CHEMICKÉ ZVESTI

FYZIKÁLNO-CHEMICKÁ ANALÝZA NIEKTORÝCH SÚSTAV DÔLEŽITÝCH Z HĽADISKA VÝROBY HLINÍKA (III) LIKVIDUS KRYOLITOVÉHO UHLA SÚSTAVY Na₃AlF₆—Al₂O₃—CaF₂—NaCl

K. MATIAŠOVSKÝ, M. MALINOVSKÝ

Ústav anorganickej chémie Slovenskej akadémie vied v Bratislave Katedra anorganickej technológie Slovenskej vysokej školy technickej v Bratislave

Úvod

Zostrojenie likvidusa kryolitového uhla sústavy Na_3AlF_6 — Al_2O_3 — CaF_2 — —NaCl je časťou štúdia sústavy NaF— AlF_3 — Al_2O_3 — CaF_2 —NaCl. Cieľom práce je zistiť vplyv prísady NaCl do základného elektrolytu pre výrobu hliníka na zlepšenie niektorých z hľadiska výroby dôležitých fyzikálno--chemických vlastností elektrolytu [5].

Sústava Na₃AlF₆—Al₂O₃—CaF₂—NaCl je priestorovým rezom päťzložkovej recipročnej sústavy Al³⁺, Na⁺, Ca²⁺ || F⁻, Cl⁻, O²⁻, ktorú podľa [9] možno znázorniť ako prizmatický hexaedroid (obr. 1). Ako vidieť na obr. 1, tento

Obr. 1. Päťzložková recipročná sústava Al³⁺, Na⁺, Ca²⁺ || F⁻, Cl⁻, O²⁻.

priestorový rez má tvar trojbokého ihlana. Aby sme ho mohli považovať za jednoduchú štvorzložkovú sústavu, je potrebné, aby všetky dvojzložkové a trojzložkové sústavy ohraničujúce ihlan, ako aj samotný priestorový rez boli stabilnými diagonálami príslušných dielčích sústav päťzložkovej recipročnej sústavy. Niektoré z týchto sústav neboli doteraz preštudované, preto nemôžeme zatiaľ jednoznačne usudzovať, či sústava $Na_3AlF_6-Al_2O_3-CaF_2-NaCl$ je jednoduchá štvorzložková sústava.

Pri práci sme sa zamerali na štúdium kryolitového uhla tejto sústavy, t. j. oblasti, ktorá sa svojím zložením blíži zloženiu elektrolytu používaného pri výrobe hliníka. Sledovaná oblasť je ohraničená časťami troch hrán, ktoré zodpovedajú dvojzložkovým sústavám Na_3AlF_6 — Al_2O_3 , Na_3AlF_6 — CaF_2 a Na_3AlF_6 —NaCl, a priľahlými časťami koncentračných trojuholníkov trojzložkových sústav Na_3AlF_6 — CaF_2 — Al_2O_3 , Na_3AlF_6 —NaCl— Al_2O_3 a Na_3AlF_6 — CaF_2 — Al_2O_3 , Na_3AlF_6 —NaCl— Al_2O_3 a Na_3AlF_6 — CaF_2 — Al_2O_3 , Na_3AlF_6 —NaCl— Al_2O_3 a Na_3AlF_6 — CaF_2 —NaCl (obr. 2). Všetky tieto sústavy boli už preštudované.

Obr. 2. Priestorový rez Na₃AlF₆-Al₂O₃-CaF₂-NaCl.

Sústava Na₃AlF₆—Al₂O₃ bola predmetom štúdia mnohých pracovníkov. Ich údaje sú zhrnuté v prácach [1, 2, 10]. Medzi údajmi jednotlivých autorov sú značné rozpory, predovšetkým v charakteristikách eutektického bodu sústavy. Zloženie eutektika sa uvádza v rozmedzí 5—24 %¹ Al₂O₃, teplota eutektickej kryštalizácie v rozmedzí 880—962 °C. V posledných rokoch túto sústavu preštudovali G. A. Abramov [1] a N. W. F. Phillips [10].

¹ Všetky koncentrácie zložiek sú uvedené vo váhových percentách.

