Phase Diagram of the System KF—KCl—KBF₄—K₂TiF₆

M. CHRENKOVÁ, V. DANIELIK*, A. SILNÝ, and V. DANĚK

Institute of Inorganic Chemistry, Slovak Academy of Sciences, SK-842 36 Bratislava

Received 16 February 2000

The phase diagram of the quaternary system KF—KCl—KBF₄—K₂TiF₆ was determined using the thermal analysis method. Subsequent coupled analysis of the thermodynamic and phase diagram data was performed to obtain thermodynamically consistent phase diagram.

In the ternary system KF—KCl— K_2 TiF₆ two intermediate compounds, K_3 TiF₇ and K_3 TiF₆Cl, are formed. The calculated coordinates of the three ternary eutectic points are e_1 : 13 mole % KF, 25 mole % KCl, 62 mole % K_2 TiF₆, $t_{e1} = 635$ °C, e_2 : 21 mole % KF, 50 mole % KCl, 29 mole % K_2 TiF₆, $t_{e2} = 620$ °C, and e_3 : 46 mole % KF, 44 mole % KCl, 10 mole % K_2 TiF₆, $t_{e3} = 586$ °C. The phase diagram was calculated from the binary boundary ones and from the measured quaternary mixtures.

Three quaternary eutectic points were found in the quaternary phase diagram KF—KCl—KBF₄— K_2 TiF₆. Their coordinates are e_1 : 2.8 mole % KF, 5.8 mole % KCl, 64.5 mole % KBF₄, 26.9 mole % K_2 TiF₆, $t_{e1}=413$ °C, e_2 : 4.9 mole % KF, 13.7 mole % KCl, 73.9 mole % KBF₄, 7.5 mole % K_2 TiF₆, $t_{e2}=389$ °C, and e_3 : 14.0 mole % KF, 11.2 mole % KCl, 74.0 mole % KBF₄, 0.8 mole % K_2 TiF₆, $t_{e3}=336$ °C. The inaccuracy in the calculated phase diagram is \pm 20.7°C.

The study of physicochemical properties of the molten system KF—KCl—KBF₄—K₂TiF₆ is important because of its potential use as an electrolyte for electrodeposition of titanium diboride [1]. The phase diagrams of the individual ternary boundary systems were already studied previously.

The phase diagram of the ternary system KF—KCl—KBF₄ was measured in [2]. It was found that the system is a simple eutectic one with the coordinates of the eutectic point of 19.2 mole % KF, 18.4 mole % KCl, 61.4 mole % KBF₄ and the temperature of the eutectic crystallization of 422 °C.

In the ternary system KF—KCl— K_2 TiF₆ [3] two intermediate compounds, K_3 TiF₇ and K_3 TiF₆Cl, are formed. The authors found two ternary eutectic points with the coordinates e_1 : 9.6 mole % KF, 32.2 mole % KCl, 58.2 mole % K_2 TiF₆, $t_{e1} = 640$ °C, e_2 : 38.8 mole % KF, 47.7 mole % KCl, 13.5 mole % K_2 TiF₆, $t_{e2} = 562$ °C, and one peritectic point with the coordinates 39.1 mole % KF, 35.0 mole % KCl, 25.9 mole % K_2 TiF₆, $t_p = 600$ °C.

In the ternary system KF—KBF₄—K₂TiF₆, measured in [4], it was found that the intermediate compound K₃TiF₇ divides the system into two simple eutectic systems. The calculated coordinates of the two ternary eutectic points are as follows: e₁: 26 mole %

KF, 69 mole % KBF₄, 5 mole % K₂TiF₆, $t_{e1} = 448$ °C and e_2 : 4 mole % KF, 69 mole % KBF₄, 27 mole % K₂TiF₆, $t_{e2} = 440$ °C. The inaccuracy in the calculated ternary phase diagram was ± 11.5 °C.

