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An alternative method of the risk assessment for pollutant gas release based on artificial intelli-
gence approach is presented. In principle the method is a pattern recognition developed as a linear
discriminative classification problem related as a Minimax approach. This procedure has the ability
to estimate both the dispersion of pollutant emission and the probabilistic certainty of these values.
A simplified numerical experiment, prediction of the sulphur dioxide concentration from a
smokestack, was carried out either using the proposed algorithm implemented in MATLAB package,
or a specialized software package SLAB View. Both analyses produced reasonably accurate results.
However, the proposed method was able to estimate both dispersion of the pollutant emission and
a probabilistic certainty of this value.

Industrial activity can negatively impact the envi-
ronment quality and human health due to emissions
polluting air, soil, and water. Evaluation of environ-
mental and safety hazard is commonly based on the
risk assessment. Questions as “what is a substantial
risk” or “how safe is safe enough” are problems that
trouble the public, industrial community, and regula-
tors. Obviously, the risk assessment is a stage preced-
ing the risk management. The basic key features of the
risk assessment are hazard identification and quantifi-
cation of the likelihood of occurrence (named hazard
assessment) and the impact (exposure assessment) as-
sociated with each hazard event. Deterministic and
probabilistic methods for the risk assessment are now
well-established tools for most types of planned and
existing industrial, chemical, and hazardous materials
installations. Basically, the risk assessment relates to a
future event, thus it is an estimate and is therefore un-
certain. A number of definitions of risk may be found
in the literature. The most usually accepted defini-
tions for “risk” are: the combination of the likelihood
and the consequences of a future event; the probabil-
ity of failure for a number of different hazards; or the
product between the probability of occurrence and the
quantified consequence of the hazard [1—3].

The risk assessment can be direct, using various
analytical or numerical procedures, or indirect, e.g.
based on an indicator method. Any possible strategy,
both direct and indirect, should be focused on the
problems of complexity, variability, and uncertainty.
Operation of any technological installation is always
affected by variations and uncertainties as: fluctua-
tions and variations in operating conditions or service
loads, scatters in material properties, uncertainties re-
garding the analytical models, chemical degradation,
data collection, experimental measurements, etc. This
paper focuses only on air pollution caused by the pol-
lutant complex emissions from a thermopower station
stack. Basic knowledge exists and many papers are
available in the literature related to air pollution and
dispersion estimates [4—7]. Moreover, there are avail-
able numerous specialized software packages [8, 9] en-
abling to compute various dispersion scenarios. Be-
cause, basically, these are deterministic simulation ap-
proaches, few of these offer the flexibility necessary to
integrate the full variability and uncertainty or prob-
abilistic assessments.
Recent achievements in the field of artificial intel-

ligence [10—14] as artificial neural network, genetic
algorithms, or pattern recognition/classification, pro-
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voked repercussion also in engineering and scientific
disciplines. These methods have been developed for
universal function approximation, chaos expansion,
and problems of genetics and natural selection pro-
cess. Based on these achievements, new computational
techniques were designed for solving air, soil, or water
pollution problems involving intricate structural sys-
tems. This paper introduces a new insight into the risk
assessment of gaseous pollutant release from a con-
tinuous source, such as from a smokestack. Using a
pattern recognition/classification approach the classi-
cal risk assessment was transformed into an approach
involving a classification task. For simplicity, only lin-
ear discrimination is presented and used in a simplified
comparative numerical example.
The method not tied to its original field may be

used to estimate the risk arising from a pollutant
gaseous release, where risk is defined as the probabil-
ity that at a given location in the vicinity of an instal-
lation, a hazard index (e.g. concentration) exceeds a
critical limit value. The main goals of this paper are to
summarize the pattern recognition methods used for
classification and to introduce the algorithm for the
risk assessment of the dispersion of pollutant release
built on the principle of binary classification task.
Finally we present a simplified numerical example

of the algorithm implemented in the MATLAB pack-
age and compare the results with those obtained by
a specialized software package SLAB View which is
based on Ermak’s mathematical model that simulates
the dispersion of denser-than-air releases [8, 9]. The
model approaches are based on a Gaussian model for
pollutant gaseous release. Transport and dispersion
are calculated by solving the conservation equations
of mass, momentum, energy, species, and the cloud
half-width. The cloud is modeled depending on the
release duration. In the steady-state plume mode, the
cross-wind averaged conservation equations are solved
on the downwind distance. The time-averaged concen-
tration at a given location is calculated in SLAB View
using the instantaneous ensemble averaged concentra-
tion, the concentration averaging time, and the as-
sumed cloud lateral and vertical profiles, accounting
for effects such as meandering and along-wind disper-
sion.