Ich údaje sa podobne značne rozchádzajú (Abramov: 15,6 % $\rm Al_2O_3,~937~^\circC;$ Phillips: 10 % $\rm Al_2O_3,~962~^\circC).$

Sústava Na_3AlF_6 —Ca F_2 sa takisto viackrát sledovala. Rozbor údajov jednotlivých autorov je v práci [6]. Je to jednoduchá eutektická sústava. Zloženie eutektika je 73,3 % Na_3AlF_6 , teplota eutektickej kryštalizácie je 940 °C.

Sústavu Na₃AlF₆—NaCl preštudoval N. W. F. Phillips [11] a autori [6]. Ide o jednoduchú eutektickú sústavu s eutektikom o zložení 69,3 % NaCl. Teplota eutektickej kryštalizácie je 737 °C.

Trojzložkovú sústavu Na₃AlF₆—CaF₂—Al₂O₃ prví preštudovali P. Pascal a A. Jouniaux [8]. Ich údaje preveril G. A. Abramov so spolupracovníkmi, ktorí podrobne preštudovali kryolitový uhol sústavy a zostrojili fázový diagram tejto oblasti [1]. Abramov opravil údaje predchádzajúcich autorov. Zloženie eutektika sústavy je: 75,9 % Na₃AlF₆, 10,5 % Al₂O₃ a 13,6 % CaF₂. Teplota eutektickej kryštalizácie je 923 °C.

Fázový diagram sústavy Na_3AlF_6 —CaF₂—NaCl zostrojili autori [6]. Je to jednoduchá eutektická sústava. Zloženie trojitého eutektika je 31,8 % Na_3AlF_6 , 1,0 % CaF₂ a 67,2 % NaCl; teplota eutektickej kryštalizácie je 730 °C.

Sústavu Na₃AlF₆—Al₂O₃—NaCl prvý preštudoval N. W. F. Phillips [11]. Ako hranice sledovanej oblasti sme volili tieto koncentrácie zložiek: 20 % Al₂O₃, 20 % NaCl a 4 % CaF₂.

Hraničná koncentrácia 20 % Al_2O_3 sa volila so zreteľom na zostrojenie čiary spoločnej (sekundárnej) kryštalizácie $Na_3AlF_6 + Al_2O_3$. Pri práci sa zistilo, že aj táto koncentrácia je príliš vysoká, pretože pri vzorkách, ktorých figuratívne body ležia v oblasti primárnej kryštalizácie Al_2O_3 , so stúpajúcou koncentráciou kysličníka hlinitého rýchlo stúpa teplota primárnej kryštalizácie. Koncentrácia CaF_2 . v priemyselnom elektrolyte, pokiaľ sa fluorid vápenatý úmyselne nepridáva, je 3—4 %. Preto sa ako hraničná hodnota volila koncentrácia 4 % CaF_2 .

Podľa práce [11] prísada NaCl silne znižuje rozpustnosť Al_2O_3 v kryolite. Eutektikum sústavy Na_3AlF_6 — Al_2O_3 obsahuje 10 % Al_2O_3 , zatiaľ čo izokoncentráta 20 % NaCl v sústave Na_3AlF_6 — Al_2O_3 —NaCl pretína čiaru sekundárnej kryštalizácie Na_3AlF_6 + Al_2O_3 v bode o obsahu 5 % Al_2O_3 .

Zvyšovanie koncentrácie NaCl povedie pravdepodobne k zvýšeniu aktivity iónov Na⁺ v elektrolyte a teda aj k zvýšeniu pomeru $a_{\text{Na+}}/a_{\text{Al}^{3}+}$. Tento pomer, ktorý nazveme aktivitný modul, bude sa musieť pravdepodobne udržovať na určitej hodnote a v prípade zväčšenia čitateľa bude potrebné zväčšovať aj menovateľa zvyšovaním koncentrácie AlF₃, t. j. znižovaním kryolitového pomeru. Toto by malo za následok ďalšie znižovanie rozpustnosti Al₂O₃. Nepovažovali sme preto za potrebné prekročiť koncentráciu 20 % NaCl.

