FYZIKÁLNO-CHEMICKÁ ANALÝZA NIEKTORÝCH SÚSTAV DÔLEŽITÝCH Z HĽADISKA VÝROBY HLINÍKA (VII) LIKVIDUS KRYOLITOVÉHO UHLA REZU SÚSTAVY Na₃AlF₆—AlF₃—Al₂O₃—CaF₂—NaCl—MgF₂ S KONŠTANTNÝM OBSAHOM 3 % CaF₂

K. MATIAŠOVSKÝ, M. MALINOVSKÝ

ČSAV, Ústav anorganickej chémie Slovenskej akadémie vied v Bratislave Katedra anorganickej technológie Slovenskej vysokej školy technickej v Bratislave

Úvod

V práci sa sleduje súčasný vplyv prísad NaCl a MgF₂ na zníženie teploty primárnej kryštalizácie elektrolytu na výrobu hliníka a na rozpustnosť Al₂O₃ v elektrolytoch o rôznom kryolitovom pomere (K. P.). Práca je pokračovaním štúdia sústavy Na₃AlF₆—Al₂O₃—CaF₂—NaCl—MgF₂ [9], pri ktorom sa sledoval vplyv prísad na uvedené parametre v prípade elektrolytu o K. P. = 3. Podobne ako táto sústava aj sledovaný rez je štvorrozmerným priestorovým rezom šesťzložkovej recipročnej sústavy Al³⁺, Ca²⁺, Mg²⁺, Na⁺ \parallel F⁻, Cl⁻, O²⁻ [9]. Konštantná koncentrácia 3 % CaF₂⁻¹ sa volila s ohľadom na obvyklú koncentráciu CaF₂ v priemyselných elektrolytoch.

Experimentálna časť

Kryolitový uhol rezu sa preštudoval metódou termickej analýzy (TA) a vizuálnou metódou. Pri meraní sa použilo rovnaké zariadenie a pracovný postup ako v práci [7], pričom pri TA sa krivka chladnutia zapisovala tak, aby sa zachytil len zlom zodpovedajúci teplote primárnej kryštalizácie sledovaných vzoriek. Na prípravu vzoriek sa použili rovnaké chemikálie ako v práci [9].

V sledovanom štvorrozmernom priestorovom reze sa volili 2 trojrozmerné priestorové rezy s konštantným obsahom 5 % MgF₂ (rez v,v,1,v,1) a 10 % MgF₂ (rez v,v,1,v,2).² V priestorovom reze v,v,1,v,1 sa viedli 4 rovinné rezy (1,v,1,v,1 - 4,v,1,v,1) zodpovedajúce K. P. = 2,75; 2,5; 2,25 a 2. V reze v,v,1,v,2 sa viedli 2 rovinné rezy (1,v,1,v,2 a 2,v,1,v,2)pri K. P. = 2,75 a 2,5.

V koncentračných trojuholníkoch rovinných rezov (obr. 1–6) sa volili 2 sústavy priamkových rezov zodpovedajúcich izokoncentrátam 0, 2, 4, ..., 20 % Al_2O_3 a izokoncentrátam 0, 4, 8, ..., 20 % NaCl. Sledovali sa vzorky, ktorých figuratívne body sú priesečníkmi týchto dvoch sústav rezov. Vzorky, ktorých figuratívne body sú označené plným čiernym krúžkom, nesledovali sa s ohľadom na to, že ich teplota primárnej kryštalizácie je vyššia než 1050 °C, a oblasť, v ktorej ležia, nie je z hľadiska výroby hliníka dôležitá.

¹ Všetky koncentrácie sú vyjadrené vo váhových percentách.

² Rezy a body sú označené rovnakým spôsobom ako v práci [9]. Tento systém označovania je rozvedený v prácach [4, 5].

Obr. 1. Kryolitový uhol koncentračného trojuholníka rezu 1,v, I,v, Is vyznačením priamkových rezov a bodov.

Obr. 2. Kryolitový uhol koncentračného trojuholníka rezu 2,v,1,v,1 s vyznačením priamkových rezov a bodov.

Obr. 3. Kryolitový uhol koncentračného trojuholníka rezu 3,v,1,v,1 s vyznačením priamkových rezov a bodov.

Obr. 4. Kryolitový uhol koncentračného trojuholníka rezu 4,v,1,v,1 s vyznačením priamkových rezov a bodov.

