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The influence of the molecular weight distribution of polymers on liquid — 
—liquid phase relationships is investigated theoretically and illustrated with 
experimental examples. The polydispersity reveals itself in an identical way 
irrespective of the kind of system considered. Various types are discussed: 
solvent—polymer; solvent—polymer 1—polymer 2; polymer 1—polymer 2; 
solvent—non solvent—polymer. In none of these cases is it permitted to 
consider the polymeric constituent(s) as a single component. Methods are 
described to account quantitatively for polydispersity. The efficiency of 
polymer fractionation is briefly commented upon. 

In view of the announced scope of the present Meeting, the title of this contribution 
might need some explanation. Strictly, in the sense of the thermodynamic definition, 
a ternary system is built up of three components. However, the systems dealt with at 
this Conference must, in fact, be defined as consisting of three constituents. One or two 
of these, or even all three, are polymeric substances which are known to contain many 
macromolecular components differing at least in chain length. In this paper we argue 
that the polydispersity should never be ignored, in particular not in thermodynamic 
phenomena such as phase relationships. 

By introducing the term quasi-ternary systems we try to indicate that we are not 
dealing with arbitrary multicomponent systems, but that the components in a constituent 
are very similar in chemical structure and, in fact, belong to the same homologous series. 
This implies that copolymers fall outside the scope of the quantitative considerations 
to be given below. However, the descriptions of the effect of polydispersity will have 
qualitative validity also for copolymers and branched macromolecules. 

The quasi-ternary systems to be discussed comprise either a single solvent and two 
polydisperse polymers, or two solvents (a good and a poor one) and one polydisperse 
polymer. Before turning to these, we should first give attention to some quasi-binary 
systems, that is to say to a mixture of a solvent and a polydisperse polymer. After that, 
те can proceed to a discussion of the compatibility of two polydisperse polymers. We shall 
see that the phenomenon of polydispersity manifests itself in quite a similar way also 
•n the more complicated quasi-ternary systems. 

Solvent—polymer systems 

The meaning of a quasi-binary diagram obtained by plotting liquid — liquid phase 
nations in the usual two-dimensional graph of cloud-point temperature vs. concentration, 
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is not at once obvious. An insight can be obtained by considering a ternary system con-
sistine of the solvent S and two polymer homologues P i and P 2 of different molecular 
weight Г1 21. Fig. 1 schematically shows the miscibility gap as it may occur in such 
a mixture at temperatures where one of the binary solvent-polymer systems is partially 

solvent S * Р°1У™Г m i x i m X 

Fig. 2. Schematical two-dimensional 
phase diagram referring to quasi-binary 

section TSX in Fig. 1. 
cloud-point curve; — • - • -

spinodal; shadow curve; 
coexistence curves for various 

overall polymer concentrations; О critical 
point. 

Fig. 1. Miscibility gap in a ternary 
system consisting of a low-molecular -
-weight solvent S and two macromole-
cular homologues P i and P 2 of different 

chain length. 
ААчСъВ'. cloud-point curve; ССьС : 
critical line; A2: precipitation threshold; 
DCsE: quasi-binary spinodal; A2B2, AK, 

BL and Q'Q": tie lines (schematical). 

miscible, whereas the other shows complete miscibility (Afrx < M»). Located m * 
TSPt lateral face is the coexistence curve, well known with partially miscible to* 
systems, where the consolute state G is found at the extreme of the T „ „ ) curve Г 
the volume fraction of P,). Any value of T < Тс corresponds to two cloud points »J • 
represent coexisting phases. The location of the stability limit of the system (spmodal 

is indicated. ««^«neitios 

Such a binary two-phase region extends into the ternary temperature-compost 
prism. Ternary miscibility gaps have been calculated in great detail 1by Tornpa № 
on whose diagrams Fig. 1 is based. The coexisting phases are denoted hy t h e . e n d ^ 
of the tie lines (e.g. A, and B „ Q' and « ' ) . The locus of these end pomts *> called toj 
or coexistence curve. The consolute or critical state is somewhere in the comp«* 
triangle (C) and here, as in the binary system, the spinodal has a common tan, 
with the binodal. 
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We might consider t h e b inary macromolecular m i x t u r e X as a first a p p r o x i m a t i o n 

