Das Phasendiagramm des Systems NaF—LiF—AlF₃—Al₂O₃ (II) System LiF—AlF₃*

M. MALINOVSKÝ, I. ČAKAJDOVÁ, K. MATIAŠOVSKÝ

Institut für anorganische Chemie der Slowakischen Akademie der Wissenschaften, Bratislava

Das Phasendiagramm des Systems LiF—AlF₃ wurde im Konzentrationsintervall 0—47,5 Mol% AlF₃ konstruiert. Es bestätigte sich, daß im System die kongruent schmelzende Verbindung Li₃AlF₆ vorkommt, deren Schmelzpunkt sich bei 782 °C befindet. Diese Verbindung bildet mit beiden grundlegenden Komponenten LiF und AlF₃, einfache eutektische Systeme; die Koordinaten der eutektischen Punkte sind (15,0 Mol% AlF₃, 711 °C) und (35,0 Mol% AlF₃, 708 °C). Komplexe Fluoroaluminate Li₅Al₃F₁₄ und LiAlF₄, in ihrer Zusammensetzung analog den Verbindungen im System NaF—AlF₃, wurden weder mittels TA noch mit Röntgenphasenanalyse festgestellt. Durch das Vergleichen experimenteller Daten des Liquidus des gegebenen Systems, mit den Werten, die auf Grund Annahme eines idealen Verhaltens aller Verbindungen in der Schmelze bestimmt.

Über das System LiF—AlF₃ sind in der Literatur nur wenige, verhältnismäßig alte und unvollkommene Angaben zu finden. N. Puschin und A. Baskoff [1] verfolgten die Abkühlungskurven von 11 Punkten des Systems LiF—AlF₃ bis zur Konzentration 37 Mol% AlF₃; sie fanden die chemische Verbindung Li₃AlF₆ mit dem Schmelzpunkt bei 800 °C (ihr LiF hatte den Schmelzpunkt bei 870 °C), wobei sie die Möglichkeit der Existenz einer weiteren chemischen Verbindung 3LiF . 2AlF₃ nicht ausgeschlossen haben. P. P. Fedotieff und L. Timofeeff [2, 3], die 16 Punkte dieses Systems überprüften, fanden nur Li₃AlF₆ mit dem Schmelzpunkt bei 790 °C, wobei ihr LiF den Schmelzpunkt bei 860 °C hatte. P. Drossbach [4—6] setzte den Schmelzpunkt von Li₃AlF₆ bei 785 °C fest, E. P. Dergunoff [7] bei 792 °C. Keiner der angeführten Autoren machte eine Röntgenphasenanalyse der Proben. Daher war es angezeigt, dieses System neu zu überprüfen.

Experimenteller Teil

Das Phasendiagramm des Systems LiF—AlF₃ im Konzentrationsintervall 0—47,5 Mol% AlF₃ wurde mittels TA und Röntgenphasenanalyse konstruiert. Gemische mit höherem AlF₃-Gehalt wurden wegen ihrer starken Sublimationsbereitschaft nicht gemessen. Die fein verriebenen Gemische LiF + AlF₃ wurden in Platintiegeln mit Platindeckeln, im Silitheizofen eigener Konstruktion geschmolzen [8]. Nach dem Schmelzen und gründlichem Vermischen wurde der Platindeckel gegen einen anderen ausgetauscht,

^{*} Vorgetragen auf dem I. tschechoslowakischen Symposium über die Problematik der Aluminiumerzeugung, in Smolenice, ČSSR, am 7.—9. Juni 1966.

der mit einer Öffnung für das Pt/PtRh (10 % Rh) Thermoelement (d = 0,5 mm) versehen war. Die Kalibration wurde mit K₂SO₄ (Schmelzpunkt 1069 °C), Na₂SO₄ (Schmelzpunkt 884,7 °C), NaCl (Schmelzpunkt 800,4 °C), KCl (Schmelzpunkt 770,3 °C) und dem eutektischen Gemisch KCl—K₂SO₄ (Temperatur der eutektischen Kristallisation bei 690 °C) durchgeführt. Die Abkühlungsgeschwindigkeit betrug 3—4 °C/Min., die Einwaage des Gemisches 20 g. Bei allen Proben wurden wenigstens zwei parallele Bestimmungen in zwei verschiedenen Öfen und mit Benützung zweier elektronischer Kompensationsbandschreiber eK BT1EN gemacht. Auf diese Art wurden die Abkühlungskurven von 30 Proben des gegebenen Systems registriert.