Obr. 6. Kryolitový uhol koncentračného trojuholníka rezu 2,v,1,v,2 s vyznačením priamkových rezov a bodov.

Postup pri vyhodnocovaní bol rovnaký ako v práci [9]. Na základe nameraných hodnôt sa zostrojili likvidusy priamkových rezov (obr. 7-12). Likvidusy kryolitového

Likvidusy rezov 2, v, 1, 0, 1 - 2, v, 1, 5, 1.

Likvidusy rezov 2,0,1,v,1 - 2,6,1,v,1.

uhla rovinných rezov (obr. 13-18) sa zostrojili metódou vyhodnotenia likvidusov priamkových rezov.

Obr. 9a. Likvidusy rezov 3,v,1,0,1 — 3,v,1,5,1.

Obr. 9b. Likvidusy rezov 3,0,1,v,1 — 3,5,1,v,1.

Obr. 10a. Likvidusy rezov 4,v,1,0,1 — 4,v,1,5,1.

Obr. 10b. Likvidusy rezov 4,0,1,v,1 — 4,5,1,v,1.

Obr. 11*a*. Likvidusy rezov 1, v, 1, 0, 2 - 1, v, 1, 5, 2.

Obr. 11b. Likvidusy rezov 1,0,1,v,2 — 1,4,1,v,2.

Obr. 12a. Likvidusy rezov 2,v,1,0,2 — 2,v,1,5,2.

Obr. 12b. Likvidusy rezov 2,0,1,v,2 — 2,4,1,v,2.

Obr. 14. Likvidus kryolitového uhla rezu 2,v,1,v,1.

Obr. 16. Likvidus kryolitového uhla rezu 4,v,1,v,1.

Diskusia

Likvidusy kryolitových uhlov všetkých sledovaných rovinných rezov majú rovnaký charakter ako likvidus kryolitového uhla sústavy Na_3AlF_6 — Al_2O_3 — —NaCl [8].

Analýza zostrojených likvidusov a výsledkov predchádzajúcich prác [8—11] umožňuje vyhodnotiť, ako pôsobí prísada NaCl do elektrolytu na výrobu hliníka na zníženie teploty primárnej kryštalizácie a v akej miere znižuje rozpustnosť Al_2O_3 jednak v taveninách základnej sústavy Na_3AlF_6 — Al_2O_3 , jednak vo viaczložkových sústavách spolu s inými bežne používanými prísadami (MgF₂, AlF₃).³ Kombinácia prísad NaCl a MgF₂ sa volila z toho dôvodu, lebo možno predpokladať, že vhodnou prísadou týchto dvoch solí sa bude dať pripraviť elektrolyt s výhodnejšími fyzikálno-chemickými vlastnosťami [9]. Prísada AlF₃ má slúžiť na kompenzáciu zvýšenia aktivity iónov Na⁺, ku ktorej pravdepodobne dôjde v elektrolyte za použitia prísady NaCl [8].

Pri porovnaní vplyvu sledovaných prísad na zníženie taviteľnosti elektrolytu sa zistilo, že NaCl a MgF₂ sú približne rovnako účinné. V oblasti primárnej kryštalizácie kryolitu, ktorá je dôležitá z hľadiska praktického využitia, je v rozmedzí koncentrácií 0—10 % NaCl, resp. MgF₂ priemerné zníženie teploty primárnej kryštalizácie, vyvolané týmito prísadami, ca 5 °C/1 % prísady. Toto zníženie je v súlade s hodnotou vyčíslenou v práci [9] a s hodnotou odčítanou z likvidusa kryolitového uhla sústavy Na₃AlF₆—Al₂O₃—MgF₂ v práci [9]. Podstatne menej účinná je z tohto hľadiska prísada AlF₃ (2—3 °C/1 % AlF₃), čo vyplýva i z prác [1, 2, 12].