Experimentálna časť

Pri štúdiu kryolitovej oblasti priestorového rezu sa preveril likvidus kryolitového uhla sústavy Na_3AlF_6 — Al_2O_3 —NaCl a zostrojil sa likvidus kryolitového uhla rovinného rezu, ktorý sa viedol vrcholmi NaCl a Al_2O_3 a bodom o koncentrácii 4 % CaF₂ na strane Na_3AlF_6 —CaF₂ (obr. 2; rez v, I, v). V koncentračných trojuholníkoch sústavy Na_3AlF_6 — Al_2O_3 —NaCl a rovinného rezu v, I, v sa sledovalo spolu 132 vzoriek, ktorých figuratívne body sú priesečníkmi priamkových rezov, vedených z vrcholu NaCl, s rezmi, rovnobežnými so základňami koncentračných trojuholníkov (obr. 3 a 4). Označenie

Obr. 3. Koncentračný trojuholník sústavy Na_3AlF_6 — Al_2O_3 —NaCl s vyznačením sledovaných rezov a bodov.

bodov a rezov sa líši od bežne používaných spôsobov, ktoré sú málo vhodné na označovanie štvorzložkových a viaczložkových sústav. Tento spôsob sa volil so zreteľom na jednotný systém označovania v celej sledovanej šesťzložkovej sústave.*

Na prípravu vzoriek sa použili: NaCl p. a., CaF₂ značky "čistý" (ca 99 % CaF₂) a Al₂O₃ značky "čistý" (ca 99 % Al₂O₃). Kryolit sa pripravil zmiešaním NaF p. a. a čistého

^{*} Spôsob, ktorý používame v tejto práci, podrobne vysvetlíme a zdôvodníme v osobitnej práci. Obmedzíme sa preto na stručné vysvetlenie zásad označovania jednotlivých bodov. Všetky zložky sústavy sa usporiadajú a označia A_0 , A_1 , ..., A_5 . V danom prípade $A_0 = \operatorname{Na}_3\operatorname{AlF}_6$, $A_1 = \operatorname{AlF}_3$, $A_2 = \operatorname{Al}_2\operatorname{O}_3$, $A_3 = \operatorname{CaF}_2$, $A_4 = \operatorname{NaCl}$, $A_5 = \operatorname{MgF}_2$. Každý figuratívny bod je označený číslami, ktorých indexy charakterizujú určitú zložku. Keďže prvá a piata zložka nie je prítomná, vynechávame čísla (nuly), ktoré uvádzajú ich koncentrácie. Preto pri sústave $\operatorname{Na}_3\operatorname{AlF}_6$ — $\operatorname{Al}_2\operatorname{O}_3$ — NaCl prvé číslo je funkciou koncentrácie $\operatorname{Al}_2\operatorname{O}_3$, druhé NaCl. Pri figuratívnych bodoch rezu v, I, v sa prvé číslo vzťahuje na koncentráciu $\operatorname{Al}_2\operatorname{O}_3$, druhé na koncentráciu CaF_2 , tretie je funkciou koncentrácie NaCl. Číslo označené hviezdičkou (napr. 2, 1, 4*) znamená stálu koncentráciu danej zložky v zmesi. Zásady označovania rezov nebudeme vysvetľovať, pretože to nie je nevyhnutné pre porozumenie práci.

AlF₃ (ca 99,5 %), pripraveného sublimáciou z technického fluoridu [7]. Celkový návažok bol 30 g. Presnosť pri navažovaní bola $\pm 0,005$ g.

Obr. 4. Koncentračný trojuholník rezu v, 1, v s vyznačením sledovaných rezov a bodov

Kryolitový uhol sústavy sa preštudoval vizuálnou metódou a metódou termickej analýzy. Vizuálna metóda sa použila na približné určenie teploty primárnej kryštalizácie sledovaných vzoriek. Použité zariadenie a postup pri práci bol rovnaký ako v práci [6].

Pri termickej analýze sa krivky chladnutia zapisovali tak, aby sa zachytil zlom zodpovedajúci primárnej kryštalizácii jednotlivých vzoriek. Použilo sa rovnaké zariadenie ako pri vizuálnej metóde. Po odčítaní teploty, pri ktorej sa vytvorili prvé kryštály, vzorka sa roztavila, premiešala platinovým miešadlom, kelímok so vzorkou sa zakryl vrchnáčikom s otvorom pre termočlánok a šachta pece sa zakryla vekom. Rýchlosť chladnutia pece pri meraní bola 4—10 °C/min. Teplota sa odčítala v intervaloch 15 sekúnd.