Die Fehler beim Abzählen der einzelnen kritischen Punkte auf den Abkühlungskurven betrugen maximal ± 2 °C, mit Ausnahme der Gemische aus denen primär AlF₃ kristallisiert; hier betrug der Fehler $\pm 3-5$ °C.

Bei der Arbeit wurde LiF p. a., das nach dem Glühen bei 600 °C 27,66 \pm 0,75 Gew.%. Li (theoretischer Wert 26,75 Gew.% Li) und 72,67 \pm 0,20 Gew.% F (theoretischer Wert 73,25 Gew.% F) enthält; weiter wurde AlF₃ verwendet, das mittels Sublimation in einer Platinapparatur [9] bereitet wurde und 32,88 \pm 0,20 Gew.% Al (theoretischer Wert 32,13 Gew.% Al) und 67,17 \pm 0,20 Gew.% F (theoretischer Wert 67,87 Gew.% F) enthielt. Nachdem das LiF eine schwach-alkalische Reaktion aufwies, wurde die Beimi-

schung für Li₂O angenommen, was bei der Einwaage in Betracht genommen wurde. Die Beimischung bei AlF_3 ist im Grunde Al_2O_3 , was ebenfalls beim Wiegen berücksichtigt wurde.

Abb. 1 zeigt einen Teil des Phasendiagramms LiF—AlF₃, konstruiert auf Grund der Ergebnisse der thermischen Analyse. Desgleichen sind auf der Abbildung die Tamman-Dreiecke ersichtlich.

Abb. 1. Phasendiagramm des Systems LiF—AlF₃ (bis zur Konzentration 47,5 Mol% AlF₃) mit den Tamman-Dreiecken.

Die für die Röntgenphasenanalyse bestimmten Proben wurden im geschlossenen Platintiegel 60 Minuten lang bei 700 °C gehalten; dann wurde der Tiegelinhalt plötzlich abgekühlt. Die fein verriebenen Proben wurden mit dem URS-50 I Diffraktograph mit Kupfer-Antikathode aufgenommen. Bei der Auswertung der Diffraktogramme wurden die charakteristischen Linien der untersuchten Stoffe nach 8-maligem Überprüfen bestimmt. Die durch das Linienprofil und die Hintergrundskurve begrenzten Flächen, die integrale Intensitäten darstellen, wurden mit einem Planimeter gemessen. Für jede Linie wurden 8 Werte ermittelt, aus denen der Durchschnitt bestimmt wurde.

Die graphische Abb. 2 zeigt die Abhängigkeit der integralen Intensität der Komponenten-Linien des Systems LiF—AlF₃ von der Zusammensetzung. Aus Gründen der Objektivität sind für jeden Stoff zwei charakteristische Linien dargestellt.

Da im Verlauf der Abkühlungskurvenregistration ein pyrohydrolytischer Zerfall der Schmelzen auftreten kann, der eine Änderung der chemischen Zusammensetzung zur Folge hätte, wurden 5 Gemische nach Beendigung der Abkühlungskurvenregistration chemisch auf den Gehalt von Li, Al und F analysiert. Der Li-Gehalt wurde laut [10] flammenphotometrisch, das Al mit der Oxychinolinmethode [11] und das F pyrohydrolytisch laut [12] bestimmt. Die Ergebnisse der chemischen Analyse wurden graphisch dargestellt und mit den theoretischen Werten verglichen (Abb. 3).

AlF₃-Linien

Abb. 3. Chemische Analyse der Gemische im System LiF—AlF₃, nach Registrierung der Abkühlungskurven. Die Geraden entsprechen der theoretischen Zusammensetzung. Die Punkte bezeichnen die experimentellen Werte.