Všetky sledované prísady znižujú rozpustnosť Al₂O₃ v elektrolyte, čo je jedným z dôležitých faktorov pri určovaní ich optimálnej koncentrácie [8, 9]. Pre vyhodnotenie vplyvu týchto prísad sa porovnávala izotermická rozpustnosť Al₂O₃ pri rôznych koncentráciách prísad na likvidusoch sústav sledovaných v prácach [1, 2, 8—11, 13]. Z porovnania vyplýva, že v najmenšej miere znižuje rozpustnosť Al₂O₃ prísada NaCl, a to o 0,15—0,20 % Al₂O₃/1 % NaCl. Prísada MgF₂ znižuje rozpustnosť Al₂O₃ príbližne dvojnásobne: 0,25—0,50 % Al₂O₃/1 % MgF₂. Vzhľadom na silné zníženie rozpustnosti Al₂O₃ vplyvom prísady MgF₂ sa nesledovali rezy zodpovedajúce K. P. = 2,25 a 2 v priestorovom reze v,v,1,v,2 s konštantným obsahom 10 % MgF₂.

Vplyv prísady AlF₃ na zníženie rozpustnosti Al₂O₃ v elektrolyte je omálo nepriaznivejší ako vplyv NaCl. V sledovanom rozmedzí koncentrácií zodpovedá priemerné zníženie hodnote 0,2-0,3 % Al₂O₃/1 % AlF₃.

³ Jednou zložkou preštudovaného izokoncentračného rezu je aj CaF_2 , ktorý však nemožno považovať za prísadu. Konštantná koncentrácia 3 % CaF_2 zodpovedá približne koncentrácii v bežnom priemyselnom elektrolyte [11]. V súčasnej dobe sa ako prísada používa len v malej miere. Neiktorí autori [3] zistili, že z hľadiska zlepšenia fyzikálnochemických vlastností elektrolytu výraznejšie pôsobí prísada MgF₂.

Je zrejmé, že zníženie teploty primárnej kryštalizácie elektrolytu, resp. zníženie rozpustnosti Al_2O_3 nie sú jedinými kritériami pre voľbu optimálnej koncentrácie sledovaných prísad. Pre posúdenie použiteľnosti týchto prísad bude potrebné preštudovať ich vplyv aj na iné parametre dôležité z hľadiska výroby [6], čo bude predmetom ďalšieho výskumu.

Súhrn

Metódou TA a vizuálnou metódou sa preštudoval kryolitový uhol rezu sústavy Na_3AlF_6 —AlF₃—Al₂O₃—CaF₂—NaCl—MgF₂.

Rozborom výsledkov série prác sa určil vplyv prísady NaCl v kombinácii s prísadami MgF_2 a AlF_3 na zníženie teploty primárnej kryštalizácie kryolitových tavenín a na rozpustnosť Al_2O_3 v tavenine.

Zistilo sa, že prísada NaCl má na taviteľnosť elektrolytu približne rovnaký vplyv ako MgF₂ (ca 5 °C/1 % prísady). Menej účinná je prísada AlF₃ (2—3 °C/ /1 % AlF₃).

Vplyv sledovaných prísad na zníženie izotermickej rozpustnosti Al₂O₃ stúpa v poradí NaCl \langle AlF₃ \langle MgF₂ (0,15—0,20 % Al₂O₃/1 % NaCl; 0,2—0,3 % Al₂O₃/1 % AlF₃; 0,25—0,50 % Al₂O₃/1 % MgF₂).

ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕКОТОРЫХ СИСТЕМ, ИМЕЮЩИХ ЗНАЧЕНИЕ ДЛЯ ПРОИЗВОДСТВА АЛЮМИНИЯ (VII) ЛИКВИДУС КРИОЛИТОВОГО УГЛА РАЗРЕЗА СИСТЕМЫ Na_ɛA!F₆-AlF₃-Al₂O₃-CaF₂-NaCl-MgF₂ С ПОСТОЯННЫМ СОДЕРЖАНИЕМ 3 % CaF₂

К. МАТНАШОВСКИ, М. МАЛИНОВСКИ

ЧСАН, Институт неорганической химии Словацкой академии наук в Братиславе

Кафедра химической технологии неорганических веществ Словацкой высшей технической школы в Братиславе

Выводы

Методом ТА и визуальным методом изучен криолитовый угол разреза системы Na₃AlF₆—AlF₃—Al₂O₃—CaF₂—NaCl—MgF₂.

Оценкой результатов ряда работ определилось влияние добавки NaCl при комбинации с добавками MgF₂ и AlF₃ на понижение температуры первичной криста. лизации криолитовых расплавов и на растворимость Al₂O₃ в расплаве.

