ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

DFT studies of a novel phenothiazine-based fluorescent probe (PFP) for its physiochemical and thermodynamic properties

Mukhtiar Ali, Abdul Rehman Jatoi, Jawad Ahmed, Sidra Mushtaq, Faheem Akhter, Mansoor Ahmed Lakhmir, Muhammad Junaid Ahsan, and Haris Jawad Arain

Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Pakistan

 

E-mail: faheemakhtar86@quest.edu.pk

Received: 31 May 2024  Accepted: 15 September 2024

Abstract:

Herein, DFT studies were carried out of a novel Phenothiazine-based Fluorescent Probe (PFP) for its physio-chemical and thermodynamic properties. Various aspects were investigated including optimized geometry, frontier molecular orbitals, molecular electrostatic potential, density of states, UV-Vis emission spectra and reactivity parameters. DFT studies reveal that molecular modeling, including the optimization of molecular structures like PFP, is crucial for understanding complex molecules and their characteristics. The energy difference (∆E) between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) was determined to be 4.48 eV. MEP maps indicate the nitrogen and sulfur atoms in the thiazine ring appear red, indicating high electron density. Similarly, the benzene rings appear blue thereby indicating lower electron density. The DOS spectrum confirmed the HOMO-LUMO gap and provided insights into the availability of electronic states at specific energy levels. High DOS intensity indicated many accessible states, while zero intensity indicated none. Time-Dependent Density Functional Theory (TD-DFT) calculations predicted the absorption maximum at 365 nm and emission spectra for PFP, with a calculated maximum emission at 656 nm. Coordination with water shifts the emission to 690 nm, showing a redshift of 44 nm. Moreover, the theoretically calculated maximum emission of probe PFP was determined to be λem = 656 nm, whereas maximum emission spectra of probe PFP with water coordination is calculated as λem = 690 nm which is red shifted 44 nm. These theoretically calculated values significantly deviate from experimental value. This deviation occured because the absorption and emission spectra recorded in solvents of different polarity result in different wavenumbers and intensities.

Graphical abstract

Keywords: DFT; Fluorescence; Thermodynamic; Phenothiazine

Full paper is available at www.springerlink.com.

DOI: 10.1007/s11696-024-03700-2

 

Chemical Papers 78 (16) 8673–8681 (2024)

Thursday, November 21, 2024

IMPACT FACTOR 2023
2.1
SCImago Journal Rank 2023
0.381
SEARCH
Advanced
VOLUMES
© 2024 Chemical Papers