|
|
ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7
Published monthly
|
Study the effect of salicylic acid and π -linkage of electrical and optical properties of organic based solar cell
Mustafa M. Kadhim, Nasier Sadoon, Hiba Ahmed Gheni, Safa K. Hachim, Ali Majdi, Sallal A. H. Abdullaha, and Ahmed Mahdi Rheima
Department of Dentistry, Kut University College, Kut, Iraq
E-mail: Mustafa_kut88@yahoo.com
Received: 6 September 2022 Accepted: 4 November 2022
Abstract:
Herein, the structural modification of triphenylamine (TPA) organic chromophores (P-I and P-II) by the substitution of electron donor (D) groups (replacing salicylic acid and inserting a π-linkage) was investigated for solar cell applications. TPA’s capability of donating and spacer significantly impact some features such as structure, absorption, and photovoltaic features, and these changes are studied via density functional theory (DFT) and time-dependent DFT (T-DFT) calculations. According to structural characteristics, the addition of TPA, π bridge, and the acceptor has an excellent co-planar conformation in P-II. Based on the computations to optimize ground-state and frequency, EHOMO, ELUMO, and energies of band gap (Eg) were specified. Consequently, we employed TD-CAM-B3LYP computations to determine the maximum wavelength of absorbance (λmax) and the strength of the oscillator (f). For P-II, the bands of absorption were augmented to ~ 653 nm. The P-II dye can be considered a suitable candidate for our solar cell application based on the obtained results.
Keywords: Triphenylamine; Solar cell; Wavelength; Band gap; Photovoltaic
Full paper is available at www.springerlink.com.
DOI: 10.1007/s11696-022-02579-1
Chemical Papers 77 (4) 1861–1867 (2023)