According to [5], in the ternary system KCl—KBF₄— K_2 TiF₆ the intermediate compound K_3 TiF₆Cl divides the ternary system into two simple eutectic ones. The calculated coordinates of the two ternary eutectic points are e₁: 24.1 mole % KCl, 62.1 mole % KBF₄, 13.8 mole % K_2 TiF₆, $t_{e1} = 447.1$ °C and e₂: 6.5 mole % KCl, 62.5 mole % KBF₄, 31.0 mole % K_2 TiF₆, $t_{e2} = 414.5$ °C. The standard deviation of the temperature of primary crystallization in the calculated ternary phase diagram was \pm 17.1 °C.

In the present work the phase diagram of the quaternary system KF—KCl—KBF₄—K₂TiF₆ was calculated using the coupled analysis of thermodynamic and previously published binary and ternary, as well as in this work measured quaternary equilibrium phase diagram data.

THEORETICAL

The calculation of the phase diagram using the coupled analysis of the thermodynamic and phase diagram data is based on the solution of a set of equations

Permanent address: Institute of Inorganic Technology, Faculty of Chemical Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.

of the following type

$$\Delta_{\text{fus}}G_{i}^{\text{o}}\left(T\right)+RT\ln\frac{a_{\text{l},i}\left(T\right)}{a_{\text{s},i}\left(T\right)}=0\tag{1}$$

where $\Delta_{\text{fus}} G_i^{\text{o}}$ is the standard molar Gibbs energy of fusion of the component i at the temperature T, R is the gas constant, and $a_{\text{s},i}(T)$ and $a_{\text{l},i}(T)$ are the activities of component i in the solid and liquid phase at the temperature T, respectively. For $T \equiv T_{\text{pc},i}$ and assuming $\Delta C_{p,\text{s}/\text{l}} = 0$ and the immiscibility of components in the solid phase $a_{\text{s},I} = 1$, the thermodynamic temperature of primary crystallization of the component i is then

$$T_{\mathrm{pc},i} = \frac{\Delta_{\mathrm{fus}} H_i^o + R T_{\mathrm{pc},i} \ln \gamma_{l,i}}{\Delta_{\mathrm{fus}} S_i^o - R \ln x_{l,i}}$$
(2)

where $\Delta_{\text{fus}}H_i^o$ and $\Delta_{\text{fus}}S_i^o$ is the standard enthalpy and standard entropy of fusion, respectively, $x_{l,i}$ and $\gamma_{l,i}$ is the mole fraction and the activity coefficient of component i, respectively. The activity coefficients can be calculated from the molar excess Gibbs energy of mixing, ΔG^E , according to the relation

$$RT_{\mathrm{pc},i} \ln \gamma_{l,i} = \left[\frac{\partial \left(n \Delta G^{\mathrm{E}} \right)}{\partial n_i} \right]_{T,P,n_{i\neq i}} \tag{3}$$

where n_i is the amount of component i and n is the total amount of all components.

The molar excess Gibbs energy of mixing in the liquid phase in the quaternary system KF—KCl— KBF_4 — K_2TiF_6 was calculated as the sum of the molar excess Gibbs energies of mixing in the binary systems, of the molar excess Gibbs energies of mixing in the ternary systems and of the quaternary interaction terms.

The molar excess Gibbs energy of mixing in the boundary binary systems was described using the following general equation

$$\Delta G_{i,\text{bin}}^{\text{E}} = \sum_{k} x_1^{b(k)} x_2^{c(k)} G_k \tag{4}$$

and in the ternary systems

$$\Delta G_{j,\text{ter}}^{E} = \sum_{i=1}^{3} \Delta G_{i,\text{bin}}^{E} + \sum_{k} x_{1}^{b'(k)} x_{2}^{c'(k)} x_{3}^{d'(k)} G_{k}'$$
 (5)

For the molar excess Gibbs energy of mixing in the quaternary system the final equation is then

$$\Delta G_{\text{quat}}^{\text{E}} = \sum_{j=1}^{4} \Delta G_{j,\text{ter}}^{\text{E}} + \sum_{k} x_{1}^{b''(k)} x_{2}^{c''(k)} x_{3}^{d''(k)} x_{4}^{e''(k)} G_{k}''$$
(6)

where the second term represents the quaternary interactions. Exponents b''(k), c''(k), d''(k), and e''(k) are integers in the range 1—3.

