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Applicat ions of hierarchical (or multilevel) technique for solution of some optimized control prob
lems in fermentat ion systems are described. Three approaches to control of biotechnological complex 
systems are introduced. Results presented show some advantages of the me thod of hierarchical con
trol in comparison to some t radi t ional one-level opt imizat ion methods . In solving this problem two 
control schemes are used. In the first control scheme the me thod of objective coordination is used. 
In t he second one the prediction me thod of coordination is used, with the aim to minimize selected 
dis turbances in s ta te and control variables system. 

In the last years an emphasis has been laid on ap
plicability of optimal control in commercial fermen
tation. In the paper a possibility and usefulness of 
application of hierarchical optimization technique in 
D-gluconic acid fermentation is outlined. The process 
of D-gluconk acid production was chosen, because it 
utilizes the most of biochemical processes which fer
mentation processes usually consist of. Besides this 
D-gluconic acid is also commonly used in food-stuff 
production, in pharmacy, and in other industries. 

In the paper a nonlinear model of this process is in
troduced. Objective function is maximized for certain 
dosage of fermentation broth with respect to concen
tration of D-gluconic acid. 

Three control schemes will be introduced. In the 
first scheme one-level optimization technique on the 
basis of conjugate gradient method is used. In the sec
ond one a hierarchical approach is realized using the 
aim coordination method. In the third scheme the pre
diction method applied to minimization of any devia
tion in state and command variables from the desired 
level which follows after disturbance in any or in all 
states is used. 

Process Description 

Conversion of D-glucose to D-gluconic acid is a sim
ple oxidation of aldehydic group to carboxyl group. 
This conversion may be performed by help of some 
specific microorganisms. 

The whole reaction mechanism can be described as 
follows. 

Cell growth 

D-glucose + cells —• cells (A) 

D-Glucose oxidation 

D-glucose 
oxidase 

D-glucose + O2 • D-gluconolactone + H 2 0 (B) 

D-Gluconolactone hydrolysis 

D-gluconolactone + H 2 0 —• D-gluconic acid (C) 

H2O2 decomposition 

catalysis 
H2O2 > H2O + 1/2 O2 (D) 

As can be seen from these equations, D-gluconic 
acid is produced by the enzymatic oxidation of D-
glucose to D-gluconolactone and D-gluconolactone hy
drolysis. The by-product of the first reaction, hydro
gen peroxide, is decomposed to water and oxygen dur
ing enzyme catalysis. 

Dynamic mathematical model of this process is of 
the form published in [1] 

±i = b\X\ (D 

x2 = ^ í l £ i _ 0.9082^2 (2) 
04 + X4 
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^3 = Ь5Х2 

XA = -1.011 

with initial conditions 

6 3 ^ 1 X 4 

64 H- £4 

(S) 

(4) 

xi(0) = 0.5 OD cm"3 x2(0) = 0.0 mg cm - 3 

s3(0) = 0.0 mg cm - 3 x4(0) = 50 mg cm"3 (5) 

where x\ is the cell optical density (OD cm - 3 ) , 
x-2 D-gluconolactone concentration (mg cm - 3 ) , £3 D-
gluconic acid concentration (mg cm"3), ж4 D-glucose 
concentration (mg cm" 3 ) , bi ( h _ 1 ) , b2 (OD cm" 3 ) , 
63 (mg O D - 1 h - 1 ) , 64 (mg cm" 3 ) , and 65 ( h - 1 ) are 
constants, and dots denote a time derivative of the 
respective variables. 

Limitations on quantities в and pH are following 

25 < в < 35.4 

5.4 < pH < 7.0 

(б) 

(7) 

where в is temperature/ °C. 
Solution of the problem is based on the linearized 

system model. 

The linearized system description is as follows from 

N-

±1 = -1.05a;i - O.Olwi - 0.4w2 (8) 

x2 = 0.003xi -6.7x 2 + I.7.X4 - 6 x 10_ 4wi - 8 x 10 _ 3 u 2 

(9) 

x3 = 7.4x2 + 8 x 10 _ 4 ui + 0.02w2 

i., = -0.003xi - 1.7xi 

(10) 

1.1 x lO-'tf! - 2 . 5 x 10~3u? 