Summe der Gewichte von F, Li und Al

- 🖱 Gehalt an F
- 🔿 Gehalt an Li
- 🝚 Gehalt an Al

Diskussion zum experimentellen Teil

Wie aus den Ergebnissen der chemischen Analyse ersichtlich ist, sind die Ausgangsstoffe nicht ganz rein. Nach ihrem Schmelzen und erfolgter gegenseitiger Reaktion entsteht also das ternäre System LiF— AlF_3 — Al_2O_3 . Das Aluminiumoxid ist teils im verwendeten AlF_3 vorhanden, weiter wird es aus dem im LiF vorhandenen Li_2O laut der Reaktion

$$3\mathrm{Li}_{2}\mathrm{O} + 2\mathrm{AlF}_{3} = 6\mathrm{LiF} + \mathrm{Al}_{2}\mathrm{O}_{3}$$

gebildet und schließlich wird es bei der pyrohydrolytischen Reaktion (wenn auch in geringen Mengen)

$$2AlF_3 + 3H_2O(g) = Al_2O_3 + 6HF(g)$$

gefunden.

Von den Stoffen LiF, Li₃AlF₆ und AlF₃ löst das Aluminiumoxid wahrscheinlich nur das Li₃AlF₆, und auch dies nur in begrenzter Menge, bis zu 1,5 Gew.% [13]; die Temperatur der primären Kristallisation des Li₃AlF₆ wird dabei um 3 °C herabgesetzt. Es ist daher anzunehmen, daß die Anwesenheit einer kleinen Menge Al₂O₃ in der Schmelze die Ergebnisse der Messungen praktisch nicht beeinflußt.

Die Ergebnisse der TA als auch der Röntgenphasenanalyse bestätigen übereinstimmend, daß im System LiF—AlF₃ die bei 782 °C kongruent schmelzende chemische Verbindung Li₃AlF₆ vorkommt.

Das Teilsystem LiF—Li₃AlF₆ ist ein einfaches eutektisches System; der eutektische Punkt setzt sich aus 85,0 Mol% LiF, 15,0 Mol% AlF₃ (bezw. 63,64 Gew.% LiF, 36,36 Gew.% AlF₃) zusammen, die Temperatur der eutektischen Kristallisation beträgt 711 °C. Feste Lösungen wurden weder auf LiF-Basis noch auf Li₃AlF₆-Basis gefunden.

Das Li_3AlF_6 —AlF₃-Teilsystem hat gleichermaßen einen einfachen eutektischen Charakter; die Zusammensetzung des eutektischen Punktes ist: 65,0 Mol% LiF, 35,0 Mol% AlF₃ (bezw. 36,45 Gew.% LiF, 63,55 Gew.% AlF₃), die eutektische Kristallisationstemperatur beträgt 708 °C. Auch hier wurden keine festen Lösungen identifiziert.

Mit Rücksicht auf den Charakter des Systems NaF—AlF₃ [14] wurde unsere Aufmerksamkeit der Frage gewidmet, ob im LiF—AlF₃-System Fluoroaluminatkomplexe, insbesondere Li₅Al₃F₁₄ und LiAlF₄ existieren. Weder die Auswertung der Abkühlungskurven noch die konstruierten Tamman-Dreiecke boten irgendwelche Anzeichen, die auf die Existenz der angeführten Verbindungen im untersuchten System deuten könnten. Desgleichen wurden auch bei der Röntgenphasenanalyse nur für die drei chemischen Verbindungen LiF, Li₃AlF₆ und AlF₃ charakteristische Linien festgestellt. Man kann daher annehmen, daß sich unter den gegebenen experimentellen Bedingungen im System LiF—AlF₃ keine anderen Verbindungen außer Li₃AlF₆ bilden.

Berechnung der Aktivitätskoeffizienten der Komponenten im System LiF-AlF₃

Da in diesem System die kongruent schmelzende chemische Verbindung Li_3AlF_6 vorhanden ist, ist es von Vorteil die Analyse beider Teilsysteme LiF— Li_3AlF_6 und Li_3AlF_6 — AlF_3 separat vorzunehmen. Es ist daher notwendig die Konzentrationskoordinaten der Punkte im System LiF— AlF_3 in die Koordinaten dieser beiden Teilsysteme zu transformieren.