Rozdiel medzi teplotou primárnej kryštalizácie, nameranou vizuálne, a hodnotou, odčítanou z krivky chladnutia, bol pri vzorkách, v ktorých primárne kryštaloval Na_cAlF₆, v rozmedzí 0—3 °C, pričom hodnota odčítaná vizuálne bola vo väčšine prípadov vyššia. Príčiny tohto rozdielu sú rozvedené v práci [6]. Podstatne väčšie rozdiely medzi obidvom a hodnotami boli pri vzorkách, ktorých figuratívne body sú v oblasti primárnej kryštalizácie Al₂O₃. Zlomy na krivkách chladnutia, zcdpovedajúce primárnej kryštalizácii Al₂O₃, boli veľmi nezreteľné, pravdepodobne v dôsledku silného sklonu plochy likvidusa v tejto oblasti, ako aj malćho tepla tuhnutia Al₂O₃ [2], takže krivky chladnutia sa nedali vyhodnotiť s takou presnosťou ako pri primárnej kryštalizácii kryolitu.

Za podklad pre zostrojenie likvidusa sa preto v oblasti primárnej kryštalizácie kryolitu vzali hodnoty odčítané z kriviek chladnutia a v oblasti primárnej kryštalizácie Al_2O_3 hodnoty namerané vizuálnou metódou.

Pri vzorkách s vysokou teplotou primárnej kryštalizácie (nad 1050 °C) bolo vizuálne pozorovanie značne stažené pomerne silným vyparovaním. Vzorky s teplotou primárnej kryštalizácie vyššou než ca 1050 °C sa preto nesledovali.

Pri vzorkách s vyššou koncentráciou Al_2O_3 sa tavenina vyčírila až po značnom prehriatí a intenzívnom premiešavaní. Aby sa zistilo, či v priebehu rozpúšťania vzoriek a merania nedochádza k zmenám v zložení vzoriek v dôsledku vyparovania, prípadne rozkladu kryolitu, ktoré by mohli nepriaznivo ovplyvniť výsledky merania, opakovalo sa meranie pri vzorkách rôzneho zloženia. Rozdiely medzi teplotami primárnej kryštalizácie, odčíťanými pri opakovanom meraní, boli pri väčšine vzoriek menšie ako 3 °C a pri vzorkách s vysokou koncentráciou Al_2O_3 boli 4 °C. Celkovú pravdepodobnú chybu merania možno po rozbore všetkých chýb, ku ktorým mohlo dôjsť, odhadnúť na ± 5 °C.

Diskusia

a) Sústava Na₃AlF₆-Al₂O₃-NaCl

Na základe nameraných hodnôt sa zostrojili likvidusy rezov v,0 až $v,5^*$ (obr. 5) a 0,v až 9,v (obr. 6). Likvidusy rezov sú označené rovnako ako prí-

Obr. 5. Likvidusy rezov v,0 až v,5*.

slušné rezy. Likvidus θ, v (obr. 6) zodpovedá kryolitovej oblasti sústavy Na₃AlF₆—NaCl, likvidus v, θ (obr. 5) sústave Na₃AlF₆—Al₂O₃.

Obr. 6. Likvidusy rezov θ, v až 10, v.

Priebeh likvidusa sústavy Na₃AlF₆—NaCl je v dobrom súlade s údajmi literatúry [6, 11]. Pri porovnaní likvidusa sústavy Na₃AlF₆—Al₂O₃ s fázovým diagramom, ktorý zostrojil G. A. Abramov [1], a s likvidusom v práci N. W. F. Phillipsa [10] je zrejmá dobrá zhoda našich výsledkov s prácou [1]. Priebeh obidvoch čiar primárnej kryštalizácie je jednoznačný. Zloženie eutektika určené ich priesečníkom je 15,7 % Al₂O₃, teplota eutektickej kryštalizácie je 939 °C. Podľa Abramova zloženie eutektika je 15,6 % Al₂O₃, teplota eutektickej kryštalizácie je 937 °C.

Phillips uvádza hodnoty: 10 % Al_2O_3 , 962 °C; pri svojej práci použil technicky dokonalé zariadenie, ktoré mu umožnilo dosiahnuť veľkú presnosť pri meraní teploty primárnej kryštalizácie. Je zaujímavé, že v práci [10] uvádza i výsledky predchádzajúcich meraní, kde udáva zloženie eutektika tejto sústavy ca 13,5 % Al_2O_3 a teplotu eutektickej kryštalizácie ca 958 °C. (Tieto hodnoty sú odčítané z grafu v práci [10].)