(11) 

Optimizat ion M e t h o d s 

The objective of this study is to obtain 99.9 % of 
maximum theoretical yield of D-gluconic acid during 
8 h, then to minimize any disturbances of state and 
of command variables which start to influence the fer
mentation process in the 8th hour. The aim of this 
procedure is to determine the control vector и € U, 
which maximizes the objective function 

J = x3(t{) U = Sh (12) 

with respect to constrains (6) and (7), where U is the 
time, after which disturbances start to influence the 
system. 

The necessary optimal control conditions were ob
tained from the principle of maximum. 

First scheme 

In this scheme optimum values for problem so
lution are obtained using the conjugate gradient 
method. 

Second scheme 

In this scheme the optimum values are obtained 
by decomposition of the whole system into subsys
tems with the aim to decrease the claim on memory 
capacity of a micro-processor system. This approach is 
the so-called hierarchical one or multilevel technique. 
These subsystems are coordinated by the help of a co
ordinator. The system is decomposed into two subsys
tems. In Fig. 1 a scheme of the subsystem coordination 
is depicted. 

71, 
M 

coordinator 

ß 
M t M 

SS1 
К л 

Kl 
Xi 

я*, 
M 

SS2 

Fig . 1. Block diagram of the hierarchical control of complex 

(for D-gluconic acid production). SSI, SS2 - subsystems 

No. 1 and No. 2. 

The first subsystem 

Let us consider that the first subsystem is de
scribed by eqns (1) and (3) and the second one by 
eqns (2) and (4). Let the coupling quantities be as 
follows 

7Ti = X2 a n d 7Г2 = X\ 

Then the objective function (12) will be 

(13) 

I = x3(tf)+ / f [ A ( 7 T 1 - x 2 ) + / 3 2 ( 7 r 2 - a ; 1 ) ] d i (14) 
Jo 

where ß = [ßi,/?2]T is the Lagrangian multiplicative 
vector and the Hamiltonian function is 

H = ßxiiri -x2) + /?2(тг2 -хг)+р! 

7Г2:Г4 

bixi [ 1 - у 

+ Р2 

+ Р4 

&4 + #4 
- 0.908265ж2 + P3[bs*i] 

-1.011 Ь3 

7Г2Х4 

Č>4 + # 4 
(15) 
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For the first subsystem there will be maximized 

и 

0 
I = x3{tt)+ í (ßi*i - foxi)dt 

Jo 

subject to 

x\ = b\Xi 

and with initial conditions 

zi(0) = 0.5 rr3(0) = 0.0 mg cm"3 

(16) 

K) # 3 = Ьб7Г1 (17) 

(18) 

Then the Hamiltonian function for the first sub
system is 

Hi = ßiTTi - ß2xi + p i bixi 0-t) 
For the second subsystem there will be maximized 

/o 
h= [ \ß2*2 - ßix2)dt 

Jo 

+ Рз(Ьь7Г1) 

(19) 
d 

(20) 

subject to 

X2 = Ь з г ^ - Т " - 0.9082fc5x2 64 + X4 

xA = -1.0011Ď3 

with initial parameters 

7Г2Ж4 

64 + X4 

x2(0) = 0 0:4(0) = 50.0 mg cm - 3 

(21) 

(22) 

(23) 

Then the Hamiltonian function for the second subsys
tem is following 

H2 = /?27Г2 - ßlX2 + V2 

7Г2Х4 

7Г2Ж4 
* 1 — ; — 

04 + X4 

0.908265x2 

+ P4 -1.011&3 
64 + X4 

(24) 

For the coordination the predictive principle is 
used. In this principle the global control term obtains 
the values for ß(t) and n(t). 

The method of data equality, see [2, 3], is utilized 
for data determination of coordination variables 7Г; 
and ßi. 

This method manifests good convergence proper
ties. 

Coordination variables are as follows 

^ / + 1> = 4 " 
4I+1) = ^ 
ßil+1) = -bíW 

# + 1 ) = (1.011pi'> -
m Ь{ПХ{1) 

Р2 hin + j n 

(25) 

(26) 

(27) 

(28) 

where p is the costate vector and W is the iteration 
index. 

For the second level an error e was chosen as 

-ľ 
Jo 

E K ( / + 1 ) - - , ( / ) I 
Lt=i 

di (29) 

Hence a two-level optimization structure is consid
ered. At the first level for given 7Г and /3 two indepen
dent minimization problems are solved by using the 
conjugate gradient method. At the second level the 
7Г and /3 trajectories are utilized by using the interac
tions balance method to maximize the global objective 
function. 