Wenn x und y (x + y = 1) molare Brüche von LiF, bezw. AlF₃ bezeichnen, dann gilt für x > 0.75 (d. h. für die Konzentrationskoordinate der Punkte des Systems LiF—Li₃AlF₆) die Beziehung

$$x \operatorname{LiF} + y \operatorname{AlF}_3 = (x - 3y)\operatorname{LiF} + y \operatorname{Li}_3\operatorname{AlF}_6$$

woraus wir für die Molenbrüche N und R (N + R = 1), die sich auf LiF, bezw. Li₃AlF₆ beziehen, die Gleichungen:

$$N = \frac{x - 3y}{x - 2y} = \frac{4x - 3}{3x - 2} = \frac{1 - 4y}{1 - 3y},$$
(1)

$$\dot{R} = \frac{y}{x - 2y} = \frac{1 - x}{3x - 2} = \frac{y}{1 - 3y}$$
 (2)

erhalten.

Abb. 4. Phasendiagramme der Systeme LiF—Li₃AlF₆ und Li₃AlF₆—AlF₃, konstruiert auf Grund experimenteller Ergebnisse.

Analog gilt für x < 0.75 (d. h. für Punkte des Systems Li₃AlF₆—AlF₃):

$$x \operatorname{LiF} + y \operatorname{AlF}_{3} = \frac{x}{3} \operatorname{Li}_{3} \operatorname{AlF}_{6} + \left(y - \frac{x}{3}\right) \operatorname{AlF}_{3}.$$

Die Molenbrüche M, Q (M + Q = 1) für Li₃AlF₆ und AlF₃ sind gleich:

$$M = \frac{x}{3y} = \frac{x}{3(1-x)} = \frac{1-y}{3y},$$
(3)

$$Q = \frac{3y - x}{3y} = \frac{3 - 4x}{3(1 - x)} = \frac{4y - 1}{3y}.$$
 (4)

Die experimentellen Ergebnisse für beide Systeme LiF— Li_3AlF_6 und Li_3AlF_6 —AlF₃ werden auf Abb. 4 gezeigt.

Um die Abweichung der gegebenen Systeme vom idealen Verlauf zu bestimmen, wird die Schröder—Le Chatelier-Gleichung verwendet, die im allgemeinen die Form hat:

$$\ln a_j = \int_{T_j}^{T_j} \frac{\Delta H_j^t(T)}{R} \cdot \frac{\mathrm{d}T}{T^2} \cdot (5)$$

 a_j = Aktivität der *j*-ten Komponente der Lösung,

 $\Delta H_j^t(T) =$ Änderung der Enthalpie der *j*-ten Komponente beim Schmelzen, die im allgemeinen von der Temperatur abhängig ist,

 T_j^t = Schmelzpunkt der reinen *j*-ten Komponente in °K,

 T_j = Temperatur der primären Kristallisation der *j*-ten Komponente aus der gegebenen Lösung in °K.

Führen wir den Begriff der "absolut idealen Lösung" ein; dies soll eine Lösung sein, für welche — außer allen Begrenzungen, die für eine "gewöhnliche" ideale Lösung gültig sind, auch noch die Bedingung $\Delta H_j^t = \text{const gilt.}$ Daher gilt:

$$\ln x_j^{\text{id}} = \Delta H_j^t \mathbf{R}^{-1} \left(\frac{1}{T_j^t} - \frac{1}{T_j} \right), \qquad (6)$$

da $a_j = x_j^{id}$.

Für die Berechnung des Liquidus-Kurvenverlaufes der gegebenen Komponente in einer absolut idealen Lösung genügt es daher die Werte ΔH_j^t und T_j^t zu kennen.

Für LiF nach Selected Values [15] ist $\Delta H^t = 2,4$ kcal Mol⁻¹, $T^t = 845$ °C. T. B. Douglas und J. L. Dever [16] führen an, daß $\Delta H^t = 6,471$ kcal Mol⁻¹, $T^t = 848 \pm 1$ °C, N. K. Voskresenskaja et al. [17] $\Delta H^t = 6,48$ kcal Mol⁻¹, $T^t = 848$ °C. J. Lumsden [18] hält sich an die Angaben von Douglas und Dever. Die Angaben über den Schmelzpunkt T_{LiF}^t sind bei allen Autoren praktisch gleich; hingegen weichen die ΔH_{LiF}^t -Werte von einander merklich ab.