THEORETICAL

Pattern recognition methods are procedures com-
monly used for classification, i.e. to establish rules for
sorting observations according to different categories
or classes. Among the four well-established pattern
recognition approaches, i.e. template matching, statis-
tical recognition and classification, syntactic or struc-
tural matching, and neural networks, the second one
was chosen for the purpose of this study.
In statistical pattern recognition, a pattern is

represented by a set of d features, viewed as a d-

dimensional feature vector. Given a set of patterns
from each class, the objective is to establish deci-
sion boundaries, which separate patterns belonging
to different classes. The decision-making process or
the classifier design establishes such boundaries. Clas-
sifier used for supervised methods requires two sets
of data, a training data set and a test one. Corre-
spondingly, the recognition system is operated in two
modes: training (learning) and classification (testing).
The classifier is built (learning) on the training set
and is used (testing) on the test set. For the sake
of brevity, reader interested in the course of dimen-
sionality and peaking phenomenon, the pitfall of over-
trained system, errors estimation, or the classifier sta-
bility, is encouraged to read some related studies [10—
14].
Generally, in pattern recognition and binary clas-

sification problems are given two sets of data in Rn

(or in other space): {x1, x2,. . ., xN} and {y1, y2,. . .,
yM}. The demanding problem is to find a function f
: Rn → R, which is positive on the first set and neg-
ative on the second one, as f(xi) > 0, i = 1,. . ., N
and f(yi) < 0, i = 1,. . ., M. If these inequalities are
fulfilled, function f or its 0-level set {x/f(x) = 0}, sep-
arates, classifies or discriminates the two sets of data.
This function f is often named as classifier, and some-
times as decision function.
In linear discrimination, an affine function f(x) =

wT · x − b classifying the points is sought, i.e.

wT · xi − b > 0, i = 1, ..., N and
wT · yi − b < 0, i = 1, ..., M (1)

Immediately below the equation all variable symbols
should be explained in the text.
From the geometrical point of view, this function

corresponds to hyperplane, which separates the two
sets of points. Since the strict inequalities in eqn (1)
are homogeneous in w and b, they are feasible if and
only if the set of nonstrict linear inequalities is feasible

wT · xi − b ≥ 0, i = 1, ..., N and
wT · yi − b ≤ 0, i = 1, ..., M (2)

w being the set defining the normal vector to the hy-
perplane and b the offset.
Then, the two sets of points can be linearly discrim-

inated if and only if their corresponding convex hulls,
{x1, x2,. . ., xN} and {y1, y2,. . ., yM}, do not inter-
sect. When the two sets of points cannot be perfectly
linearly separated, it is possible to seek an affine func-
tion, which approximately classifies the points, e.g.
one that minimizes the number of points misclassified.
A heuristic one approximating linear discrimination is
based on support vector classifiers, which is a statis-
tical classification method. According to these state-
ments the problem of separating the set of m training
vectors belonging to two separate classes was consid-

470 Chem. Pap. 59 (6b)469—475 (2005)



RISK OF GASEOUS RELEASE ASSESSMENT USING Minimax APPROACH

ered

{(zi, yi) |zi ∈ Rn, yi ∈ {−1 + 1} , i = 1, ..., m} (3)

with a hyperplane, wT · z − b = 0, where yi (yi ≈
sign

(
wT · zi − b

)
) is the associated “truth” given by

a trusted source. The underlying problem of interest
is to establish a decision function f : Rn → {±1}
using input-output training labeled data from eqn (3).
In principle, decision function, f(z), is a function the
sign of which represents the class assigned to the data
points z. If the points are linearly separable, then there
exists a vector w and a scalar b

w · zi − b ≥ +1 if yi = 1 and i ∈ Class C1
w · zi − b ≤ −1 if yi = 1 and i ∈ Class C2 (4)