The third scheme utilizes the objective coordi
nation method and predictive coordination method. 
Both these methods are described in the following two 
chapters. 

A P P L I C A T I O N O F O B J E C T I V E 
C O O R D I N A T I O N M E T H O D 

The aim is to reach optimal states by decompo
sition of the whole system into subsystems. In this 
way the required size of microcomputer memory is de
creased. This method is called a hierarchical control 
method [4]. The whole system is decomposed into the 
two subsystems. 

The problem solution is based on the linearized 
system model. 

The coupling quantities are 

7Ti = X2 7T2 = Xi (30) 

The system block diagram is depicted in Fig. 1. 
Functional has the form 

J = x3{tf)+ í {/3I(TTI - x2) + ß2(ir2 - Xl) 
Jo 

+ 0.5[(ui - 35.4)2 + (u2 - 7)2]}d* (31) 

where ß = [ßi,ß2]
T is the vector of Lagrangian mul

tipliers. 
The Hamiltonian function has the form 

H = ß1(n1 - x2) + ß2(n2 - хг) 

+ 0.5[(ui-35.4) 2 + ( u 2 - 7 ) 2 ] 

+ Ai(-1.05si - O.Olui - 0Ли2) 

+ Л2(0.0037г2 - 6.7x2 + 1.7x4 - 6 x 10" V 

- 8 x 10~3u2) 

+ A3(7.4TTI + 8 x 1 0 ~ V + 0.02u2) 

+ Л4(-0.0037г2 - 1.7x4 - 1.1 x 1 0 " V 

- 2.5 x 10~3u2) (32) 

where Ai, Л2,..., A4 are Lagrangian multipliers. 
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From optimality conditions [5] it follows that 

dH 
Ái = - — - = Ä + 1.05Ai (33) 

ox i 
dH 

Ä2 = - ^ - = Ä + 6 . 7 A 2 {34) 

Лз = - ^ = 0 (35) 

дН 
Л4 = —=— = -1.7Л2 + 1.7Л4 (36) 

ОХ4 

дН . дН . дН . дН . , ^ 
oXi д\2 д\3 <9А4 

дН 
-—=Ul- 35.4 - O.OlAi - б x 10"4А2 

+ 8 x 10"4A3 - 1.1 x 10~4A4 = 0 (38) 

dH 

ди2 

^ = u2 - 7.0 - 0.4Ai - 8 x 10~3A2 

+ 0.02A3 - 2 . 5 x 10"3A4 = 0 (39) 

From eqns (38) and (39) following relations for com
mand variables щ, u2 could be obtained 

Ul = 35.4 + O.OlAi + 6 x 10 - 4A2 - 8 x 10_ 4A3 

+ 1.1 x 10_ 4A4 

u2 = 7.0 + 0.4Ai + 8 x 10"3A2 

- O.O2A3 - 2.5 x 10"3A4 

(40) 

(41) 

We decompose this system into two subsystems. The 
first subsystem is described by the relations (8) and 
(10) with following initial conditions 

xi(0) = 0.5 OD c m " 3 x3(0) = 0.0 mg cm" 3 (42) 

For this subsystem the corresponding functional 
has the form 

max Jl =X3(tf)+ / {/JiTTi -
Jo 

ßiX\ 

+ 0.5[(ui - 35.4)2 + (u2 - 7.0)2}}dt (43) 

The Hamiltonian function will be 

# i = ßiTTi - ß2xx + 0.5[(ui - 35.4)2 + (u2 - 7.0)2] 

+ Ai(-1.05rri - O.Ol^i - 0.4w2) 

+ Л3(7.4тг1 + 8 x l O ' V + 0.02u2) (44) 

Its derivative is 

d-Ki 

Hence it follows that 

= ßi + 7.4A3 = 0 

ßi = -7.4Аз (45) 

The second subsystem is described by relations (9) 
and (11) and by following initial conditions 

x2(0) = 0.0 x4(0) = 50.0 mg cm" 3 

For the second subsystem the corresponding func
tional is following 

max J2 = / f {/?27T 2 -
JO 

ßlX2 

+ 0.5[(ui - 35.4)2 + (u2 - 7.0)2]}dt (46) 

and the Hamiltonian function 

H2 = ß2ir2 - ßxx2 + 0.5[(iAi - 35.4)2 + (u2 - 7.0)2] 