ofamulticomponent polymer. All solutions of X in S can be represented b y points on t h e 

composition axis SX. Ev ident ly , TSX is t h e p lane of drawing for t h e p lot of t h e cloud 

points of polymer m i x t u r e X in S vs. t h e whole polymer concentrat ion (p. As a rule, t ie 

lines will be so directed as t o fall outs ide t h e quasi-binary section TSX, m e a n i n g t h a t 

ihe cloud-point curve does n o t represent coexisting phases . F u r t h e r , t h e e x t r e m e A2 of 

the cloud-point curve, called precipi tat ion threshold b y Tompa [4, 5], is n o t a critical 

point, being shifted as i t is t o w a r d s larger <p(C5) [6], w i t h respect t o t h e threshold. 

When a cloud p o i n t is reached u p o n a change in t h e t e m p e r a t u r e of a homogeneous 

solution, a new phase is on t h e verge of appear ing (e.g. K, L, Въ). P l o t t i n g t h e composit ions 

of such phases in t h e two-dimensional g r a p h m e a n s project ing t h e m o n t o TSX. T h e 

locus of these projections is t h e coexistence curve of t h e cloud-point curve, which, escaping 

direct experimental de terminat ion, is briefly referred t o as ' shadow curve ' [2]. I t is 

obvious t h a t cloud-point a n d shadow curves m u s t intersect in t h e critical po int . 

For a system w i t h a n overall composit ion wi th in t h e heterogeneous region like Q, t h e 

two coexisting phase composit ions b o t h lie outs ide TSX (Q' a n d Q") a n d c a n also be 

projected. The locus of such projections, called coexistence curve, depends on t h e overall 

polymer concentrat ion q? in t h a t t h e two branches (dilute a n d polymer-rich, phases) 

move closer together w i t h increasing (p. This is easily seen if one considers a n increase 

of <p from A to B. Summariz ing these observations, several of which were m a d e long ago 

by Schrei?iemakers [7], one is led t o t h e conclusion t h a t t h e complete two-dimensional 

phase diagram for a quasi-binary m i x t u r e will h a v e t h e shape shown in Fig . 2. Since t h e 

spinodal extends into t h e pr ism, TSX intersects t h e spinodal surface. T h e quasi-binary 

spinodal DCbE has a c o m m o n t a n g e n t w i t h t h e cloud-point curve a t t h e critical p o i n t . 

These qual i tat ive considerat ions on t e r n a r y m i x t u r e s can be e x t e n d e d t o cover t r u l y 

multicomponent systems, albeit t h a t these c a n n o t be visualized in t h e same w a y as 

above. We have t o c o n t e n t ourselves wi th ca lculated quasi-binary sections to check 

whether the above deduct ions are general. This can be done b y using a sui table e q u a t i o n 

of state for the p o l y m e r solution. T h e simplest equat ion available is t h e Flory—Huggins 

lattice expression [8, 9], which gives a good qual i ta t ive descript ion of t h e t h e r m o d y n a m i c 

properties of po lymer solutions. Q u a n t i t a t i v e agreement wi th exper iment can moreover 
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Fig. За—c. Calculated two-dimensional phase diagrams for three molecular weiglit 
distributions (equal in Mn&nd Mw, different in ikfz; see Fig. 4). 

cloud-point curves; spinodal; — . — • — shadow curves; 
coexistence curves for various overall polymer concentrations; о critical points. 

readily be obtained. The following considerations are based upon the Flory—Huggin? 
equation written in the following form 

AOJRT = <р080г I n <p0 + 2 (pimj1 I n <pt + g(T, <p) <pQ(p, (fl 

where AG = free enthalpy (Gibbs free energy) of mixing per mole of lattice sites, 
q?o = volume fraction of solvent, 
so = number of lattice sites occupied by a solvent molecule, 
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(р{ = vo lume fraction of macromolecular species i, 

cp = 2<pt- = whole polymer vo lume fraction, 

rm = n u m b e r of la t t ice sites occupied b y p o l y m e r cha in i ( 'chain length ' ) , 

g(T, <p) = semiempirical free e n t h a l p y correct ion t e r m , 

R and T have t h e usual meanings . 