The set of vectors given by eqn (3) is considered
optimally separated by the hyperplane if it is sepa-
rated without error and the distance between the clos-
est vectors to the hyperplane wT · z = b is maximal.
Geometrically this is equivalent to maximization of
the separation margin or distance between the two
parallel hyperplanes wT · z = b+1 and wT · z = b− 1.
The classifier is called a support vector machine be-
cause the solution depends only on the points (support
vectors) located on the two supporting hyperplanes
wT · z = b + 1 and wT · z = b − 1. In a separable
problem these support vectors are the closest to the
boundaries (the two parallel hyperplanes) in the sense
of some optimal criterions. Generally, minimization of
the probabilities that data vectors fall on the wrong
side of the boundary may do classifier design or the
problem of choosing a linear discrimination. A possi-
ble way is to attempt to control the misclassification
probabilities in a worse case setting as minimizing the
worst case – maximum probability of misclassification
of future data points. This is in fact a Minimax ap-
proach which is an alternative for discriminative clas-
sification approach. TheMinimax problem [13, 14] can
be interpreted geometrically as minimizing the maxi-
mum of the Mahalanobis distances to the two classes.
ThusMinimax probabilistic classification is similar

to maximum margin classification with respect to the
mean of the classes, where a factor depending on the
covariance matrices of each of the classes pushes the
threshold towards the class with lower covariance. Un-
like support vector classification, for which the closest
points to the decision boundary are the most impor-
tant, Minimax approach looks at the margin between
the means of both classes. The main advantage of the
Minimax approach is that it can obtain an explicit
upper bound of the misclassification probability of fu-
ture data without making Gaussian or other specific
distributional assumptions.
Using the Minimax approach one considers a bi-

nary classification problem, with z1 and z2 denoted
random vectors data from each of the two classes, with

means and covariance matrices given by (z̄1, Σz1)
and (z̄2, Σz2), with z1, z̄1, z2, z̄2 ∈ Rn and
Σz1 , Σz2 ∈ Rn×n both symmetric and positive def-
inite or semi-definite. Assuming z1 ∈ Class C1 and
z2 ∈ Class C2, a hyperplane that separates the two
classes of points

H(w, b) =
{

z|wT · z = b
}

,

where w ∈ Rn\{0} and b ∈ R (5)

is sought, with maximum probability with respect to
all distributions having mentioned means and covari-
ance matrices

max α
α, w �=0,b

s.t.

⎧⎪⎨
⎪⎩

inf
z1(z̄1,Σz1)

Prob
{
wT · z1 ≥ b

} ≥ α

inf
z2(z̄2,Σz2)

Prob
{
wT · z2 ≤ b

} ≥ α
(6)

In the light of a Minimax approach the classifier
should minimize the misclassification probability us-
ing an optimum separating hyperplane, named aMin-
imax probabilistic decision hyperplane, which exists
and can be determined solving a convex optimization
problem based on the Minimax probability machine
[13, 14].
Basic concept for the risk quantification of gaseous

pollutant emission from a continuous source and the
general framework of the algorithm built on the prin-
ciple of the binary classification task solved using
the Minimax approach is presented. This algorithm is
based on the most probable point (MPP) concept de-
veloped within the field of structural reliability [15—
19], and extended to calculate the risk arising from
a gaseous release. Detailed algorithm description was
given elsewhere [14—16], thus only some basic aspects
of these methods, better known by their acronyms
FORM/SORM, are discussed.
The starting point is to establish a performance or

a system response function, which gives the relation
between the model variable inputs (dimensional, op-
erating conditions, physical parameters, etc.) and the
chosen performance. In this paper, gaseous pollutant
concentration, C(xi), at different locations along the
downwind direction was chosen as the performance
function. It depends on a set of governing input pa-
rameters represented by the vector of random vari-
ables, x = (x1, x2, . . ., xd) ∈ Rd. Such random vari-
ables may represent inherent randomness, parameter
uncertainty, or a combination of both. The level of pol-
lution from a release source may be evaluated accord-
ing to a critical concentration, CR, representing the
value of “dangerous or failure concentration” of par-
ticular interest. The use of the term “failure” is only
customary, because only the likelihood of a particular
system state may be of interest. The limit state func-
tion (LSF) is the locus of points of the performance
functions defined as
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LSF = CR − C(xi) = 0 (7)

The algorithm and all the approximations work
in a transformed space Ud of standard normal, in-
dependent and uncorrelated variates u = (u1, u2, . . .,
ud) ∈ Ud obtained from the iso-probabilistic transfor-
mations (Rackwitz, Fiessler, Rosenblatt) of the basic
random variables x = (x1, x2, . . ., xd) ∈ Rd. The vari-
ates u is a set of standard parameters with cumulative
distribution function d-dimensional Gaussian, that is
the mean equal to 0 and identity for the variance. Ap-
plying this transformation to eqn (7) one gets

LSF(u) = CR − C(ui) = 0 (8)

representing the boundary between the safe and fail-
ure regions. Such transformed LSF corresponds to a
failure limit hypersurface. The failure region F defined
by the existence of a limit state function the nonpos-
itive values of which define the nonreliability domain
is expressed as

F =
{
u ∈ Ud |LSF(u) ≤ 0} (9)