However, in the binary systems $KF-K_2TiF_6$ and $KCl-K_2TiF_6$ the intermediate compounds K_3TiF_7 and K_3TiF_6Cl , respectively, are formed. In the calculation this fact was taken into account in the following way.

Let us consider the system AX—AY, in which a compound mAX.nAY is formed in the solid state. According to [6], this compound may be writen as $(AX)_p.(AY)_q$, where

$$p = \frac{m}{m+n}, \qquad q = \frac{n}{m+n} \tag{7}$$

and the Gibbs energy of fusion of $(AX)_p.(AY)_q$ equals

$$\Delta_{\text{fus}}G^{\text{o}}\left[\left(\text{AX}\right)_{p}.\left(\text{AY}\right)_{q}\right] = \frac{\Delta_{\text{fus}}G^{\text{o}}\left(m\text{AX}.n\text{AY}\right)}{m+n} \quad (8)$$

The activity of $(AX)_p$. $(AY)_q$ can be expressed in the form

$$a\Big[\left(\mathbf{AX}\right)_{p}.\left(\mathbf{AY}\right)_{q}\Big] = x\Big[\left(\mathbf{AX}\right)_{p}.\left(\mathbf{AY}\right)_{q}\Big]\gamma\Big[\left(\mathbf{AX}\right)_{p}.\left(\mathbf{AY}\right)_{q}\Big]$$
(9)

The activities of AX and AY are then

$$a(AX) = x(AX)\gamma(AX), \quad a(AY) = x(AY)\gamma(AY)$$
(10)

EXPERIMENTAL

For the preparation of samples the following chemicals were used: KF, KCl (both Lachema), KBF₄ and K_2TiF_6 (both Fluka), all anal. grade. KF was dried in vacuum at 130 °C in the presence of P_4O_{10} for two weeks, KCl, KBF₄, and K_2TiF_6 were dried at 400 °C for 2 h. All handling of salts was done under a dry inert atmosphere in a glove box.

The temperatures of individual phase transitions were determined by means of thermal analysis, recording the cooling and heating curves of the investigated mixtures at a rate of $2-5\,^{\circ}\mathrm{C}$ min⁻¹. The platinum crucible with the sample (10 g) was placed into the resistance furnace with adjustable cooling rate and a controlled argon atmosphere. The temperature control and the data processing were performed using a computerized measuring device. The temperature was measured using a PtRh10—Pt thermocouple calibrated to the melting points of anal. grade NaCl, KCl, and Na₂SO₄. The measured transition temperatures were reproducible within \pm 3°C.

The thermal analysis in the quaternary system $KF-KCl-KBF_4-K_2TiF_6$ was performed in cross-sections with constant 10, 20, 30, 40, 50, 60, and 70 mole % K_2TiF_6 . The measured temperatures of primary and eutectic crystallization are given in Table 1.

Table 1. Measured $(t_{pc,exp})$ and Calculated $(t_{pc,calc})$ Temperatures of Primary Crystallization, their Difference (Δt_{pc}) , and the Temperatures of Secondary Crystallization (t_{sc}) of Individual Mixtures in the Quaternary System KF—KCl—KBF₄— K₂TiF₆