G. A. Abramov zostrojil časť fázového diagramu sústavy Na₃AlF₆—Al₂O₃ v oblasti eutektika sústavy a urobil kryštalooptický prieskum jednotlivých vzoriek. Na mikrosnímke vzorky s obsahom 9,7 % Al₂O₃ veľmi zreteľne vystupujú primárne kryštály Na₃AlF₆, čo nasvedčuje, že zloženie tejto vzorky sa značne líši od eutektického zloženia. Pri vzorke s obsahom 14,4 % Al₂O₃ možno identifikovať len eutektikum, kým pri vzorke s obsahom 19,7 % Al₂O₃ sú jasne viditeľné primárne kryštály Al₂O₃.

Príčiny rozdielu medzi údajmi N. W. F. Phillipsa a našou prácou, resp. prácou G. A. Abramova sa dajú vysvetliť na základe práce V. P. Mašovca [4]. Podľa Mašovca dochádza pri dlhotrvajúcom zahrievaní kryolitu k čiastočnému rozkladu, pri ktorom popri plynných produktoch (F₂, resp. HF) vzniká NaF, Al₂O₃, prípadne NaAlO₂. Možno teda predpokladať, že pri veľmi pomalom chladnutí, pri ktorom pracoval Phillips, menilo sa zloženie vzoriek. V dôsledku toho došlo k posunu figuratívnych bodov sledovaných vzoriek smerom k čiare monovariantnej eutektickej kryštalizácie Na₃AlF₆ + Al₂O₃ trojzložkovej sústavy NaF—AlF₃—Al₂O₃. Ak sa nebrala do úvahy táto zmena v zložení vzoriek a likvidus sústavy sa zostrojil na základe pôvodného zloženia, nastal zdanlivý posun eutektika smerom k nižším koncentráciám Al₂O₃. Tento predpoklad bude ešte potrebné preveriť.

Likvidus kryolitového uhla sústavy Na₃AlF₆—Al₂O₃—NaCl (obr. 7) sa zostrojil metódou vyhodnotenia rezov. Zostrojili sa aj izotermy po 20 °C, ktoré charakterizujú likvidusy jednotlivých oblastí primárnej kryštalizácie. V preštudovanej časti sústavy sú dve oblasti primárnej kryštalizácie: Na₃AlF₆ a Al₂O₃, ktorá je charakterizovaná silným sklonom likvidusa. Tieto oblasti sa stýkajú na čiare sekundárnej kryštalizácie Na₃AlF₆ + Al₂O₃.

Z priebehu čiary sekundárnej kryštalizácie vyplýva, že prísada NaCl podstatne znižuje rozpustnosť Al_2O_3 v kryolite. Pri koncentrácii 20 % NaCl v tavenine sa rozpustnosť Al_2O_3 zníži zhruba na polovicu: bod na monovariantnej krivke Na₃AlF₆ + Al_2O_3 s nulovou koncentráciou NaCl obsahuje 15,7 % Al_2O_3 , zatiaľ čo bod na tej istej krivke s obsahom 20 % NaCl obsahuje iba 8,5 % NaCl. Približne rovnakú závislosť rozpustnosti Al_2O_3 od koncentrácie NaCl zistil N. W. F. Phillips (obr. 8). Pri porovnaní obidvoch diagramov

Obr. 8. Likvidus sústavy Na₃AlF₆—Al₂O₃—NaCl podľa N. W. F. Phillipsa.

je zrejmé, že čiara sekundárnej kryštalizácie Na₃AlF₆ + Al₂O₃ je u Phillipsa posunutá do oblasti nižších koncentrácií Al₂O₃. Príčiny tohto rozdielu sú pravdepodobne rovnaké ako pri posune eutektika sústavy Na₃AlF₆—Al₂O₃. Izotermickú zmenu rozpustnosti Al₂O₃, spôsobenú stúpajúcou koncentráciou NaCl v tavenine, možno odčítať z diagramov na obr. 5 a 6. Vplyv prísady NaCl na zníženie teploty primárnej kryštalizácie tavenín v oblasti primárnej kryštalizácie Na₃AlF₆ je zrejmý z priebehu izoteriem.

b) Rez v,1,v

Likvidus kryolitového uhla rezu v,1,v sa zostrojil metódou vyhodnotenia dielčích rezov v,1,0 až $v,1,5^*$ (obr. 9) a 0,1,v až 9,1,v (obr. 10). Charakter

likvidusa rezu v, 1, v (obr. 11) je rovnaký ako pri sústave Na₃AlF₆—Al₂O₃— —NaCl.