The safety region S defined by the existence of a
limit state function the positive values of which define
the reliability domain is expressed as

S =
{
u ∈ Ud |LSF(u) ≥ 0} (10)

Since the probability density in the standard nor-
mal space decays exponentially with the distance from
the origin, the optimum point on the failure limit hy-
persurface for approximating the safety index lies clos-
est to the origin u∗ = (u∗

1, u
∗
2, . . . , u

∗
d). This point is

often named as the most probable point (MPP). Safety
index β is defined as the scalar minimum distance, in
the standard normal space, between the origin and the
MPP of the limit state function.
Regarding the target of this study, the safety region

S could be associated with the downwind distances,
at which the current value of concentration does not
exceed the critical concentration, CR. Similarly, the
failure region F corresponds to those downwind dis-

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Specify random variables and define the performance function. 

Random sampling of variables according to their distribution. 

Transform input random variables into a set of standard normal, 
independent variates. Perform the values of performance function. 

Building training and test database for binary classification  in reduced space , 
separating the values of  LSF  in two classes. 

 Construct and train the Linear discriminant for the train set. 

Perform the generalization of Linear discrimination on 
test set. Calculate the safety index β.  

Verify 

01 0 1 
. 

k 
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NO 
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Fig. 1. The basic flowchart of the proposed method.
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Table 1. Main Values of Simulation Parameters

Real variable Measured values Statistical distributions

Wind speed, w/(m s−1) V1 ∈ 〈1.4, 2.8〉 Weibull with mean µ = 2.33 m s−1 and σ ∼= 0.1µ
Downwind distance along plume cen-
terline, x/m

V2 ∈ 〈0, 15000〉 Normal with mean µ = 3000; 5000; 8000 and σ ∼= 0.1µ

Effective stack height, H/m V3 = 35 Normal with mean µ = 35 and σ ∼= 0.1µ
SO2 Emission rate, Q/(mg m−3) V4 = 143 × 103 Normal with mean µ = 143 × 103 and σ ∼= 0.1µ
Vertical distance from ground level,
z/m

Z0 = 2 Constant values representing the height of the point for estimation

Critical concentration, CR/(mg m−3) CR = 0.125 Critical values of polluting emissions for SO2 reported to human
health according to Romanian O.M.A.P.M – 462/2002

Only open country area and grass terrain with a surface roughness µZ0 = 0.02 m.

Table 2. Main Simulation Conditions

Dispersion parameter
Atmospheric stability class

Horizontal, σy/m Vertical, σz/m

A 0.22 (1 + 0.0001x)−0.5 0.20x
B 0.16 (1 + 0.0001x)−0.5 0.12x
C 0.11 (1 + 0.0001x)−0.5 0.08 (1 + 0.0002x)−0.5

Dispersion equation ⇒ Current concentration of pollutant emission

C (x, 0, z, H) =
Q

2πwσyσz

[
exp

(
−1
2
((z − H)/σz)

2
)
+ exp

(
−1
2
((z +H)/σz)

2
)]

Limit state function

LSF = CR − Q

2πwσyσz

[
exp

(
−1
2
((z − H)/σz)

2
)
+ exp

(
−1
2
((z +H)/σz)

2
)]

tances, for which the current value of concentration
exceeds the critical concentration CR. From a prob-
abilistic viewpoint, the first-order approximation for
the probability of “failure” represents the probability
that the current values of concentration will exceed
the critical concentration CR and is given by the fol-
lowing expression [17—19]

Pf = Prob
{
u ∈ Ud |LSF(u) ≤ 0} = Φ(−β) (11)

where Φ(−β) is the standard normal cumulative den-
sity function. Proposed algorithm identifies the deci-
sion function that represents the hyperplane (eqn (5))
as the locus of points of the performance functions in
transformed standard normal spaceUd. The algorithm
(Fig. 1) estimates the location of the most probable
point (MPP) and calculates the safety index β. Once
the location of the MPP, in the standard normal space
has been found and the safety index β was calculated,
probability that the current values of concentration
at different downwind distances exceeded the critical
concentration, CR, might be evaluated. Informatively
in this paper we can associate “patterns” with values
of classes for LSF.