r _{KF}	≭ KCl	xKBF4	xK2TiF6	$\frac{t_{ m pc,exp}}{^{\circ}\! m C}$	$\frac{t_{ m pc,calc}}{{ m ^{\circ}C}}$	$rac{\Delta t_{ m pc}}{^{ m o}\! m C}$	$\frac{t_{sc}}{^{\circ}\!$
	0.000			<u> </u>	<u> </u>		
0.10	0.10	0.70	0.10	478	451.8	-26.2	467
0.10	0.20	0.70	0.10	455	476.3	21.3	416
0.20	0.10	0.60	0.10	469	501.5	32.5	416
.10	0.40	0.40	0.10	563	556.5	-6.5	_
.40	0.10	0.40	0.10	566	547.5	-18.5	520
.10	0.60	0.20	0.10	650	620.4	-29.6	625
.40	0.30	0.20	0.10	590	586.1	-3.9	503
.60	0.10	0.20	0.10	675	680.6	5.6	625
0.30	0.50	0.10	0.10	606	605.8	-0.2	530—535
.10	0.10	0.60	0.20	470	-	=	465
0.10	0.10	0.60	0.20	501	495.3	-5.7	483
0.20	0.20	0.40	0.20	580	576.2	-3.8	434
0.10	0.40	0.40	0.20	570	588.2	18.2	=
.40	0.10	0.30	0.20	620	631.4	11.4	576
.10	0.50	0.20	0.20	585	599.4	14.4	-
.30	0.30	0.20	0.20	636	_	1—	588
0.30	0.30	0.20	0.20	632	626.1	-5.9	-
0.30	0.40	0.10	0.20	640	625.3	-14.7	570
).50	0.20	0.10	0.20	673	650.3	-22.7	657
).15	0.45	0.20	0.20	647	600.0	-47.0	643
.45	0.15	0.20	0.20	618	647.7	29.7	581
.10	0.30	0.40	0.20	585	565.3	-19.7	571
0.30	0.10	0.40	0.20	575	600.5	25.5	561
.10	0.20	0.40	0.30	556	570.8	14.8	461
.20	0.10	0.40	0.30	580	608.4	28.4	461
.20	0.40	0.10	0.30	625	627.7	2.7	605
.40	0.20	0.10	0.30	680	679.3	-0.7	587
.10	0.10	0.40	0.40	625		=	-
0.10	0.10	0.40	0.40	579	601.4	22.4	=
0.10	0.30	0.20	0.40	611	644.3	33.3	=
).10	0.30	0.20	0.40	693	-	=	678
.30	0.10	0.20	0.40	673	681.1	8.1	620
.30	0.10	0.20	0.40	650	-	-	-
0.20	0.20	0.20	0.40	669	653.8	-15.2	-
.10	0.10	0.30	0.50	688	648.1	-39.9	590
.10	0.30	0.10	0.50	646	656.0	10.0	607
.30	0.10	0.10	0.50	710	693.3	-16.7	670
.10	0.10	0.20	0.60	765	200	_	558
.10	0.10	0.20	0.60	640	673.0	33.0	604
.20	0.10	0.10	0.60	670	674.1	4.1	=
0.075	0.225	0.10	0.60	684	678.8	5.2	_
.225	0.075	0.10	0.60	671	679.5	8.5	_
.10	0.10	0.10	0.70	690	715.3	25.3	622

RESULTS AND DISCUSSION

The coupled thermodynamic analysis, i.e. the calculation of coefficients G_k , G_k' , and G_k'' in eqns (4—6), respectively, has been performed using the multiple linear regression analysis omitting the statistically nonimportant terms in the molar excess Gibbs energy of mixing on the 0.99 confidence level according to the Student's test. As the optimizing criterion for the best fit between the experimental and calculated temperatures of primary crystallization the following condition was used for all measured points

$$\sum_{n} (T_{\text{pc,exp},n} - T_{\text{pc,calc},n})^2 = \min.$$
 (11)

The values of the enthalpy of fusion of individual components used in the calculation are summarized in Table 2. The experimentally determined temperatures of primary crystallization in the ternary system KF—KCl—KBF₄ were taken from [2], those of the system KF—KBF₄—K₂TiF₆ from [4], and those of the system KCl—KBF₄—K₂TiF₆ from [5].

For the excess molar Gibbs energy of mixing in the

Table 2. Temperatures and Enthalpies of Fusion of Compounds Used for the Phase Diagram Calculation

Compound	$\frac{\Delta_{\mathrm{fus}}H^{\circ}}{\mathrm{kJ}\;\mathrm{mol}^{-1}}$	$rac{T_{ m fus}}{ m K}$	Ref.
KF	27.196	1131	[7]
KCl	26.154	1045	[7]
KBF ₄	17.656	843	[7]
K2TiF6	21.000	1172	[8]
K ₃ TiF ₇	57.000	1048	ોં
K ₃ TiF ₆ Cl	47.000	969	[10]

boundary binary systems the general equation

$$\Delta G_{i,\text{bin}}^{E} = x_1 x_2 \left(G_1 + G_2 x_2 + G_3 x_2^2 \right) \tag{12}$$

was found to be valid. The values of the coefficients G_i together with the standard deviations of the fits are given in Table 3.