Phase diagrams c a n be calculated on t h e basis of t h e equil ibrium condit ion t h a t t h e 

chemical potent ia l of a c o m p o n e n t is equal in t h e t w o phases . T h e resul t ing equat ions 

are transcendent a n d m u s t be solved numer ica l ly [1]. To do so, some a s s u m p t i o n m u s t 

be made about t h e molecular weight d i s t r ibut ion of t h e whole polymer. T h e p o l y m e r 

composition is b r o u g h t into account in t h e second t e r m on t h e r ight-hand side of equat ion 

[1] since 

% = <P<Pi» 

where $ s tands for t h e vo lume fraction of species i in t h e solvent-free polymér, i.e. for 
the molecular weight d is t r ibut ion . 

Fig. За—с shows two-dimensional phase d iagrams calculated for t h r e e molecular 

weight distr ibutions hav ing t h e same weight- a n d n u m b e r -average molecular weight Mw 

and JV/n. b u t different z-averages Mz. T h e d i s t r ibut ion curves are shown in Fig. 4. T h e 

calculation was based u p o n t h e a s s u m p t i o n t h a t g is i n d e p e n d e n t of cp. T h e g(T) function 

was left unspecified so t h a t g, ins tead of T, a p p e a r s on t h e ord inate . All features n o t e d 

in the qualitative t e r n a r y example are p r e s e n t also in t h e m u l t i c o m p o n e n t sys tem (Fig. 3). 

Further, the shape of t h e phase d i a g r a m d e p e n d s m a r k e d l y on t h e shape of t h e distr ibu­

tion, becoming d i s tor ted as Mz increases. Qual i tat ive ly, th i s corresponds t o a shifting 

of X in Fig. 1, which obviously affects t h e shape of t h e quasi-binary section. 

There exists exper imenta l evidence showing t h a t these ca lculated phase d i a g r a m s 

conform to physical real i ty, first of all in t h e extensive phase s tudies on t h e sys tem 

polystyrene —cyclohexane b y Rehage et al. [10, 11] (Fig. 5). D a t a on t h e s y s t e m poly­

ethylene—diphenyl e ther offer fur ther s u p p o r t [1] (Fig. 6). T h e y also show t h a t t h e 
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Fig. 4. Molecular weight d i s t r ibut ions used in t h e calculat ion of Fig . 3. 

Mw = 131,700, I w / M n = 5. 

wio : Mz/Mv,- = 2; wvz : Mz/Mw = 3; wu : Mz/M* = 7. 
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depression in t h e cloud-point curve a t t h e crit ical point calcula ted for distribution; 
w\2 and wiA m a y actual ly occur, and , fur thermore , t h a t a shadow curve m a y bend back 
wards after having passed t h e critical po in t . 

0 5 15 25 35 

polystyrene concentration (% by weight) 

Fig. 5. Expe r imen ta l two-dimensional phase d iagram for t h e quas i -b inary system cyclo 
hexane—polys tyrene . D a t a from Rehage et al, [10, 11]. 

cloud-point curve; — . — . - - shadow curve; coexistence curves for various overall 

polys tyrene concentra t ions (o 2 % ; D 6%; л 10%; V 1 5 % ; • 2 0 % w/w); • critical poin: 

found w i t h t h e phase-volume m e t h o d . 

T 
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0.04 0. 0.12 0.16 0.20 * 0.0U 0.08 0.12 0.16 0.20 

Fig. 0a, b. E x p e r i m e n t a l two-dimensional phase d iagrams for two quasi-binary diphe 

e t h e r — p o l y e t h y l e n e sys tems [1]. 

cloud-point curves; — — — — spinodals; — • — • — shadow curves; 

coexistence curves; • critical points . 

