 |
|
ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7
Published monthly
|
Spectroscopic insights into human serum albumin and PGSA dendrimer interactions: assessing bio-distribution efficiency
M. Sureshkumar, S. Karthikeyan, Fathi Awad, P. Kanagaraj, M. Shanmugaraja, and I. Manohara Babu
Department of Physics, Mepco Schlenk Engineering College, Sivakasi, Virudhunagar, India
E-mail: mskumar@mepcoeng.ac.in
Received: 5 August 2024 Accepted: 19 December 2024
Abstract:
Understanding molecular interactions is essential for biologists to elucidate protein functions, behaviors, and predict related biological processes. Recent studies have concentrated on examining protein–nanoparticle interactions using various techniques to determine the biological effects of nanoparticles. Investigating dendrimers as potential drug delivery agents requires an understanding of their ability to bind small ligands. In this research, we thoroughly examined the interaction between human serum albumin (HSA) and biocompatible polymeric Phloroglucinol Succinic Acid (PGSA) dendrimers of different generations. Using spectroscopic analysis and molecular docking studies, we aimed to uncover the mechanisms behind PGSA dendrimer-HSA binding, which could enhance stability, half-life, and bio-distribution. Our results, obtained through UV-Visible spectroscopy, fluorescence spectroscopy, and molecular docking, indicate a predominantly ground state complex formation with a single binding site, mainly mediated by hydrogen bonding. This study highlights the importance of understanding polymeric nanoparticle–protein interactions in drug design to improve drug solubility and therapeutic efficacy. Additionally, our investigation into dendrimer-HSA interactions offers promising insights into bio-barrier permeability, potentially aiding in the treatment of brain tumors using dendritic structures.
Keywords: Interaction; Polymer; Human serum albumin; PGSA dendrimer; Binding; Molecular docking
Full paper is available at www.springerlink.com.
DOI: 10.1007/s11696-024-03876-7
Chemical Papers 79 (3) 1601–1612 (2025)