+ А2(0.003тг2 - 6.7x2 + 1.7x4 

- 6 x 1 0 ~ V - 8 x 10~3u2) 

+ А4(-0.003тг2 - 1.7Ж4 

- 1.1 x 1 0 ~ V - 2.5 x 10" 3 u 2 ) (47) 

From the relation 

дН2 = ß2+ 0.003А2 - 0.003А4 = 0 (48) 
дтг2 

it follows that 

ß2 = -О.ООЗА2 + 0.003A4 
(49) 

For computation of the course of the state variables 
£i ,£ 2 ,£3,x 4 and of command variables eqns (8—11), 
(33—36), (40), and (41) were used. The target coor
dination method utilizes the prediction principle for 
coordination. For the given 7r and /3 values the first 
level solves an optimization problem solving at the 
same time two independent minimization problems. 
At the second level the quantities 7Г and ß are further 
predicted. In this way their trajectories are improved, 
the functionals (12) and (43) are maximized in such 
a way that following relations are fulfilled 

*[W)=xP 4 / + 1 ) = *iJ) зС+1) 
2 - * ! / J ™ =-7.4A3 

/3</+1> = -О.ООЗА^ + 0.003A4

7) (50) 

where W is the iteration index. 
Computational algorithm is depicted in Fig. 2. The 

second level determines the error according to the re
lation 

- / 
Jo 

E('í/+1,-'í/)) 
г = 1 

dí (51) 
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start 

Set-up of initial conditions in step / 
for JCi, *2 , *3> *4, " b "2 

Calculation of nh Д in step / 
with initial conditions x, (7), / = 1 , 2 

Calculations of state variables x, (/+1) 

Calculation of A,(/+l), / = 1 , 4 

Calculation of щ, u2 instep /+1 

7bi -<-Л/(7), i = l , 2 

i 
Calculation of Д, щ instep /+ 1, / = 1 , 2 

I 

Fig . 2. Algorithm of the calculation according to objective co-
ordinatiuii. 

A P P L I C A T I O N O F T H E P R E D I C T I O N 
C O O R D I N A T I O N M E T H O D 

In this part the disturbances in state and command 
variables are minimized. These started to manifest in 
the system after 8 h from the start of the fermenta
tion process and they lasted for 1.5 h. The first level 
determines the course of the state and command vari
ables. The second level predicts the state and com
mand variables. Again decomposition of the system 
into two subsystems is here applied in this case in the 
form as described by eqns (8—10) and (9—11) with 
initial conditions 

Xl(S) = -3.0030 OD c m - 3 щ(8) = 35.4°C 

x2(8) = -0.0147 mg c m - 3 u2(S) = 7.0 

x3(8) = 55.7231 mg c m - 3 

£4(8) = -0.0072 mg cm"3 

Global functional is given as 

r1.5 

J = 0.5 / [(xi + 3.0030)2 4- (x2 + 0.0147)2 

Jo 
+ (x3 - 55.7231)2 + {x4 + 0.0072)2 

+ (ui - 35.4)2 + (u2 - 7.0)2]d* (52) 

Corresponding Hamiltonian function has the form 

H = A5[(xi -f 3.0030)2 + (х2 + 0.0147)2 

+ (х3 - 55.7231)2 + (х4 + 0.0072)2 

+ (lii - 35.4)2 + (иг - 7.0)2] 

+ Ai(-1.05xi - O.Olui - 0.41x2) 

+ Л2(0.003^1 - 6.7x2 + 1.7х4 

- 6 x 1 0 ~ V - 8 x 10~3u2) 

+ A3(7.4x2 4- 8 x 1 0 ~ V + 0.02u2) 

+ A4(-0.003xi - 1.7x4 

- 1.1 x l ( r V - 2.5 x 10~3u2) (53) 

From the principle of maximum it follows that 

ЭН 
Л1 = - — = 105Ai - 0.003A2 

OXi 

+ О.ООЗА4 - 2xiA5 - 6.OO6A5 (54a) 

dH 
X2 = --— = 6.7A2 - 7.4A3 - 2x2A5 dx 

- O.O294A5 (54b) 

dH 
A3 = — r — = -2x 3A 5 + 11.4462A5 (54c) 

0x3 

дН 
Á4 = - T T - = -1.7Л2 + I.7A4 - 2A5X4 

0x4 

O.OI446A5 

эн Х* = -7Г- = ° дхь 

(54d) 

(54е) 

From the latter relation it follows that A5(ii) = 1, 
where t\ = 1.5 h. 