For the excess molar Gibbs energy of mixing in the ternary systems the following equations were obtained

$$\Delta G_{\text{KCl-KF-KBF}}^{\text{E}} =$$

$$= \sum_{i=1}^{3} \Delta G_{i,\text{bin}}^{E} + G_{1}' x_{1} x_{2}^{2} x_{3} + G_{2}' x_{1} x_{2}^{2} x_{3}^{2}$$
 (13)

$$\Delta G_{\text{KF}-\text{K}_2\text{TiF}_6-\text{KBF}_4}^{\text{E}} =$$

$$= \sum_{i=1}^{3} \Delta G_{i,\text{bin}}^{\text{E}} + G_1' x_1^3 x_2 x_3 + G_2' x_1^3 x_2 x_3^2 \qquad (14)$$

$$\Delta G_{\text{KCl-K}_2\text{TiF}_6-\text{KBF}_4}^{\text{E}} =$$

$$= \sum_{i=1}^{3} \Delta G_{i,\text{bin}}^{E} + G_{1}' x_{1} x_{2}^{3} x_{3}^{2} + G_{2}' x_{1} x_{2} x_{3}^{3} + G_{3}' x_{1}^{2} x_{2}^{2} x_{3}^{3} + G_{4}' x_{1}^{3} x_{2} x_{3}$$

$$+ G_{3}' x_{1}^{2} x_{2}^{2} x_{3}^{3} + G_{4}' x_{1}^{3} x_{2} x_{3}$$

$$\Delta G_{KCl-KF-K_{2}TiF_{6}}^{E} =$$
(15)

$$= \sum_{i=1}^{3} \Delta G_{i,\text{bin}}^{E} + G_{1}' x_{1} x_{2} x_{3} + G_{2}' x_{1} x_{2}^{2} x_{3} + G_{3}' x_{1}^{3} x_{2}^{2} x_{3}^{3}$$

$$+ G_{3}' x_{1}^{3} x_{2}^{2} x_{3}^{3}$$

$$(16)$$

The calculated coefficients of the concentration dependence of the excess molar Gibbs energy of mixing together with the standard deviations of the fit temperature in the ternary systems are given in Table 4.

Table 3. Coefficients G_i of the Concentration Dependence of the Molar Excess Gibbs Energy of Mixing and the Standard Deviations of the Temperature of Primary Crystallization in the Binary Subsystems of the Quaternary System KF—KCl—KBF₄— K₂TiF₆

System	$\frac{G_1}{\text{J mol}^{-1}}$	$\frac{G_2}{\text{J mol}^{-1}}$	$\frac{G_3}{\text{J mol}^{-1}}$	$\frac{\sigma}{^{\circ}\mathrm{C}}$
KCl—KF	2144 ± 547	-7379 ± 284	6111 ± 829	1.2
KF-KBF4	3836 ± 233	-14434 ± 790	6625 ± 833	1.9
KF-K ₂ TiF ₆	-11507 ± 1743	-19918 ± 6050	33344 ± 5830	6.5
KCl—KBF4	50 ± 22	3725 ± 736	-7175 ± 2367	5.6
KCl-K ₂ TiF ₆	-7531 ± 2458	25700 ± 6335	-31125 ± 8457	5.0
K2TiF6-KBF4	8475 ± 830	-25810 ± 1426	12905 ± 713	6.1

Table 4. Coefficients G_i' of the Concentration Dependence of the Molar Excess Gibbs Energy of Mixing and the Standard Deviations of the Temperature of Primary Crystallization in the Ternary Subsystems of the Quaternary System KF—KCl—KBF₄— K_2TiF_6

Coef.	System					
Coel.	KCl—KF—KBF4	KCl—KF—K ₂ TiF ₆	KF-K ₂ TiF ₆ -KBF ₄	KCl—K ₂ TiF ₆ —KBF ₄		
$\frac{G_1'}{\text{J mol}^{-1}}$	-22709 ± 1429	36975 ± 2173	-14718 ± 5725	-263005 ± 16623		
$\frac{G_2'}{\text{J mol}^{-1}}$	-36041 ± 1843	-31585 ± 2067	-198846 ± 16972	92415 ± 8284		
$\frac{G_3'}{\text{J mol}^{-1}}$		-1241825 ± 89126	-	796972 ± 72485		
$\frac{G_4'}{\text{J mol}^{-1}}$	-	-	-	41055 ± 5182		
$\frac{\sigma}{^{\circ}\mathrm{C}}$	6.8	-	15.2	17.6		

