₀ H ₉ S residual CoS and FeS (1:2)	27.0 (26.3) 12.0 (11.8) 29.0 (28.7) 4.0 (3.6) 28.0 (29.6)
VI	$Hg(Bfm)_2 \cdot H_2O$	180-260 260-460 460-700 up to 800	two CH ₂ Ph, two CH=N-N=C, S, and H ₂ O two C ₁₀ H ₉ HgS and two S residual 2Fe	33.0 (33.6) 26.0 (25.7) 29.0 (29.5) 13.0 (11.1)

respectively. The residues decompose completely at 800 °C leaving Fe. The TG analyses of complex III and VI show that they lose their water at 180-260 °C, which indicates that the water in molecule is coordinated. The thermal decomposition of other group is similar to that of the ligand. The mass loss at 460-700 °C of complex VI was related to Hg.

Summarizing the above-mentioned results, in IR spectra of these complexes the $\nu(C=S)$, $\nu(N-H)$, and $\delta(N-H)$ disappeared, a new band, $\nu(C-S)$ exhibited and the $\nu(C=N)$ was shifted to lower frequency compared with those of their ligand. In the ¹H NMR spectra of the ligand, the proton signal of the N-H disappeared on deuteration with D₂O, and it disappeared too, as expected after forming complexes by the thio-enolic form. So these results indicate that the ligand was thio-enolized firstly, then coordinated to metal cations accompanied by the leave of the active proton on SH and formation of the weak dissociated HOAc as follows

 $\begin{array}{l} FcCH = \!\!\! NNHC(=\!\!\!\! S)SCH_2Ph \\ \rightleftharpoons FcCH = \!\!\! NN = \!\!\!\! C(SH)SCH_2Ph \\ (HBfm) \\ \hline \end{array} \\ \begin{array}{l} \overset{M(OAc)_2}{\longrightarrow} M(Bfm)_2 + 2HOAc \end{array}$

Thus, we propose a plausible structure for the complexes $M(Bfm)_2 \cdot nH_2O$ as shown in Fig. 1.

Acknowledgements. This research has been supported by the National Science Foundation of China.

REFERENCES

- Gary, B. S. and Kapur, L., *Inorg. Chim. Acta* 170, 177 (1990).
- Goel, S., Pandey, O. P., and Sengupta, S. K., Synth. React. Inorg. Met.-Org. Chem. 21, 1001 (1991).
- Zhao, G., Cao, Y., and Ma, Y. X., Synth. React. Inorg. Met.-Org. Chem. 23, 1379 (1993).
- Huang, G. S., Liang, Y. M., and Ma, Y. X., J. Coord. Chem. 26, 237 (1992).
- Huang, G. S., Liang, Y. M., Wu, L. Z., and Ma, Y. X., Youji Huaxue(China) 12, 408 (1992).
- Ali, M. A. and Livingstone, S. E., Coord. Chem. Rev. 13, 101 (1974).
- Klayman, D. L., Scovill, J. P., Bartosevich, J. F., and Bruce, J., J. Med. Chem. 26, 35 (1983).
- Scovill, J. P., Klayman, D. L., Lambros, C., Childs, G. E., and Nortsh, J. D., J. Med. Chem. 27, 87 (1984).
- Dashora, R., Singh, R. V., and Tandan, J. P., Synth. React. Inorg. Met.-Org. Chem. 13, 209 (1983).
- Ali, M. A., Livingstone, S. E., and Phillips, D. J., *Inorg. Chim. Acta* 7, 179 (1973).
- 11. Edwards, E. I., Epton, R., and Marr, G., J. Organomet. Chem. 85, C23 (1975).
- Rochett, B. W. and Marr, G., J. Organomet. Chem. 123, 205 (1975).
- Vogel, A. I., A Text Book of Organic Chemistry. Longmans, London, 1974.
- Das, M. and Livingstone, S. E., Inorg. Chem. Acta 9, 5 (1976).
- Graham, P. J., Lindsey, R. V., Parshall, G. W., Peterson, M. L., and Whitman, G. M., J. Am. Chem. Soc. 79, 3416 (1957).
- 16. Geary, W. J., Coord. Chem. Rev. 7, 81 (1971).
- Silverstein, R. M., Bassler, G. C., and Morrill, T. C., Spectrometric Identification of Organic Compounds. 3rd Edition. John Wiley, New York, 1974.
- Gingras, B. A., Hornal, R. W., and Bayley, C. H., Can. J. Chem. 38, 712 (1960).