From the above system of differential equations 
(54) the values of Lagrangian multipliers are deter
mined. 

From optimality conditions it can be further ob
tained 

dH 

du i 
= -O.OlAi - б x 10_ 4A2 + 8 x 10_ 4A3 

- 1.1 x 10"4A4 + 2ixiA5 - 7O.8A5 = 0 

dH 
— = -0.4Ai - 8 x 10"3A2 + O.O2A3 
ou2 

- 2.5 x 10~3A4 + 2u2\b - 14A5 = 0 
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After some modifications the command variables 
u\ and u2 can be obtained in the following form 

щ = (O.OlAi + 6 x 10_ 4A2 - 8 x 10_ 4A3 

+ 1.1 x 10~4A4 + 70.8A5)/2 (55a) 

u2 = (0.4Ai + 8 x 10~3A2 - O.O2A3 

+ 2.5 x 10"3A4 + 14A5)/2 {55b) 

Let us form the deviations y, v from the system 
equilibrium points x e , ue 

у = x — Xe V = и — ue 

where 

and 

же = [-3.0030,-0.0147,55.7231,-0.0072] 

ue = [35.4,7] (56) 

Then the system description by eqns (8—11) can 
be transformed to the deviation form 

ý = Ay + Bv + [/(ж, u, t) - Ay - Bv] 

= Ay + Bv + D (57) 

where 

D = f (x, u, t) — Ay — Bv 

The following functional is to be minimized 

J 
/»1.5 

= 0.5 / [y 
Jo 

*Qy + vTRv]dt (58) 

where Q and R are unit matrices of the 4th order. 
The Hamiltonian function is of the form 

и 1 
yTQy + 2 v T R v + p[Ay + Bv + D ] 

+ *[y-y°]+ß[v -v°] (59) 

First subsystem 

Ý1=A1Y1+B1V1+D°1 

and the functional to be minimized is 

rl.5 

л = / ' (*iTQ 
Jo 

1Y1+V1

1K1V1)dt 

(61) 

(62) 

where Qi and Ri are unit matrices of the second or
der, and 

*? = 

Ai = 

D° = 

\yuva] ^ i T = l 

"-1.05 0' 
0 0 

7 i ' 
. / 3 . 

- A x 

Vl,V2 

B 1 = 

"í/ľ" 
.Уз. - В 

] 

-0.01 0 
0 0.02 

i 
У°2. 

Hence 

+ L?(A1Y1+B1V1+DÍ) 
+ TI(г/i -у°) + 1гзЫ -vi) 

+ ßi(vx-v<ü + ß2(v2-v°2) (63) 

where Lj = [Ai, A3]. 

Second subsystem 

Ý2 = A2Y2+B2V2 + D% (64) 

The functional to be minimized is of the form 

J* = l f (Y?Q2Y2 + V2
TTL2V2)dt 

* Jo 

where Q2 and R2 are unit matrices of the second or
der, and 

(65) 

Y2
T = [У2, У A] V2

T = [V3 , Vi] 

where p is the costate vector and 7r and ß are the 
Lagrangian multipliers. 

If у = y°, v = v°, then the equation describing 
the system has the following form 

ý = Ay + Bv + D 

A2 = 

D°2 = 

-6.7 0 
0 -1 .7 

B 2 = 
- 6 x 10"4 0 

0 -2.5 x 10"3 

- A 2 
3/2 

2/4° 

Hence 

D = f(xe + y°, ue + v°, t) - Ay° - Bvc 

(60) 
After splitting the system into two subsystems the 

state equations of the respective subsystems have the 
form as follows. 

