ISSN print edition: 0366-6352
ISSN electronic edition: 1336-9075
Registr. No.: MK SR 9/7

Published monthly
 

Experimental study on methane solubilization by organic surfactant aggregates

Zheng Zhou, Shunbing Zhu, Junhui Gong, Mingxing Zhu, and Weitao Luo

Nanjing Tech University, Nanjing, China

 

E-mail: cjsyzx@njtech.edu.cn

Abstract: Seeking to enhance coal mine safety, an experimental study of a kind of water-based explosion suppression medium for the absorption of mine gas was carried out. Using methane as the model gas, solubilizing experiments with different concentrations of anionic and nonionic surfactants were carried out using headspace gas chromatography for surfactants consisting of sodium fatty alcohol polyoxyethylene ether carboxylate (AEC), fatty acid methyl ester sulfonate (MES), fatty methyl ester ethoxylate (FMEE), hexyl d-glucoside (APG06), octyl beta-d-glucopyranoside (APG08) and n-decyl glucoside (APG10). By selecting individual surfactants, the study investigated the methane solubilization performance of water mist with binary anionic–nonionic surfactants. Furthermore, the release of methane in solution was also examined. The results show that the apparent solubility of methane in solution is linearly and positively correlated with the surfactant concentration. The methane solubilization is significantly improved by the addition of anionic–nonionic surfactants. The optimal solubilizing ratio of the anionic–nonionic surfactant varies with the solution compositions. For a fixed ratio, surfactant compositions exhibit the most distinct synergistic effect and the best performance for methane solubilization. The release of methane from mixed micelles composed of the compound solution is superior to that of a single surfactant. Through the analysis of the solubilization effect and the stability of different absorbents, it is concluded that the anionic–nonionic surfactant system shows much better capability than the other selected surfactants.

Keywords: Methane ; Explosion suppression ; Solubilization ; Surfactant ; Synergistic effect 

Full paper is available at www.springerlink.com.

DOI: 10.1007/s11696-017-0369-3

 

Chemical Papers 72 (6) 1467–1475 (2018)

Sunday, April 05, 2020

IMPACT FACTOR 2018
1.246
SCImago Journal Rank 2018
0.274
SEARCH
Advanced
VOLUMES
47th International Conference of SSCHE
15th Bratislava Symposium on Saccharides (15BSS)
© 2020 Chemical Papers