KRYŠTÁLOVÁ ŠTRUKTÚRA METAVANADIČNANU DRASELNÉHO

M. PETRÁŠOVÁ, J. MAĎAR, F. HANIC

Katedra fyziky Prírodovedeckej fakulty Univerzity Komenského v Bratislave

Oddelenie anorganickej chémie Chemického ústavu Slovenskej akadémie vied v Bratislave

Kryštálová štruktúrna analýza metavanadičnanu sodného NaVO₃ [1] a metavanadičnanu amónneho $\rm NH_4VO_3$ [2] ukázala úzku súvislosť medzi štruktúrami uvedených látok a štruktúrami kremičitanov pyroxénového typu. Pre skupinu týchto látok je charakteristická tetraedrická koordinácia kyslíkov okolo centrálneho atómu kremíka, resp. vanádu, pričom však dva z kyslíkov sú spoločné dvom tetraédrom. Vytvárajú sa tak nekonečné reťazce typu

Pri takomto usporiadaní je vzájomný účinok pozitívnych nábojov centrálnych atómov minimálny. Každý iný spôsob reťazenia (napr. spoločnými hranami, resp. plochami tetraédrov) zmenšuje vzájomnú vzdialenosť centrálnych atómov, pričom rastúci účinok odpudivých síl ich kladného náboja znižuje stálosť štruktúry. Štruktúry takéhoto typu majú preto silikáty veľmi zriedkavo.

Roku 1954 rozriešil C. L. C h r i s t a spolupracovníci kryštálovú štruktúru monohydrátu metavanadičnanu draselného KVO_3 . H_2O [3]. V tejto štruktúre existujú dvojité reťazce, v ktorých sú polyédre kyslíkových atómov, obklopujúcich vanád, navzájom viazané hranami, čo vedie k skráteniu medziatómovej vzdialenosti V—V v reťazci. Okrem toho znižuje stabilitu štruktúry pozitívnejší náboj vanádov, ktorý vzniká v dôsledku vyššej koordinácie vanádu atómami kyslíka (každý vanád je koordinovaný piatimi kyslíkmi). Nestálosť štruktúry KVO_3 . H_2O sa prejavuje napr. tým, že pri rozpráškovaní jeho značná časť prechádza na KVO_3 , ktorý je teda stabilnou formou. Našu prácu sme venovali podrobnému štúdiu kryštálovej štruktúry KVO_3 .

Experimentálna časť

Kryštály KVO₃ vznikli voľným prekryštalovaním z KVO₃. H₂O, ktorý sme ponechali v styku s kryštalizačným lúhom (KVO₃. H₂O vykryštaloval z roztoku pripraveného rozpúšťaním V₂O₅ v nadbytku KOH a neutralizovaním so zriedenou kyselinou octovou na pH 6,5—7,5).

Bezvodý metavanadičnan draselný tvorí pseudooktaedrické bezfarebné kryštály. C. L. C h r i s t a spolupracovníci [3] zistili, že KVO_3 má ortorombickú symetriu a základná bunka má tieto rozmery:

$$a = 5,70$$
 Å; $b = 10,82$ Å; $c = 5,22$ Å; $\lambda = 1,5418$ Å

Rozmery základnej bunky sme kontrolovali pomocou rotačných snímok kalibrovaných hliníkom a pomocou precesných snímok. Získali sme údaje zhodné s predošlými. Mriežková konštanta c nám však vyšla oniečo menšia:

 $a = 5,70\pm0,1$ Å; $b = 10,83\pm0,03$ Å; $c = 5,19\pm0,01$ Å; $\lambda = 1,5387$ Å