#2 = ^(Y2
TQ2Y2 + V2

rR2V2) 

+ L2
:(A2Y2 + B2V2 + D°2) 

+ т2(г/2 -У2)+МУ4~УА) 

+ ßi(v3-vZ) + ß2(v4-vt) (66) 

where L2 = [A2, A4]. 
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The aim of the first level of the system under con
sideration is to independently determine yi and Vi for 
both subsystems by solving the following Riccati equa
tion 

K ; = - Q 2 - K i A , - AjKi + K . B i R - ' B T K i (67) 

where КД1.5) = 0 for г = 1,2. 
The matr ix K; could be calculated by substituting 

the values of the first subsystem. After some modifi
cations one can obtain 

fcii = - 1 + 2.1fen + O.OOOlfcii + 0.0004*12*21 

*12 = 1.05*12 + 0.0001*12*11 + 0.0004*12*22 

*2l = 1.05*21 + 0.0001*21*11 + 0.0004*21*22 

* 2 2 = - l + 0.0001*i2*2i + 0.0004*| 2 

(68) 

where at the same time *i2 = *2i-
Similarly for the second subsystem and for matr ix 

K2 following relations hold 

* n = - 1 + 13.4*ii + 3.6 x l O - 7 * ^ 

+ 6.25 x 10- 6 *i2*2i 

*12 = 8.4*12 + 3.6 X 1 0 " 7 * i i * i 2 + 6.25 X 10" 6*i2*22 

*2l = 8.4*21 + 3.6 X 1 0 ~ 7 * n * 2 l + 6.25 X 10" 6*2l*22 

* 2 2 = - 1 + 3.4*22 + 3.6 X 10" 7 *i2*21 

+ 6.25 x l O - 6 * ^ 
(69) 

where also *i2 = *2i- Differential equations (68) and 
(69) for calculations of the matrices K i and K2 were 
numerically solved using the R u n g e — K u t t a method. 

After elapsing of time t = 8 h the disturbances 
start to be present in the system. This could be ex
pressed by help of the disturbances matrices according 
to the relation 

^ = -AjZi + KiBiR^Bj Zi + K i B i R r 1 ^ 
at 

- KiDi - m (70) 

For the first subsystem the following relations are valid 

£1 = 1.052?! + O.OOOlfciiZi + 0.0004*122:з 

+ 0.02*n/?2 - 0.01*n/?i + 1.05fciisi 

+ 0.01*i iui - 0.02*12^2 - 1.05*11?/? 

- 0 . 0 1 * n ^ + 0.02*12^ - Tri (71a) 

* 3 = 0.0001*21*1 + 0.0004*22*3 

+ 0.02Л22/?2 - 0.01*2l/?l + 1.05*2lXi 

+ 0.01*22^2 - 0.02*22^2 - 1.05*2l2/i 

- 0 .01*2i< + 0.02*22^2 - *з {7Щ 

For the second subsystem following equations could 
be obtained 

Z2 = 6.7*2 + 3.6 X 1 0 " 7 * n * 2 + 6.25 X 10~6*i2*4 

- 6 x 10- 4 *n/? i - 2.5 x 10- 3*i 2/?2 + 6.7*ца:2 

+ 1.7*12X4 + 6 x 1 0 ~ 4 * n u i 

+ 2.5 x 10" 3 *i2^2 - 6.7*n2/5 - 1.7*122/4 

- 6 x 1 0 ~ 4 * n ^ - 2.5 x 10- 3*i 2 t '£ - 7г2 (72a) 

*4 = 1.7*4 + 3.6 X 10 _ 7 *2l*2 + 6.25 X 10-6*22*4 

- 6 x 10-4*2i/?i - 2.5 x 10- 3 *22Ä + 6.7*11X2 

+ 1.7*12X4 + 6 x 10~ 4 * i i^ i 

+ 2.5 x 1 0 - 3 * i 2 u 2 - 6.7*n2/2 - 1.7*122/4 

- 6 x 1 0 _ 4 * i i ^ - 2.5 x 1 0 " 3 * i 2 < - 7T4 (72b) 

with *i(1.5) = 0 for г = 1 to 4. 
In simulation of the whole system the original ini

tial conditions for the disturbances must be found 
again by the use of an integration in the backward 
time. 

The quantities y°,v°,7T;, and ßi are given by the 
second level according to the following relations. 

vi = -R-1(Bj(Kiyi + zl)+ßi) 
ýi = AÍVÍ + BÍVÍ + Di 

For the first subsystem it holds 

(73) 

(74) 

Vl 

V2 

( 

'k 
к 

•-0.01 0 ' 

0 0.02 

11 &12 

21 &22 . 

'2/I 

\ m 

+ 
) • 

'/?Г 
A. 

