|
|
ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7
Published monthly
|
Sunlight-driven charge separation for a heterojunction of nano-pyramidal CuWO4-MOF modified TiO2 nanoflakes for photocatalytic degradation of ciprofloxacin
Kgaugelo S. Mabape, Shivani B. Mishra, Ajay K. Mishra, and Makwena J. Moloto
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
E-mail: makwena.moloto@outlook.com
Received: 12 March 2024 Accepted: 8 September 2024
Abstract: The study presents a breakthrough of a balanced charge separation for heterojunction CuWO4-TiO2 cocatalyst to efficiently enhance visible light photocatalytic degradation of ciprofloxacin (CIP). A solvothermal-synthesized nanopyramid-like CuWO4 semiconductor was assembled before sol–gel treatment with TiO2 precursors to generate CuWO4-TiO2 nanocomposites. The optical, structural, and morphological properties of CuWO4-TiO2 were elucidated using UV–Vis DRS, XRD, FTIR, Raman spectroscopy, and TEM/SEM techniques. The UV–Vis DRS spectroscopy of as-synthesized CuWO4-TiO2 cocatalyst demonstrated enhanced visible light absorbance. The XRD patterns of CuWO4-TiO2 revealed a triclinic phase nanocrystal. The O-Ti–O functionality was confirmed by FTIR spectroscopy. The photoactive bands corresponding to anatase redshift were observed from Raman spectroscopy of CuWO4-TiO2 nanocomposite. The PL studies attributed this redshift to the elevated extra energy bands that aid electron/hole pair charge separation in a co-catalyst heterojunction CuWO4-TiO2 nanocomposite afforded by embedding CuWO4-MOF within TiO2 crystalline. The TEM showed that un-sintered CuWO4.MOF mimicked a pyramidal shape and converted to nanoflakes upon sintering, while TiO2 and CuWO4-TiO2 retained a tetragonal shape. The photocatalytic activity of CuWO4-TiO2 cocatalyst was studied using CIP, as a model pollutant. The innovative design of 5CuWO4-TiO2 charge separation nanocomposite completely degraded 10 mg L−1 CIP solution at pH = 6.31 (natural pH) and 9 under 120 min of sunlight irradiation.
Keywords: CuWO4-TiO2 nanocomposite; Ciprofloxacin photodegradation; CuWO4 semiconductor; TiO2 nanoparticles; Electron/hole charge pair separation
Full paper is available at www.springerlink.com.
DOI: 10.1007/s11696-024-03686-x
Chemical Papers 78 (15) 8417–8432 (2024)
|