Die experimentellen Ergebnisse dieser Arbeit machten es möglich zu entscheiden, welcher ΔH_{LiF}^t -Wert zu bevorzugen ist. Für Li₃AlF₆ kann man folgendes Dissoziationsschema annehmen:

$$\mathrm{Li}_{3}\mathrm{AlF}_{6} \rightleftharpoons \mathrm{3Li}^{+} + \mathrm{AlF}_{6}^{3-}.$$
 (7)

Solange es sich um kleine Zusätze von Li_3AlF_6 in LiF handelt, muß man keine anderen Dissoziationsmöglichkeiten in Erwägung ziehen. Das bedeutet

Aktivitaiskoomzienten des Linnumhuorus (yLiF)ges.								
T°C	$x_{ m LiF}^{ m id}$	$x_{ m LiF}$	$\gamma_{ m LiF}$	T °C	$x_{\rm LiF}^{\rm id}$	$x_{ m LiF}$	$\gamma_{\rm LiF}$	
840	0,982	0,985	0,997	770	0,807	0,842	0,958	
830	0,956	0,960	0,996	760	0,783	0,824	0,950	
820	0,931	0,940	0,990	750	0,759	0,805	0,943	
810	0,905	0,918	0,986	740	0,736	0,789	0,933	
800	0,880	0,900	0,978	730	0,712	0,771	0,923	
790	0,856	0,880	0,973	720	0,689	0,755	0,913	
780	0,831	0,860	0,966	711	0,669	0,739	0,905	

Tabelle 1 Das System LiF—Li₃AlF₆ Aktivitätskoeffizienten des Lithiumfluorids (γ_{LiF})g.

Tabelle 2

Das System LiF—Li₃AlF₆ Aktivitätskoeffizienten des Lithiumkryoliths ($\gamma_{Li_{3}AlF_6}$)ges.

T°C	$x^{\mathrm{id}}_{\mathrm{Li}_{3}\mathrm{AlF}_{6}}$	xLi3AlFe	γ _{Li3} AlF.	T °C	x ^{id} Li ₃ AlF.	^x Li₃AlF₀	γ _{Li3} AlF ₆
. 780	0,982	0,782	1,256	740	0,667	0,358	1,863
770	0,894	0,563	1,588	730	0,602	0,325	1,852
760	0,812	0,465	1,746	` 720	0,543	0,298	1,822
750	0,736	0,405	1,817	711	0,494	0,270	1,830

also, daß jedes "Teilchen" Li_3AlF_6 in das LiF ein neues Ion, d. h. $(\text{AlF}_6)^{3-}$ einführt. Wenn wir die Beziehung (6) in den Koordinaten

$$\log x_{
m LiF}^{
m id} = f\left(rac{1}{T_{
m LiF}}
ight)$$

darstellen, dann gilt für die Richtlinie k:

$$\lim k = \lim_{x \to 1} \frac{\log x}{(1/T_{\text{LiF}} - 1/T_{\text{LiF}}^t)} = -\frac{\Delta H_{\text{LiF}}^t}{2,303 R},$$

da $a_{\text{LiF}} = x_{\text{LiF}}$ für $x_{\text{LiF}} = 1$.

Für k wurde der Wert — 1,370 gefunden, woraus folgt, daß $\Delta H_{\text{LiF}}^t = 6,27 \text{ kcal Mol}^{-1}$, was von Douglas und Dever's Wert um 3 % differiert.

Wir nahmen also den Wert $\Delta H_{\text{LiF}}^{t}$ laut Douglas und Dever, der mit 6,471 kcal Mol⁻¹ angegeben ist und der offensichtlich vor dem in [15] angegebenen als Grundlage für die Berechnungen zu bevorzugen ist; für T_{LiF}^{t} nahmen wir die von uns festgestellte Temperatur 847 °C.