(75) 

By modification of this expression the quantities 

vi and V2 could be obtained 

vi = 0.01(*n2/i + *i22/3 + z\) - ßi 

V2 = -0.02(*2i2/l + *222/3 + z3) - ß'2 

The quantities 2/1 and 2/3 could be evaluated by a 
modification of the following equation. 

ill 
2/3. 

= 

+ 

+ 

+ 

-

-

- 1 . 0 5 
0 

" - 0 . 0 1 
0 

• - 1 . 0 5 
0 

" - 0 . 0 1 
0 

" - 1 . 0 5 
0 

" - 0 . 0 1 
0 

0 
0 

0 
0.02 

0" 
0 

0 
0.02 

0" 
0 

С 

0.1 

) 
32 

2/1 

.Уз 

Xl 

x 3 

'ví 
Уз 

vi 

V2 

Щ 

u2 

vi 
V°2 

(76) 

2/1 = -1.052/1 - O.Olvi - 1.05Ж1 - O.Olwi 

+ 1.052/1 +0.01V? 

2/3 = 0.02г;2 + 0.02u2 - 0 . 0 2 ^ 
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For the second subsystem 

v3 = 6 x 10"4(/Сц2/2 + fci22/4 + z2) - ßi 

V4 = 2.5 X 10"3(fc2l2/2 + fc222/4 + 24) - Ä 

2/2 = -6.7(2/2 + x2 - y°2) - 6 x KT4(v3 + щ - vg) 

•ý4 = -1.7(7/4 + ^4 - í/4) - 2.5 x 10"3(г;4 + и2 - v%) 

from which it follows that y° = у and v° =v. 

dH 

cV 
= 0 = 7 T - [ A - A 1 ] - i ( 0 (78) 

! ^ = 0 = / 3 - [ B - B T ] - i ( t ) (79) 

where A is the total matrix of the full system, and L 
The second level sets quantities y?, г;?, ттг, and /Зг . g t h ß v e c t o r o f L a g r a n g i a n multipliers. 

on the basis of optimality conditions 

dH 

dH 

dß 

= 0 = y°-y 

= 0 = v° - v 
A = 

(77) 

-1.05 0 0 0 ' 
0.003 -6 .7 0 1.7 

0 7.4 0 0 
. -0.003 0 0 -1 .7 . 

L = 

Ai 
А2 

Аз 
А4 

start 

I 
Calculation of matrices Kí, K2 in backward time 

4 
Calculation of initial conditions for Л, in backward time, / = 1 , - 4 

Calculation of initial conditions for z/ in backward time, / = 1, 4 

1 
Set-up of initial conditions for x, (7), wi, иг> for r = 8 h , / = 1 , 4 

Set-up of computed values for Kí, K2, A, (7), z,(7), f= l , 4 

Set-up of initial conditions for v,- (7), у,- (7), / = 1 , 4 

Computation of state variables * / ( / + ! ) , / = 1, 4 

Computation of Я,- (/+1), 

Computation of 

Computation of щ, ßu 

Computation of 

V 

z,(/+l), yi(I+l), / = 1, 4 

V 

wi, 1/2 instep /+1 

V 

/З2 in step / + 1, / = 1 , 4 

V 

v,(/+l), /=Íľ4 

Fig. 3. Algorithm of the calculation according to predictive coordination. 
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After substitution and rearranging following relations 
could be obtained 

7П = -0.003Ä2 + О.ООЗЛ4 

7T2 = О.ООЗЛ1 - 7.4A3 - I.7A4 

тгз = 7.4A-2 

7T4 = -О.ООЗА1 - 1.7A2 

From optimality conditions it further follows 

0.01 0 
-6 x 1СГ4 0 

0 0.02 
0 -2.5 x l O " 3 

B = 

Ai 
A2 

A3 
A4 J 

(80) 

(81) 

(82) 

After some rearranging 

/3i = O.OlAi + 6 x 10"4A2 + O.O2A3 

- 2.5 x KT3A4 

/З2 = -O.OlAi - 6 x 10_ 4A2 - O.O2A3 

+ 2.5 x KT3A4 

The prediction error has the following form 

-(Г{£[(^ + 1 , - ' < / ) ) 2 

+ К + 1 , -*< ( / , ) а ] 

+ Е(^ ( / + 1 )-А ( / ))2Й2<Ю-6(53) 
г = 1 / 

Simulation was carried out according to the algo
rithm depicted in Figs. 2 and 3. 