Priestorovú grupu symetrie sme určili zo systematického vynechávania reflexií na snímkach nulovej vrstevnice a vyšších vrstevníc zhotovených na Weissenbergovej komôrke pomocou ekviinklinačnej metódy (os rotácie [100]), ako aj z precesných snímok projekcií (h0l) a (hk0). Použili sme žiarenie MoK a CuK. Zistili sme, že z reflexií typu hk0 sú prítomné len tie, pre ktoré je splnená podmienka k = 2n, t. j. rovina (001) musí byť sklznou rovinou symetrie b. Pri reflexiách typu (h0l) sú prítomné len reflexie s párnym h, t. j. rovina (010) je sklznou rovinou symetrie a. Pri reflexiách typu 0kl sme nezistili nijaké špeciálne vynechávanie. Rovina (100) môže byť preto nanajvýš rovinou symetrie. Zo špeciálneho vynechávania reflexií vyplynuli pre štruktúru KVO₃ ako možné priestorové grupy *Pab*, resp. *Pmab*.

Intenzity reflexií sme určili vizuálne metódou opísanou v práci [2]. Korekciu na absorpciu sme vykonali len pre reflexie 0kl, pretože pri reflexiách hk0 rozmery kryštálu dovoľovali zanedbať absorpciu. Po korekcii intenzíť na Lorenzov a polarizačný faktor urobili sme prepočet z relatívnej stupnice na absolútnu a súčasne sme korigovali intenzity na teplotný faktor pomocou W i l s o n o v e j metódy [4]. Zo získaných hodnôt sme vypočítali Pattersonove funkcie P(v, w), znázornené na obr. 1 a 2. Teraz sme už mali

Obr. 1. Projekcia Pattersonovej funkcie do roviny (100). Vrstevnice sú zakreslené v ľubovoľnej stupnici.

dostatočný počet údajov, aby sme mohli pristúpiť k určeniu polôh atómov a rozhodnúť o tom, či KVO₃ nie je izoštruktúrny s niektorou už známou štruktúrou polyvanadičnanu pyroxénového typu. Priame porovnanie bolo možné vykonať predovšetkým so štruktúrou $\rm NH_4VO_3$, ktorá je ortorombická. Mriežkové konštanty základnej bunky KVO₃ a NH VO₃ sú uvedené v tab. 1.

Celkový charakter Pattersonových funkcií ukázal, že polohy maxím zodpovedajúce medziatómovým vektorom sa podstatne nezmenili. Zmenila sa však relatívna výška

Obr. 2. Projekcia Pattersonovej funkcie do roviny (001). Vrstevnice sú zakreslené v ľubovoľnej stupnici.

T	a	b	u	ſ	k	a	1

Základné bunky NH_4VO_3 a KVO_3 ($\lambda_{Cu} = 1,5387$ Å)

	a (Å)	. b (Å)	c (Å)	Priestorová grupa symetrie	N
$\rm NH_4 VO_3$	5,85	11,82	4,92	Pmab	4
KVO3	5,70	10,83	5,19	Pmab alebo Pab	4

niektorých maxím, čo možno vysvetliť izomorfným zastúpením iónu NH_4^+ iónom K⁺ o dvojnásobnej rozptylovej mohutnosti. Vektorovú analýzu Pattersonových funkcií P(u, v) a P(v, w) za účelom určenia priestorových súradníc atómov bolo preto možné vykonať za predpokladu, že KVO₃ a NH₄VO₃ sú izoštruktúrne. Priestorové súradnice,

Т	a	b	u	ľk	a	2

Priestorové súradnice atómov v základnej bunke KVO3 [určené z Pattersonovej syntézy $P\ (v,w)]$ a NH4VO3

KVO3					NH4VO3	
	x	y	z	x	y	z
V K(NH ₄) O _I O _{II} O _{III}	$0,250 \\ 0,750 \\ 0 \\ 0,250 \\ 0,250 \\ 0,250 \end{cases}$	$\begin{array}{c} 0,160\\ 0,107\\ 0,250\\ 0,144\\ 0,027\end{array}$	0,473 0,937 0,587 0,158 0,617	$\begin{array}{c} 0,250\\ 0,750\\ 0\\ 0,250\\ 0,250\\ 0,250 \end{array}$	$\begin{array}{c} 0,174\\ 0,088\\ 0,250\\ 0,128\\ 0,045 \end{array}$	0,465 0,936 0,578 0,171 0,585