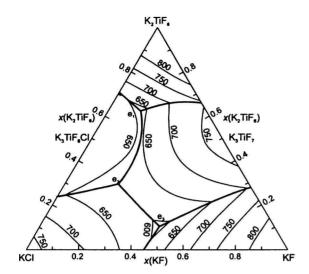


Fig. 1. The calculated ternary phase diagram of the system KF—KCl—K₂TiF₆ (parameter: t/°C).

The ternary system KF—KCl—KBF₄ is a simple eutectic one with the coordinates of the eutectic point 21 mole % KF, 19 mole % KCl, 60 mole % KBF₄ and the temperature of the eutectic crystallization of 409 °C. The inaccuracy in the calculated ternary phase diagram is \pm 6.8 °C. In the ternary system KF—KBF₄—K₂TiF₆ the intermediate compound K₃TiF₇ divides the system into two simple eutectic ones. The calculated coordinates of the two ternary eutectic points are e₁: 26 mole % KF, 68 mole % KBF₄, 6 mole % K₂TiF₆, $t_{e1} = 450$ °C and e₂: 3 mole % KF, 69 mole % KBF₄, 28 mole % K₂TiF₆, $t_{e2} = 435$ °C. The inaccuracy in the calculated ternary phase diagram is \pm 15.2 °C.

In the ternary system KCl—KBF₄— K_2 TiF₆ the intermediate compound K_3 TiF₆Cl is formed, which divides the ternary system into two simple eutectic systems. The calculated coordinates of the two ternary eutectic points are e₁: 18 mole % KCl, 66 mole % KBF₄, 16 mole % K_2 TiF₆, $t_{e1} = 449$ $^{\circ}$ C and e₂: 6 mole % KCl, 63 mole % KBF₄, 31.0 mole % K_2 TiF₆, $t_{e2} = 417$ $^{\circ}$ C. The inaccuracy in the calculated phase diagram is \pm 17.6 $^{\circ}$ C.

In the ternary system KF—KCl— K_2TiF_6 two intermediate compounds, K_3TiF_7 and K_3TiF_6Cl , are formed. The calculated coordinates of the three ternary eutectic points are e_1 : 13 mole % KF, 25 mole % KCl, 62 mole % K_2TiF_6 , $t_{e1}=635$ °C, e_2 : 21 mole % KF, 50 mole % KCl, 29 mole % K_2TiF_6 , $t_{e2}=620$ °C, and e_3 : 46 mole % KF, 44 mole % KCl, 10 mole % K_2TiF_6 , $t_{e3}=586$ °C. The phase diagram was calculated from the binary boundary ones and from the measured quaternary mixtures, therefore the standard deviation of the fit is not given. The calculated phase diagram of this system is shown in Fig. 1. The experimentally determined [3] phase diagram is probably

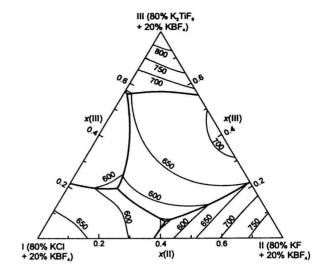


Fig. 2. Cross-section of the quaternary phase diagram KF—KCl—K₂TiF₆—KBF₄ at 20 mole % KBF₄ (parameter: $t/^{\circ}$ C).

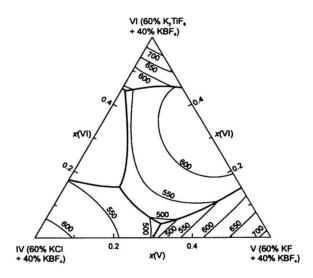


Fig. 3. Cross-section of the quaternary phase diagram KF—KCl—K₂TiF₆—KBF₄ at 40 mole % KBF₄ (parameter: t/°C).

not quite correct because of few experimental data in the region of the presented peritectic point.