The results are graphically presented in Figs. 4 
to 9, where the time dependences of state and com
mand variables are depicted. The hierarchical control 
of biotechnological complex is illustrated in Fig. 10. 

More detailed information on the control strategy 
for industry bioprocesses can be found in [6]. On direct 
adaptive control of fermentation processes the reader 
is referred to [7]. 

E 
Q 
О 

Fig . 5. Optimal course of the state variable x'2- a) Objective 

coordination; 6) predictive coordination. 
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E , 

60 

50 

ДО 

30 

2 0 

1 0 

0 

/*— 

í V 

55.80 

55.78 

55.76 o 

- 55.74 

6 8 

t/h 

10 
55.72 

Fig . 6. Optimal course of the state variable яз . a) Objective 
coordination; b) predictive coordination. 

Fig . 4. Optimal course of the state variable x\. a) Objective 

coordination; b) predictive coordination. 

F i g . 7. Optimal course of the state variable .T4. a) Objective 
coordination; b) predictive coordination. 

P r o g r a m Realization 

For the solution of the differential equations the 
standard Runge—Kutta procedure was used. 

In the case of using the prediction coordination 
method the coefficients of the matrix K; were calcu
lated first. Also in this case the standard Runge— 
Kutta procedure was used in the program. 
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35.5 

35.A 

35.3 -

35.2 -

35.1 

35.0 

35.5 

35. A 

- 35.3 

- 35.2 

35.1 

35.0 

Fig. 8. Optimal course of the command variable ui. a) Objec
tive coordination; b) predictive coordination. 

RESULTS A N D D I S C U S S I O N 

Three decomposition possibilities were examined 
and only one, for which the following results are intro
duced, gives realizable results. Fig. 11 shows optimal 
trajectories for state and command variables valid for 
the first and second scheme. 

From Fig. 11 it is also evident that the hierarchical 
approach brings higher D-gluconic acid concentration 
in comparison to one-level technique. As can be seen 
the optimal profiles of control variables for both sub-

a 

6 8 

t/h 

10 

Fig . 9. Optimal course of the command variable U2- a) Objec
tive coordination; 6) predictive coordination. 

systems are approximately the same. There are shown 
only optimum profiles for the first subsystem. 

The reason for choosing the second alternative is 
obtaining optimum solution. 

Nevertheless by suitable selection of weight matrix 
Q it is possible to achieve speeding up the convergence 
of state variables to the desired values. We came to the 
conclusion that the hierarchical approach using micro
processor may be regarded for an effective technique 
for obtaining optimum solution for some fermentation 
processes. 

It was observed that the hierarchical approach 
(multilevel technique) is more advantageous and more 
attractive than the one-level approach as 

coordination 

control 

complex 

Fig . 10. Hierarchical control of biotechnological complex. SSI, SS2 - subsystems; CI, C2 - controllers; BRIC - block for regarding 

of interaction couplings; LDB1, LDB2 - local decision-making block; GDB - global decision-making block; hig,h2g -

global coupling variables; /in,/i2i - local coupling variables; uig, ^2g - interaction quantities; ui\,U2\ - local command 

variables; v\,v-2 - coordination quantities; w\,W2 - desired values; x\,x% - state variables; у\,У2 ~ output variables. 
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Fig. 1 1 . Courses of state variables х\,хч,х?,,х\ and of command variables u\ and U2- — 1st scheme, 2nd scheme. 

a) at any level lower-degree subproblems are ma
nipulated, 

b) the computations are more accurate while the 
manipulation with lower-degree problems secures that 
the rounding errors are less, 

c) programs demand roughly one half of the mem
ory capacity in comparison to the one-level approach, 

d) higher yield of D-gluconic acid is achieved (the 
second scheme). 

The results demonstrate that the hierarchical ap
proach may be regarded as an effective technique for 
obtaining the optimal solution for fermentation pro
cess. This control is more advantageous than the one-
level method. As can be seen from presented graphs, 
it provides a higher yield of D-gluconic acid. 

The decomposition coordination methods were 
successfully applied for optimization and control of 
fermentation processes, which can be considered as 
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complex systems. 
The model described is restricted only to four state 

variables, but could be expanded to include more vari
ables, e.g. the oxygen concentration or stirrer revolu
tions. Introduced knowledge will enable application of 
higher forms of control to the control of complex sys
tems (complexes). 
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