Z obr. 11 je zrejmé, že prítomnosť CaF_2 znižuje rozpustnosť Al_2O_3 tak v kryolite, ako aj v taveninách sústavy Na_3AlF_6 —NaCl. Napriek tomu, že tento nepriaznivý vplyv prísady fluoridu vápenatého na rozpustnosť Al_2O_3

Obr. 9. Likvidusy rezov v, 1, 0 až $v, 1, 5^*$.

sa dal predpokladať na základe údajov literatúry [1], bolo potrebné preštudovať aj tento rez, keďže v priemyselných elektrolytoch je približne rovnaká koncentrácia fluoridu vápenatého.

Z našej práce vyplýva, že rozpustnosť Al_2O_3 sa silne znižuje so stúpajúcou koncentráciou NaCl v tavenine, čo je nevýhodné z hľadiska súčasnej technológie. Treba však brať do úvahy, že vývoj v hliníkárskom priemysle vo svetovom meradle ide smerom znižovania koncentrácie kysličníka hlinitého v elektrolyte a intenzívne sa skúma možnosť zavedenia automatického plynulého dávkovania Al_2O_3 . Pri nepretržitom dávkovaní by bolo možné pracovať s elektrolytmi o pomerne vysokej koncentrácii NaCl.

Zníženie teploty primárnej kryštalizácie elektrolytu pri výrobe hliníka podľa A. I. Beľajeva [3] úzko súvisí s možnosťou zvyšovania intenzity prúdu a tým aj produktivity priemyselných elektrolyzérov.

Obr. 10. Likvidusy rezov θ , 1, v až θ , 1, v.

Obr. 11. Likvidus kryolitového uhla rezu v,1,v.

Pre posúdenie vhodnosti použitia NaCl ako prísady do elektrolytu, resp. optimálnej koncentrácie tejto prísady bude treba preštudovať vplyv NaCl na ďalšie parametre, dôležité z hľadiska výroby [5]. Z technologického hľadiska bude potrebné preštudovať rezy v "kyslej" oblasti sústavy Na₃AlF₆— $-AlF_{3}$ —Al₂O₃—CaF₂—NaCl, čo je predmetom našej ďalšej práce.

Na experimentálnej časti práce sa zúčastnila L. Švecová, diplomantka Katedry anorganickej technológie SVŠT.

Súhrn

Metódou TA a vizuálnou metódou sa preštudoval kryolitový uhol sústavy Na₃AlF₆—Al₂O₃—CaF₂—NaCl.

Preveril sa likvidus sústavy Na_3AlF_6 — Al_2O_3 . Potvrdilo sa, že ide o jednoduchú eutektickú sústavu. Zloženie eutektika je 15,7 % Al_2O_3 , teplota eutektickej kryštalizácie je 939 °C.

Zostrojil sa likvidus kryolitového uhla sústavy $Na_3AlF_6-Al_2O_3-CaF_2--NaCl.$ Zistilo sa, že prísada NaCl znižuje teplotu primárnej kryštalizácie tavenín sústavy $Na_3AlF_6-Al_2O_3$ v oblasti primárnej kryštalizácie Na_3AlF_6 . Vplyv CaF_2 na zníženie teploty primárnej kryštalizácie je menší než vplyv NaCl. Rozpustnosť Al_2O_3 v tavenine sa znižuje so stúpajúcou koncentráciou NaCl a CaF_2 .

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕКОТОРЫХ СИСТЕМ ИМЕЮЩИХ ЗНАЧЕНИЕ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ (III) ЛИКВИДУС КРИОЛИТОВОГО УГЛА СИСТЕМЫ Na₃AlF₆—Al₂O₃—CaF₂—NaCl

к. матиашовски, м. малиновски

Институт неорганической химии Словацкой академии наук в Братиславе

Кафедра химической технологии неорганических веществ Словацкой высшей технической школы в Братиславе

Выводы

Методом ТА и визуальным методом изучался криолитовый угол системы Na₃AlF₆—Al₂O₃—CaF₂—NaCl.