Priestorové súradnice uvedené v tab. 2 sme použili na určenie znamienok koeficientov Fourierovho rozvoja $\varrho(x, y)$ a $\varrho(y, z)$. Už druhá Fourierova analýza $\varrho(y, z)$ dala polohy atómov, ktoré neviedli k zmene znamienka ani jedného koeficienta Fourierovho rozvoja. Tieto polohy atómov sme ešte spresnili metódou $(F_0 - F_c)$ a metódou najmenších štvorcov. Rozvoj elektrónovej hustoty $\varrho(y, z)$ sme počítali so 156 koeficientami a $\varrho(x, y)$ s 33 koeficientami (obr. 3 a 4). Konečné polohy atómov zachycuje tab. 3.

т	8	h	11	ľ	k	я.	- 3
1	a	N	u	Ŧ	r	a	

Konečné súradnice atómov v základnej bunke KVO3

		<i>y</i>	<i>z</i>
v	0,250	0,163	0,476
K	0,750	0,105	0,935
OI	0	0,250	0,589
OII	0,250	0,151	0,152
0111	0,250	0,027	0,626

Obr. 3. Projekcia elektrónovej hustoty do roviny (100). Vrstevnice sú zakreslené v ľubovoľnej stupnici.

Zhoda pozorovaných a vypočítaných štruktúrnych faktorov je uvedená v tab. 4. Faktor $R = \sum |(F_0) - (F_c)| / \sum (F_0)$ sa pre zónu reflexií 0kl rovná 0,18 (0,15 bez nulových reflexií), pre zónu hk0 sa R rovná 0,20 (0,14 bez nulových reflexií).

Obr. 4. Projekcia elektrónovej hustoty do roviny (001). Vrstevnice sú zakreslené v ľubovoľnej stupnici.

Cpis štruktúry

Metavanadičnan draselný KVO₃ je izoštruktúrny s $\rm NH_4VO_3$. Reťazce tetraédrov VO⁴ idú v smere osi a. Medziatómové vzdialenosti V—O v tetraédri VO₄ sú 1,66 Å a 1,68 Å pri kyslíkoch, ktoré sa nezúčastňujú väzby v reťazcoch, a 1,80 Å pri väzbových kyslíkoch. Tieto medziatómové vzdialenosti sú porovnateľné s hodnotami pri $\rm NH_4VO_3$: 1,64 Å. 1,66 Å a 1,80 Å. Atómy vanádu v susedných tetraédroch VO₄ sú vzdialené o 3,42 Å (3,43 Å pri $\rm NH_4VO_3$ a 3,14 Å pri $\rm KVO_3$. $\rm H_2O$). Katión K je koordinovaný šiestimi kyslíkmi vo vzdialenostiach: 2,69 Å, 2,78 Å, 2,78 Å, 2,81 Å, 3,11 Å a 3,37 Å. Medziatómové vzdialenosti v štruktúre $\rm KVO_3$ a $\rm NH_4VO_3$ prehľadne znázorňuje tab. 5.