Finally, for the excess molar Gibbs energy of mixing in the ternary systems of the quaternary system KF(2)—KCl(1)— KBF₄(4)—K₂TiF₆(3) the following equation was obtained

$$\Delta G_{\text{quat}}^{\text{E}} = \sum_{j=1}^{4} \Delta G_{j,\text{ter}}^{\text{E}} + G_{1}'' x_{1} x_{2} x_{3} x_{4}^{3} + G_{2}'' x_{1}^{3} x_{2} x_{3}^{2} x_{4}^{2} + G_{3}'' x_{1} x_{2} x_{3}^{3} x_{4}$$

$$(17)$$

The calculated coefficients of the excess molar Gibbs energy of mixing and the standard deviation of

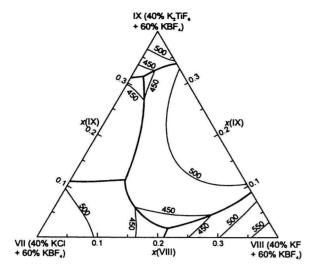


Fig. 4. Cross-section of the quaternary phase diagram KF— KCl—K₂TiF₆—KBF₄ at 60 mole % KBF₄ (parameter: t/°C).

the measured and calculated temperature of primary crystallization for the quaternary system are: $\frac{G_1''}{\text{J mol}^{-1}} = 2009367 \pm 145628, \frac{G_2''}{\text{J mol}^{-1}} = 15367354 \pm 1123575, \frac{G_3''}{\text{J mol}^{-1}} = 249546 \pm 20491, \frac{\sigma}{\infty} = 20.7.$ Three quaternary eutectic points were found in the quaternary phase diagram KF—KCl—KBF₄—K₂TiF₆. Their coordinates are e₁: 2.8 mole % KF, 5.8 mole % KCl, 64.5 mole % KBF₄, 26.9 mole % K₂TiF₆, $t_{e1} = 413 \, ^{\circ} \text{C}$, e₂: 4.9 mole % KF, 13.7 mole % KCl, 73.9 mole % KBF₄,

7.5 mole % K_2TiF_6 , $t_{e2}=389\,^{\circ}C$, and e_3 : 14.0 mole % KF, 11.2 mole % KCl, 74.0 mole % KBF₄, 0.8 mole % K_2TiF_6 , $t_{e3}=336\,^{\circ}C$. The inaccuracy in the calculated phase diagram is \pm 20.7 $^{\circ}C$. The cross-sections of the quaternary phase diagram KF—KCl—KBF₄— K_2TiF_6 with constant content of 20, 40, and 60 mole % KBF₄ are shown in Figs. 2—4.

Acknowledgements. The present work was financially supported by the Scientific Grant Agency of the Ministry of Education and the Slovak Academy of Sciences under the No. 2/7205/98.

REFERENCES

- Matiašovský, K., Grjotheim, K., and Makyta, M., Metall. 42, 1192 (1988).
- 2. Patarák, O. and Daněk, V., Chem. Pap. 46, 91 (1992).
- Chernov, R. V. and Ermolenko, P. M., Zh. Neorg. Khim. 18, 1372 (1973).
- Chrenková, M., Patarák, O., and Daněk, V., Thermochim. Acta 273, 157 (1996).
- Chrenková, M., Patarák, O., and Daněk, V., Chem. Pap. 49, 167 (1995).
- Foosnaes, B., Østvold, T., and Øye, H., Acta Chem. Scand. A32, 773 (1978).
- Knacke, O., Kubachewski, O., and Hesselmann, K., Thermochemical Properties of Inorganic Substances, 2nd Edition. Springer-Verlag, Berlin, 1991.
- 8. Adamkovičová, K., Kosa, L., Nerád, I., Proks, I., and Strečko, J., Thermochim. Acta 258, 15 (1995).
- Adamkovičová, K., Kosa, L., Nerád, I., and Proks, I., Thermochim. Acta 262, 83 (1995).
- Adamkovičová, K., Kosa, L., Nerád, I., and Proks, I., Thermochim. Acta 287, 1 (1996).