Für Li₃AlF₆ wurde bis nun kein ΔH^t -Wert publiziert; auf Grund der Analogie mit Na₃AlF₆ und aus kryometrischen Messungen wurde der $\Delta H^t_{\text{Li},\text{AlF}_6}$ -Wert als 20,5 kcal Mol⁻¹ berechnet [19]. Die Schmelztemperatur wurde bei 782 °C bestimmt.

Für AlF₃ wurden wohl ΔH^t und T^t -Werte veröffentlicht [20], jedoch genau genommen handelt es sich bei P = 760 Torr um fiktive Werte, da dieser Stoff bei atmosphärischem Druck ohne zu schmelzen sublimiert. Laut Literaturangabe [20] ist $\Delta H^t_{AlF_3} = 16.0 \pm 5.0$ kcal Mol⁻¹, $T^t_{AlF_3} = 1600$ °K. Für die Berechnung wurde dieser Schmelzpunktwert sowie die zwei Schmelzpunktenthalpie-Werte 16,0 kcal Mol⁻¹ und 11,0 kcal Mol⁻¹ verwendet.

Für die Konzentration und die Aktivität der gegebenen Verbindung bei gleicher Temperatur gilt die bekannte Gleichung:

$$x_j \gamma_j = a_j, \tag{8}$$

wobei x_j = Molenbruch der *j*-ten Verbindung im System,

 γ_J = Aktivitätskoeffizient dieser Verbindung (in der Molenbruch — Skala),

 $x_i^{\text{id}} = a_i$,

 $a_j = Aktivität der j$ -ten Verbindung im System (in der gleichen Skala).

Für die ideale Lösung derselben Verbindung gilt:

oder

$$\gamma_j = \frac{x_j^{\rm id}}{x_j} \,. \tag{9}$$

Die Werte x_j^{id} wurden laut Gl. (6) berechnet; die x_j -Werte wurden den experimentellen Ergebnissen entnommen; die Werte beider Größen müssen bei gleicher Temperatur genommen werden. Die Werte der Aktivitätskoeffizienten von LiF, Li₃AlF₆ und AlF₃ in den Systemen LiF—Li₃AlF₆ und Li₃AlF₆—AlF₃ sind in den Tab. 1—4 enthalten. Hier muß betont werden, daß es sich um Aktivitätskoeffizienten der *j*-ten Verbindung handelt, mit welcher die Schmelze gesättigt ist, also um $(\gamma_j)_{ges}$.

Tabelle 3

Das System Li₃AlF₆—AlF₃ Aktivitätskoeffizienten des Lithiumkryoliths ($\gamma_{Li_{3}AlF_{6}}$)ges.

T °C	$x^{\mathrm{id}}_{\mathrm{Li}_3\mathrm{AlF}_6}$	xLi3AlF.	^γ Li ₃ AlF ₆	T °C	x ^{id} Li3AlF.	x _{Li3} AlF ₆	?'Li _s AlF .
780	0,982	0,948	1,036	740	0,667	0,704	0,947
770	0,894	0,847	1,055	730	0,602	0,673	0,895
760	0,812	0,788	1,030	720	0,543	0,645	0,842
750	0,736	0,741	0,993	710	0,489	0,622	0,786

Tabelle 4a

Das System Li₃AlF₆—AlF₃ Aktivitätskoeffizienten des Aluminiumfluorids (γ_{A1F_3})_{ges}. für $\Delta H_{A1F_3}^t = 16,0$ kcal Mol⁻¹

T°C	$x^{ m id}_{ m AlF_3}$	x_{AlF_3}	γ _{AlFs}	T °C	$x_{ m AlF}^{ m id}$	x_{AlF_3}	γ_{AIF_3}
950	0,212	0,580	0,366	780	0,073	0,511	0,143
900	0,160	0,618	0,259	770	0,068	0,499	0,136
850	0,118	0,585	0,202	760	0,063	0,485	0,130
840	0,111	0,576	0,193	750	0,059	0,470	0,126
830	0,104,	0,566	0,184	740 -	0,054	0,453	0,119
820	0,097	0,556	0,174	730	0,050	0,436	0,115
810	0,091	0,546	0,167	720	0,046	0,418	0,110
800	0,084	0,535	0,157	710	0,042	0,397	0,106
790	0,079	0,523	0,151			—	_