Tabulka 4

Pozorované F_0 a vypočítané F_c hodnoty štruktúrnych faktorov

hkl	F_{0}	F_{c}	hkl	Fo	F_{c}	hkl	F _o	F_{c}
$\begin{array}{c} 020\\ 040\\ 060\\ 080\\ 0.10.0\\ 0.12.0\\ 0.14.0\\ 0.16.0\\ 0.18.0\\ 0.20.0\\ 0.22.0 \end{array}$	$\begin{array}{c} 30,4\\ 59,2\\ 32,2\\ 26,4\\ 20,0\\ 41,0\\ 31,3\\ 38,4\\ 28,5\\ 14,7\\ 40,1 \end{array}$	$ \begin{vmatrix} -32,5 \\ -74,2 \\ +30,7 \\ +22,4 \\ -17,7 \\ +41,4 \\ -39,0 \\ -37,8 \\ +28,0 \\ +21,1 \\ -37,2 \end{vmatrix} $	001 011 021 031 041 051 061 071 081 091 0.10.1	51,2 $50,5$ $7,5$ $45,8$ $39,6$ $61,7$ $23,9$ $20,2$ $$ $56,7$	$ \begin{vmatrix}52,5 \\4,6 \\ +48,8 \\9,4 \\35,5 \\38,8 \\ -66,2 \\ +23,2 \\ +23,7 \\0,4 \\ +59,8 \end{vmatrix} $	$\begin{array}{c} 0.11.1\\ 0.12.1\\ 0.13.1\\ 0.14.1\\ 0.15.1\\ 0.16.1\\ 002\\ 012\\ 022\\ 032\\ \end{array}$	$\begin{vmatrix} 19,3\\40,0\\14,7\\8,3\\7,7\\16,1\\84,6\\-\\25,3\\37,2 \end{vmatrix}$	$ \begin{array}{ c c c c c } -21,6 & -39,0 & -12,2 & -7,3 & +11,6 & +8,2 & +105,1 & +0,4 & -26,8 & -35,7 & \end{array} $

Pokračovanie tab. 4

hkl	Fo	F _c	hkl	Fo	F _c	hkl	Fo	${m F}_{f c}$
042	43,9	-54,7	0.11.4	1	-6,3	027	_	9,1
052	32,2	+30,3	0.12.4	17,0	+16,6	037	20.0	9,2
062	25,4	+18,5	0.13.4	17,3	25,3	047	23,6	+27,9
072	18,4	+19,7	0.14.4		0,5	057	19,9	-17,8
082	6,3	+2,6	0.15.4	10.0	3,1	067	20.4	0,6
092	33,7	+29,3	0.16.4	10,2	-10,8	077	26,4	+29,8
0.10.2	10,1	6,3	0.17.4	37,0	+41,2	087	1.0	-2,5
0.11.2	8,5	-25,4	0.18.4	27,9	+27,9	097	14,6	+18,0
0.12.2	32,6	+33,6		20.0	27.0	000		105
0.13.2	12,4	-12,2	005	23,9	-27,0	008	6,3	8,5
0.14.2	22,4	-28,4	015		-2,4	018	25,2	
0.15.2	20.4	+8,7	025	8,6	+8,1	028		
0.16.2	26,4	-23,9	035	18,3	21,1	038		+5,4
0.17.2	28,2	+28,5	045	38,6	+42,0	048		+16,2
0.18.2	30,5	+29,9	055	13,3	-10,3	058	15,8	+11,6
000			065	19,3	-23,8	068	21,7	+30,8
003	44,7		075	47,5	+50,8	078	14,4	
013	22,5		085	-13,6	+10,8		27.0	
023	38,2	+40,0	095	8,3	+10,7	009	27,3	-35,8
033	24,0	-23,1	0.10.5	7,5	0,1	019	29,6	+31,2
043	37,0	+37,8	0.11.5	30,0	+28,1	029		-3,3
053	40,6	-36,2	0.12.5	21,6	-16,1	039		+2,4
063	57,0	-56,4	0.13.5		0,7	049	13,8	+19,6
073	50,7	+51,0	0.14.5		+4,1	059	23,8	-24,6
083	18,0	+19,4	0.15.5	12,9	+14,0		1	
093		0,5	0.16.5	25,1	+18.8			
0.10.3	40,8	+40,0	0.17.5		+4,8			
0.11.3	33,9	-37,1	0,18.5	27,3	29,0			
0.12.3	34,7							
0.13.3	20,2	-18,6	006	6,6	+1,8			
0.14.3	14,8	-12,5	016	38,4	-42,9			
0.15.3	14,3	+19,9	026	13,9	9,0			
0.16.3	24,2	+16,6	036	17,7	-23,7			
0.17.3		+1,9	046	15,0	9,5			
0.18.3	15,8	-17,2	056	26,0	+20,6			
			066	40,3	+44,2			
004	16,6	+11,1	076	6,8	-6,2			
014	45,3	-42,0	086	15,1	-20,6			
024	19,4	-15,6	096	12,6	8,4			
034	47,1		0.10.6	28,2	-28,0			
044	32,3	-34,4	0.11.6	8,4	+4,8			
054	48,9	+41,3	0.12.6	12,7	+13,1			
064	34,6	+29,1	0.13.6	23,4	-33,1			
074	6,7	+4,2	0.14.6	17,2	+21,5			
084	16,1	-18,6			201			
094	6,9	+7,6	007	26,2	-36,1			
0.10.4	18,3	10,1	017	26,3	+23,2			
					l			

