ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly

Adsorption of 4,4'-diaminodiphenyl ether on molecularly imprinted polymer and its application in an interfacial potentiometry with double poles sensor

Mingming Ma, Yan Zhang, and Jia Liu

School of Environmental & Chemical Engineering, Xi’an Polytechnic University, Xi’an, China



Received: 13 July 2021  Accepted: 11 November 2021


A novel interfacial potentiometry with double poles (IPDP) sensor for detecting 4,4’-diaminodiphenyl ether (4,4’–DIADPE) has been developed by zero current potential regulation based on the adsorption interaction between the molecularly imprinted polymer (MIP) on the surface of graphene-modified pencil core electrode (G − PCE) and its template molecules. MIP is synthesized by electropolymerization with 4,4’–DIADPE (as template molecules) and acrylamide (AM, as functional monomer). The results of cyclic voltammetry, N2 adsorption–desorption isotherms, and scanning electron microscopy prove that the presence of these imprinted cavities facilitated excellent selectivity of the sensor. The adsorption mechanism and kinetics for the adsorption of 4,4’–DIADPE on MIP are explored by IPDP. The intra-particle diffusion model shows that a multiple sorption rate is attributed to this adsorption. A pseudo-first-order equation is established, which fits well with the adsorption data, indicating that physical adsorption should be the rate determining processes in adsorption. Meanwhile, nonlinear forms of Langmuir, Freundlich, and Langmuir–Freundlich adsorption isotherm models are used to fit the experimental adsorption curves. It is observed that the Langmuir–Freundlich model provides better data fitting than the other two models. In addition, this MIP − IPDP sensor with good reproducibility, repeatability, and stability exhibits a limit of detection (LOD) of 0.0463 µM. Thus, the proposed MIP − IPDP sensor is successfully applied for the quantitative determination of 4,4’–DIADPE in wastewater with recoveries from 91.63% to 101.21%, which is in agreement with the results obtained by standard high-performance liquid chromatography method.

Keywords: Adsorption; Interfacial potentiometry with double poles; Molecularly imprinted polymer; 4,4’-diaminodiphenyl ether

Full paper is available at

DOI: 10.1007/s11696-021-01979-z


Chemical Papers 76 (3) 1691–1705 (2022)

Tuesday, April 16, 2024

SCImago Journal Rank 2021
European Symposium on Analytical Spectrometry ESAS 2022
© 2024 Chemical Papers