Определилось, что добавка NaCl влияет на плавкость электролита приблизительно тем самым образом, как и MgF₂ (приблизительно 5°/1 % добавки). Добавка AlF₃ 2—3°/1 % AlF₃) оказалась менее эффективной. Влияние изучаемых добавок на понижение изотермической растворимости Al_2O_3 повышается в ряде NaCl $\langle AlF_3 \langle MgF_2 (0,15-0,20 \% Al_2O_3/1 \% NaCl; 0,2-0,3 \% Al_2O_3/1 \% AlF_3; 0,25-0,50 \% Al_2O_3/1 \% MgF_2).$

Поступило в редакцию 10. 2. 1961 г.

PHYSIKALISCH-CHEMISCHE ANALYSE EINIGER VOM GESICHTS-PUNKT DER ALUMINIUMERZEUGUNG WICHTIGER SYSTEME (VII) ¹ LIQUIDUS DES KRYOLITHWINKELS DES SCHNITTS DES SYSTEMS Na₃AlF₆—AlF₃—Al₂O₃—CaF₂—NaCl—MgF₂ MIT EINEM KONSTANTEN GEHALT VON 3 % CaF₂

K. MATIAŠOVSKÝ, M. MALINOVSKÝ

ČSAV, Institut für anorganische Chemie an der Slowakischen Akademie der Wissenschaften in Bratislava

Lehrstuhl für anorganische Technologie an der Slowakischen Technischen Hochschule in Bratislava

Zusammenfassung

Mittels der Methode der TA und der visuellen Methode wurde der Kryolithwinkel des Schnitts des Systems Na₃AlF₆—AlF₃—Al₂O₃—CaF₂--NaCl—MgF₂ studiert.

Durch die Analyse der Ergebnisse einer Serie von Arbeiten wurde der Einfluss eines Zusatzes von NaCl in Kombination mit Zusätzen von MgF₂ und AlF₃ auf die Temperaturerniedrigung der primären Kristallisation der Kryolithschmelzen und auf die Löslichkeit des Al₂O₃ in der Schmelze bestimmt.

Es wurde festgestellt, dass ein NaCl-Zusatz auf die Schmelzbarkeit einen annähernd gleichen Einfluss wie MgF₂ (ca 5 °C/1 % des Zusatzes) ausübt. Weniger wirksam ist ein Zusatz von AlF₃ (2—3 °C/1 % AlF₃).

Der Einfluss der untersuchten Zusätze auf die Erniedrigung der isothermischen Löslichkeit des Al₂O₃ steigt in dieser Reihenfolge an: NaCl \langle AlF₃ \langle MgF₂ (0,15 až 0,20 % Al₂O₃/1 % NaCl; 0,2—0,3 % Al₂O₃/1 % AlF₃; 0,25—0,50 % Al₂O₃/1 % MgF₂).

In die Redaktion eingelangt den 10. 2. 1961

LITERATÚRA

 Abramov G. A. a spolupracovníci, Teoretičeskije osnovy elektrometallurgii aluminija, Moskva 1953. – 2. Beľajev A. I., Rapoport M. B., Firsanova L. A., Elektrometallurgija aluminija, Moskva 1953. – 3. Beľajev A. I., Chem. zvesti 13, 699 (1959). – 4. Malinovský M., Matiašovský K., Kubík C., Chem. zvesti 15, 529 (1961). – 5. Malinovský M., Matiašovský K., Kubík C., Chem. zvesti 15, 617 (1961). – 6. Matiašovský K., Malinovský M., Chem. zvesti 14, 258 (1960). – 7. Matiašovský K., Malinovský M., Chem. zvesti 14, 353 (1960). – 8. Matiašovský K., Malinovský M., Chem. zvesti 14, 551 (1960). – 9. Matiašovský K., Malinovský M., Chem. zvesti 14, 551 (1960). – 9. Matiašovský K., Malinovský M., Chem. zvesti 15, 241 (1961). 11. Matiašovský K., Malinovský M., Chem. zvesti 15, 257 (1961). — 12. Phillips N. W. F., Singleton R. H., Hollingshead E. A., J. Electrochem. Soc. 102, 690 (1955). — 13. Václavík E., Beľajev A. I., Ž. neorg. chim. 3, 1044 (1958).

Do redakcie došlo 10. 2. 1961

Adresa autorov:

Inž. Kamil Matiašovský, C. Sc., Inž. Milan Malinovský, C. Sc., Bratislava, Kollárovo nám. 2, Chemický pavilón SVŠT.