Diskusia

Väzby medzi vanádom a kyslíkmi, ktoré ho tetraedricky obklopujú, sú kovalentnej povahy. Väzbové kyslíky sú viazané jednoduchou väzbou, kým zostávajúce dva kyslíky sú viazané násobnou väzbou k vanádu. Násobnosť väzby N

Tabulka 5

Porovnanie medziatómových vzdialeností a uhlov pri KVO₃, NH₄VO₃ a KVO₃.H₂O

	KVO ₃ (Å)	$\mathrm{NH}_4\mathrm{VO}_3$ (Å)	KVO3.H2O (Å)
$ \begin{array}{c} V _ OI \\ V _ OII \\ V _ OIII \\ V _ OIII \\ NH_4(K) _ OI \\ NH_4(K) _ OII \\ NH_4(K) _ OIII \\ OI _ OIII \\ OI _ OIII \\ OI _ OIII \\ OI _ OII \\ V _ V \\ OI _ V _ OIII \\ OI _ V _ OII \\ OI _ V _ OI \\ OI _ V _ OII \\ OI _ V _ OI \\ OI _ V _ OII \\ OI _ V _ OI \\$	1,80 [2] 1,68 1,66 2,78 [2] 2,81; 3,11 2,69; 3,24; 3,37 2,88 2,81 2,80 2,85 3,42 112 109 114 105	$1,80 [2] \\1,66 \\1,64 \\2,98 [2] \\3,08; 3,22 \\2,83 2,99; 3,42 \\2,81; \\2,83 \\2,70 \\2,92 \\3,43 \\109 \\111 \\110 \\108$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

pri vzdialenostiach V—O 1,67 Å sa podľa [5] rovná 1,5 Å a štruktúru reťazca možno opísať mezomérnymi vzorcami:

Pri KVO₃. H₂O je vanád koordinovaný piatimi kyslíkmi. Dá sa predpokladať, že pri tejto štruktúre iba dva atómy kyslíka O_I a O_{II} sú viazané k vanádu väzbou kovalentnej povahy, kým zostávajúce tri kyslíky sú viazané k vanádu silne polarizovanými iónovými väzbami. Svedčia o tom i medziatómové vzdialenosti V—O, ktoré sú podstatne dlhšie v porovnaní s kovalentne viazanými kyslíkmi (1,93—1,99 Å), ako aj značné odchýlky uhlov medzi väzbami O—V—O od ideálneho tetraedrického uhla. Pozitívne náboje vanádu pôsobia potom na seba v kratšej vzdialenosti (3,14 Å) než pri KVO₃,čo znižuje stálosť štruktúry KVO₃. H₂O.