EXPERIMENTAL

Proposed algorithm developed in MATLAB lan-
guage predicts centerlines concentration downwind for
SO2 pollutant emission. These values were used to
estimate the level of pollution from a gaseous re-
lease source, particularly the sulphur dioxide disper-
sion from a smokestack. The plume dispersion is mod-
eled with the Gaussian plume equation of Pasquill—
Gifford, using formulas recommended by Briggs [4,
5]. For simplicity the analysis focuses only on several
variables suspected of significantly affecting transport
and dispersion of denser-than-air releases: wind speed,
atmospheric stability, emission rate of the pollutant,
emission source characteristics, and one-terrain rough-
ness class (Table 1).
Because of the lack of sufficient experimental data,

the numerical experiments were conducted based on
averaged experimental measured data or arbitrary
probability distributions through simulation. Thus
these simulations might substitute real data as inputs
to consequence models or simply illustrate the process.
Assessments are done based on centerlines concentra-
tion. These values should estimate the level or the risk
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Fig. 2. Deterministic LSF simulations along the downwind di-
rection according to the stability classes.

of pollution from a gaseous release source; particularly
they can simulate a centerline dispersion of sulphur
dioxide from a smokestack. By the same reasons, dis-
persion coefficients (horizontal – σy and vertical – σz)
were estimated as a function of the distance, atmo-
spheric stability category, and the surface roughness
according to formulas recommended by Briggs. A gen-
eral description for all simulated conditions is listed in
Table 2. In order to solve the above-mentioned prob-
lem, several simplifications were adopted, i.e. Gaus-
sian Plume model with total reflection, continuous,
uniform emission rate of pollutant, and a simplified
dispersion model. Moreover, molecular diffusion and
longitudinal turbulent diffusion was neglected given
the turbulent diffusion and the wind displacement, re-
spectively.
With atmospheric stability omitted as an uncer-

tain variable, it is reasonable to approximate the wind
speed frequency from the physics of the process. On
the other hand, Weibull probability distribution is
quite flexible in representing the distribution of many
single-sided random variables. An appropriate approx-
imation for the wind speed frequency is a Weibull an-
alytic distribution [16, 17]. In these simplified condi-
tions we must mention that basically our model be-
comes closed to one deterministic. The limit state
function eqns (7) and (8) were simulated along the
downwind direction according to the basic statistical
distribution of the parameters of LSF. Based on these
probability simulations, the current values of sulphur
dioxide centerlines concentration exceeding the criti-
cal concentration were calculated. For a better com-
parability of the results simulations based on SLAB
View were conducted in the same simplified conditions
and assumptions. Comparative assessments are done
based on centerlines concentration related to surfaces
of constant concentration (isopleth) in Fig. 3.
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Fig. 3. Simulated dispersion values of SO2 pollutant concen-
tration (ppm) in SLAB View software package. Simu-
lated values (isopleth) for atmospheric stability class:
a) A, b) B, and c) C.

RESULTS AND DISCUSSION

Main drawback of many specialized software pack-
ages is the lack of probabilistic outputs and thus a
poor measure for the results certainty. Proposed al-
gorithm rectifies this drawback enabling to estimate
both dispersion of the pollutant emission and the
probabilistic certainty of the pollutant concentration
values.
Deterministically simulated estimates of plume

length are presented in Figs. 2 and 3. For the open
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Fig. 4. Probabilistically simulated values for critical plume
length of SO2 pollutant emission.

country terrain the critical centerlines concentration
plume length varies from 3000 to 10000 m, depending
on the atmospheric stability conditions. The results
presented in Figs. 2—4 indicate that the worst case
for dispersion of sulphur dioxide from a smokestack re-
sults for C category of the atmospheric stability. Such
critical centerlines concentration plume length repre-
sents the boundary between the “safe” and “failure”
regions in the sense of LSF as a difference between the
critical pollutant concentration, CR, and the current
values of SO2 concentration.
The maximum critical plume length of about 10000

m was calculated for atmospheric stability condition
of the type C. Certainty of deterministically simulated
values was confirmed by the values obtained using
Minimax simulation. Probabilities of simulated values
(Fig. 4) were higher than 95 %, i.e. a good confidence
value.
In general, a reasonable agreement of the two simu-

lations using either specialized software package SLAB
View, or the proposed probabilistic Minimax algo-
rithm was observed. Some minor differences occurred
only in the case of the deterministic LSF simulation
along the downwind direction according to the sta-
bility classes, especially for the atmospheric stability
class C (Figs. 2, 3c, and 4). A major distinction, given
the basic method and the specialized software pack-
age, is that the proposed algorithm utilizes the full
magnitude of all variables, not only of those of im-
portance, or very sensitive. This increases robustness
of the algorithm, as whole random nature of the LSF
is employed. More or less cumbersome, this applica-
tion reveals the complementary nature and the oppor-
tunity of assessments based on artificial intelligence
approaches for engineers, especially for chemical engi-
neers concerned with risk management.
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