Tabelle 4b

Aktivitätskoeffizienten des Aluminiumfluorids (γ_{AIF_3}) _{ges.} für $\Delta H^t_{AIF_3} = 11,0$ kcal Mol ⁻¹								
T°C	$x^{\mathrm{id}}_{\mathrm{AlF}_{\mathtt{s}}}$	x _{AlF3}	$\gamma_{\rm AlF_3}$	T °C	$x_{AlF_3}^{id}$	$x_{ m AlF_3}$	$\gamma_{\rm AIF_3}$	
950	0,344	0,580	0,593	780	0,166	0,511	0,325	
900	0,284	0,618	0,460	770	0,158	0,499	0,317	
850	0,230	0,585	0,393	760	0,150	0,485	0,309	
840	0,220	0,576	0,382	750	0,142	0,470	0,302	
830	0,210	0,566	0,371	740	0,135	0,453	0,298	
820	0,201	0,556	0,362	730	0,128	0,436	0,294	
810	0,192	0,546	0,352	720	0,121	0,418	0,289	
800	0,183	0,535	0,342	710	0,114	0,397	0,287	
790	0,174	0,523	0,333	-	1			

 $\label{eq:linear} \begin{array}{l} {\rm Das \ System \ Li_3AlF_6-AlF_3}\\ {\rm Aktivitätskoeffizienten \ des \ Aluminiumfluorids \ (\gamma_{AlF3})_{ges.} \ für \ \varDelta H^t_{AlF3} = 11,0 \ kcal \ {\rm Mol^{-1}} \end{array}$

Bei der Kurve der primären Kristallisation LiF im System LiF—Li₃AlF₆ ist keine allzu große Abweichung vom idalen Verlauf zu verzeichnen. Hingegen ist bei Li₃AlF₆ der Aktivitätskoeffizient bedeutend größer als 1, besonders im System LiF—Li₃AlF₆. Dies hängt wahrscheinlich mit der Dissoziation des Lithiumkryoliths zusammen. Die Abweichung von AlF₃ vom idealen Verlauf ist weniger nachweisbar, da die Werte $\Delta H_{AlF_3}^t$ und $T_{AlF_3}^t$, nur zur Orientierung dienen. Der Aktivitätskoeffizient für den Wert $\Delta H_{AlF_3}^t = 11,0$ kcal Mol⁻¹ ist wesentlich näher zu 1 als für den Wert $\Delta H_{AlF_3}^t = 16,0$ kcal Mol⁻¹.

FÁZOVÝ DIAGRAM SÚSTAVY NaF-LiF-AlF₃-Al₂O₃ (II) SÚSTAVA LiF-AlF₃

M. Malinovský, I. Čakajdová, K. Matiašovský

Ústav anorganickej chémie Slovenskej akadémie vied, Bratislava

Zostrojil sa fázový diagram sústavy LiF—AlF₃ v koncentračnom intervale 0 až 47,5 % mol. AlF₃. Potvrdilo sa, že v sústave existuje kongruentne sa taviaca zlúčenina Li₃AlF₆ s b. t. 782 °C. S obidvoma základnými zložkami LiF a AlF₃ vytvára táto zlúčenina

jednoduché eutektické sústavy; súradnice eutektických bodov sú (15,0 % mol. AlF₃, 711 °C) a (35,0 % mol. AlF₃, 708 °C). Komplexné fluorohlinitany Li₅Al₃F₁₄ a LiAlF₄, zložením analogické zlúčeninám v sústave NaF—AlF₃, nezistili sa ani termickou analýzou, ani röntgenovou fázovou analýzou.

Porovnaním experimentálnych údajov, týkajúcich sa likvidusa danej sústavy, s hodnotami, vypočítanými za predpokladu ideálnych vlastností všetkých látok, určili sa aktivitné koeficienty týchto látok v tavenine.