Súhrn

Bola rozriešená kryštálová štruktúra KVO_3 zo snímok získaných na Weissenbergovej a precesnej komôrke. Rozmery ortorombickej elementárnej bunky, určené zo snímok otáčaného monokryštálu a z precesných snímok, sú:

a = 5,70 Å; b = 10,82 Å; c = 5,22 Å

Priestorová grupa je Pmab (D_{2h}^{11}) , počet molekúl v elementárnej bunke sa rovná štyrom. Usporiadanie atómov v elementárnej bunke bolo určené interpretáciou Pattersonových funkcií P(v, w), P(u, v) a z projekcie elektrónovej hustoty do rovín (100) a (001).

Zistila sa úplná analógia so štruktúrou $\rm NH_4 VO_3$. Zistená štruktúra sa porovnala so štruktúrou $\rm NH_4 VO_3$ a $\rm KVO_3$. $\rm H_2O$.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МЕТАВАНАДАТА КАЛИЯ м. петрашова, я. мадяр, ф. ганиц

Кафедра физики факультета Естествознания Университета им. Коменского в Братиславе

> Отделение неорганической химии Химического института Словацкой Академии Наук в Братиславе

> > Выводы

Разрешенна кристаллическая структура KVO₃ из снимок приобретенных при помощи Вейсенберговой и прецессной камеры. Размеры орторомбической элементарной ячейки, приобретенные из книмок вращающего монокристалла и прецессных снимок:

$$a = 5,70$$
 Å; $b = 10,82$ Å; $c = 5,22$ Å

Пространственная группа Pmab (D_{zh}^{11}), число молекул в элементарной ячейке равно четырем. Расположение атомов в элементарной ячейке было определенно интерпретацией функции Паттерсона P(v, w), P(u, v) и из проекции электронной плотности в плоскости (100) и (001).

Была найдена полная аналогия с структурой NH₄VO₃. Определенная структура сравнилась с структурой NH₄VO₃ и KVO₃. H₂O.

Поступило в редакцию 5. 2. 1958 г.

KRISTALLSTRUKTUR DES KALIUMMETAVANADATS

M. PETRÁŠOVÁ, J. MAĎAR, F. HANIC

Lehrstuhl für Physik der Naturwissenschaftlichen Fakultät an der Komensky-Universität in Bratislava

Abteilung für anorganische Chemie des Chemischen Instituts an der Slowakischen Akademie der Wissenschaften in Bratislava

Zusammenfassung

Es wurde die Kristallstruktur von KVO_3 aus Aufnahmen auf der Weissenbergschen und der Präzessionskamera klargestellt. Die Dimensionen der orthorhombischen Elementarzelle, welche aus Aufnahmen nach dem Drehmonokristallverfahren und nach Präzessionsaufnahmen bestimmt wurden, sind folgende:

$$a = 5,70$$
 Å; $b = 10,82$ Å; $c = 5,22$ Å

Die Raumgruppe ist *Pmab* (D_{2h}^{1h}) , die Anzahl der Moleküle in der Elementarzelle ist gleich vier. Die Anordung der Atome in der Elementarzelle wurde durch Interpretation der Pattersonschen Funktionen P(v, w), P(u, v) und aus der Projektion der Elektronendichte in die Ebenen (100) und (001) bestimmt.

Es wurde eine vollkommene Analogie mit der Kristallstruktur des NH_4VO_3 festgestellt. Diese festgestellte Kristallstruktur wurde mit der Struktur des NH_4VO_3 und KVO_3 . H_2O verglichen.

In die Redaktion eingelangt den 5. 2 1958

LITERATÚRA

 Sorum H., Chem. Zentr. 1, 206 (1944). — 2. Syneček V., Hanic F., Čs. čas. fys. 4, 5 (1954). — 3. Christ C. L., Clark J. R., Evans H. T., Acta Cryst. 7, 801 (1954). — 4. Wilson A. J. C., Nature 150, 1951 (1942). — 5. Hanic F., Chem. zvesti 10, 268 (1956).

-

Došlo do redakcie 5. 2. 1958