Был прогерен ликвидус системы Na₃AlF₆—Al₂O₃. Было подтверждено, что это простая эвтектическая система. Состав эвтектики 15,7 % Al₂O₃ и температура эвтектической кристаллизации равна 939°.

Был построен ликвидус криолитового угла системы $Na_3AlF_6-Al_2O_3-CaF_2-NaCl$. Установлено, что NaCl понижает температуру первияной кристаллизации сплавов системы $Na_3AlF_6-Al_2O_3$ в области первичной кристаллизации Na_3AlF_6 . Влияние CaF_2 на понижение температуры первичной кристаллизации является меньшим, чем влияние NaCl. Растворимость Al_2O_3 в сплаве понижается с возрастающей концентрацией NaCl и CaF_2 .

Поступило в редакцию 14. 4. 1960 г.

PHYSIKALISCH-CHEMISCHE ANALYSE EINIGER VOM GESICHTSPUNKT DER ALUMINIUMERZEUGUNG WICHTIGER SYSTEME (III) LIQUIDUS DES KRYOLITHWINKELS DES SYSTEMS Na₃AlF₆—Al₂O₃—CaF₂—NaCl

K. MATIAŠOVSKÝ, M. MALINOVSKÝ

Institut für anorganische Chemie an der Slowakischen Akademie der Wissenschaften in Bratislava

Lehrstuhl für anorganische Technologie der Slowakischen Technischen Hochschule in Bratislava

Zusammenfassung

Mittels der Methode der TA und der visuellen Methode wurde der Kryolithwinkel des Systems Na₃AlF₆—Al₂O₃—CaF₂—NaCl studiert.

Es wurde die Liquiduslinie des Systems Na_3AlF_6 — Al_2O_3 beglaubigt. Es wurde bestätigt, dass es sich um ein einfaches eutektisches System handelt. Die Zusammensetzung des Eutektikums ist 15,7 % Al_2O_3 , die Temperatur der eutektischen Kristallisation beträgt 939 °C.

Es wurde das Liquidusdiagramm des Kryolithwinkels des Systems $Na_3AlF_6-Al_2O_3--CaF_2$ -NaCl konstruiert. Es wurde festgestellt, dass ein Zusatz von NaCl die Temperatur der primären Kristallisation der Schmelzen des Systems $Na_3AlF_6-Al_2O_3$ im Gebiete der primären Kristallisation des Na_3AlF_6 erniedrigt. Der Einfluss von CaF₂ auf die Erniedrigung der Temperatur der primären Kristallisation ist geringer, als der Einfluss von NaCl. Die Löslichkeit von Al_2O_3 in der Schmelze wird mit steigender Konzentration von NaCl und CaF₂ niedriger.

In die Redaktion eingelangt den 14. 4. 1960

LITERATÚRA

 Abramov G. A., Vetukov M. M., Gupalo I. P., Kostukov A. A., Ložkin L. N., Teoretičeskije osnovy elektrometallurgii aluminija, Moskva 1953. — 2. Beľajev A. I., Rapoport M. B., Firsanova L. A., Elektrometallurgija aluminija, Moskva 1953. — 3. Beľajev A. I., Chem. zvesti 13, 699 (1959). — 4. Mašovec V. P., Ž. prikl. chim. 9, 789 (1936). — 5. Matiašovský K., Malinovský M., Chem. zvesti 14, 258 1960. — 6. Matiašovský K., Malinovský M., Chem. zvesti 14, 353 (1960). — 7. Matiašovský K., Malinovský M., Plško E., Kubík C., Chem. zvesti 14, 487 (1960). — 8. Pascal P., Jouniaux A., Bull. soc. chim. France 15, 312 (1914). — 9. Pereľman F. M., Metody izobraženija mnogokomponentnych sistem, Moskva 1959. — 10. Phillips N. W. F., Singleton R. H., Hollingshead E. A., J. Electrochem. Soc. 102, 648 (1955). — 11. Phillips N. W. F., Singleton R. H., Hollingshead E. A., J. Electrochem. Soc. 102, 690 (1955).

Do redakcie došlo 14. 4. 1960

Adresa autorov:

Inž. Kamil Matiašovský, kandidát technických vied, inž. Milan Malinovský, kandidát technických vied, Bratislava, Kollárovo nám. 2, Chemický pavilón SVŠT.