ДИАГРАММА СОСТОЯНИЯ СИСТЕМЫ NaF-LiF-AlF₃-Al₂O₃ (II) СИСТЕМА LiF-AlF₃

М. Малиновский, И. Чакайдова, К. Матиашовский

Институт неорганической химии Словацкой академии паук, Братислава

Была построена диаграмма состояния системы LiF—AlF₃ в интервале концентраций 0—47,5 % (мол.) фтористого алюминия. Подтвердилось, что в этой системе находится химическое соединение Li₃AlF₆, "литиевый криолит", которое плавится конгруэнтно при 782°. С основными компонентами системы, с фтористым литием и фтористым алюминием, образует это соединение простые эвтектические системы; координаты эвтектических точек соответственно 15,0 % (мол.) AlF₃, 711° и 35,0 % (мол.) AlF₃, 708°. Ни термическим, ни рентгенографическим фазовым анализом не были обнаружены комплексные фторалюминаты Li₅Al₃F₁₄ и LiAlF₄, которые по своему составу отвечали бы таким-же соединениям в системе NaF—AlF₃.

На основании сравнения экспериментальных данных, касающихся ликвидуса данной системы, с данными, расчитанными для случая идеального поведения всех составляющих в системе, было возможно расчитать коэффициенты активности веществ в насыщенном расплаве.

Preložil M. Malinovský

LITERATUR

- 1. Puschin N., Baskoff A., Z. anorg. Chem. 81, 347 (1913).
- Fedotieff P. P., Timofeeff L., Z. anorg. allgem. Chem. 206, 263 (1932). (Zitiert laut [3], 96.)
- 3. Spravočnik po plavkosti sistem iz bezvodnych neorganičeskich solej 1. Dvojnyje sistemy. Izdateľstvo Akademii nauk SSSR, Moskva—Leningrad 1961.
- 4. Drossbach P., Z. Elektrochem. 42, 65 (1936). (Zitiert laut [5], 81 u. [6], 494 u. w.)
- 5. Belajev A. I., Rapoport M. B., Firsanoya L. A., *Elektrometallurgija aluminija*. Metallurgizdat, Moskva 1953.
- Abramov G. A., Vetukov M. M., Gupalo I. P., Kostukov A. A., Ložkin L. N., Teoretičeskije osnovy elektrometallurgii aluminija. Metallurgizdat, Moskva 1953.
- 7. Dergunov E. P., Dokl. Akad. nauk SSSR 60, 1185 (1948). (Zitiert laut [3], 96.)
- 8. Matiašovský K., Malinovský M., Chem. zvesti 14, 258 (1960).
- 9. Matiašovský K., Malinovský M., Plško E., Kubík C., Chem. zvesti 14, 487 (1960).
- Lubyová Ž., Malinovský M., Matiašovský K., Chem. zvesti 21, 839 (1967).
- 11. Jílek A., Koťa J., Vážková analysa a elektroanalysa II, 438. Technicko-vědecké vydavatelství, Praha 1951.

- 12. Matiašovský K., Kubík C., Chem. zvesti 16, 128 (1962).
- Graus J., Diplomarbeit (unter der Leitung von K. Matiašovský). STH, Bratislava 1964.
- 14. Grjotheim K., Contribution to the Theory of Aluminium Electrolysis. F. Bruns Bokhandel, Trondheim 1956.
- Rossini F. D., Wagman D. D., Evans W. H., Levine S., Jaffe I., Selected Values of Chemical Thermodynamic Properties I. Natl. Bureau of Standards, Washington 1952 (Neudruck aus dem Jahre 1961).
- 16. Douglas T. B., Dever J. L., J. Am. Chem. Soc. 76, 4826 (1954).
- Voskresenskaja N. K., Sokolov V. A., Banašek E. I., Šmidt N. E., *Izv. sektora fiz.-chim. analiza* (IONCH AN SSSR) 27, 233 (1956).
- Lumsden J., Thermodynamics of Molten Salt Mixtures. Academic Press, London-New York 1966.
- 19. Malinovský M., Chem. zvesti 21, 783 (1967).
- 20. Termodinamičeskije svojstva individualnych veščestv I, 771; II, 658. Izdateľstvo Akademii nauk SSSR, Moskva 1962.

Adresse der Autoren:

Doz. Ing. Milan Malinovský, CSc., RNDr. Irina Čakajdová, CSc., Ing. Kamil Matiašovský, CSc., Ústav anorganickej chémie SAV, Bratislava, Dúbravská cesta 5.