T h e samples differ in molecular weight d i s t r ibut ion, 

a) Sample L 30-0-7: О <p = 0.0309; D (p = 0.0612; V q> = 0.0734. 

b) Sample L 30-5-1: V <p = 0.0563; o <p = 0.0733; • q? = 0.0854; д tp = 0.0973 ( thecrtó 

concentra t ion) ; D (p = 0.1445. 
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The spinodal a n d t h e critical point can be calculated b y e q u a t i n g t o zero t h e second 

and third derivatives of AG w i th respect t o po lymer concentrat ion, w i t h allowance being 

made for polydispersity. Gibbs formulated t h e s tabi l i ty a n d critical condit ions for mult i-

component systems [12]. F o r t h e spinodal we h a v e (at c o n s t a n t pressure a n d t e m p e r a t u r e ) 

Jsp = \d*AGldcpid(pj\ 

the consolute s t a t e being defined b y 

0 

dJsp/d(pi 

dAG/d(pid<po 

dJsp/дфо 

d*AG/d<pi 

(2) 

(*) 

I 

where (pi and q?j s t a n d for all i n d e p e n d e n t concentra t ion variables (e.g. t h e volume frac­

tions of all polymer c o m p o n e n t s ) . 

Applied to e q u a t i o n (1) equat ions (2) a n d (3) yield 

— (д2у>/д<р2)р,т = 1/(1 — (p) so + l/tpmw, 

(spinodal) 

— (дЗу)1д<рЗ)Р,т = 1/(1 — 9?c)25o - mz/mfypl, 

(critical point) 

(2a) 

(3a) 

where y> = g(T, (p) <роф, a n d q?c is t h e critical vo lume fraction of t h e whole polymer. Con­

sequently, in sys tems obeying e q u a t i o n (1) t h e deta i led shape of t h e molecular weight 

distribution does n o t e n t e r t h e expressions for t h e s tabi l i ty l imit a n d critical s t a t e . 

Only the weight- a n d z-average cha in lengths w w a n d m z p l a y a role. This is very f o r t u n a t e 

because unlike t h e d is t r ibut ions, which are difficult t o d e t e r m i n e w i t h reasonable accuracy, 

averages like Mw a n d Mz are readi ly accessible. T h e spinodals in Figs. З а — с are identical 

(the distributions are equa l in ikfw) a n d t h e crit ical points m o v e t o higher (p according 

as Mz increases [6, 13]. 

With the r ight-hand sides of equat ions (2a) a n d (3a) conta ining measurab le quant i t ies , 

To] 

solvent polymer 

Fig. la, b. Phase-volume m e t h o d for locating t h e critical point . 

r = V\V" (volumes d i lute a n d polymer-rich phases). 
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establishment of consolute states for a series of samples differing in Mz and MY, should 
allow determination of the interaction function y. Elsewhere, it has been shown thai 
this method, in fact, offers a very accurate key to the interaction parameter g [Щ 
In addition to MY. and Mx, the location of <pc on the right-hand branch of the cloud-pob 

Fig. 8a> b. Experimental determination of the critical concentration in the two system' 
of Fig. 6 (see also Fig. 7). 

curve must be known. I t can be established by measuring the phase-volume ratio as 
a function of temperature and concentration. Fig. 7 illustrates this procedure for a binary 
mixture. According to the lever rule the phase-volume ratio r is given by 

r = V'IV = (V'-9)l(4>-q>'), 

where V and F" denote the volumes of the dilute and polymer-rich phases and g/ and tf 
their whole polymer volume fractions. 

I t can be shown [1, 2] that multicomponent systems also exhibit the volume-ratio 
behaviour illustrated in Fig. 7. Fig. 8 refers to the system polyethylene — diphenyl ether 
and shows that the phase-volume method yields accurate values of q?c. In the example 
of Fig. 8a the critical concentration must evidently lie between 6.6 and 6.8% (w/w). 

Solvent—polymer 1—polymer 2 systems 

Upon addition of a second polydisperse polymer to the systems discussed so far, the 
situation becomes considerably more complicated. First of all, with simplified systems, 
visualization as in Fig. 1 is no longer possible, since binary approximation of the tvro 
polymers already calls for a four-dimensional isotherm. From the preceding considerations, 

270 Chem. zvesti 26, 263-287 (1972) 
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Ад, 9. Cloud-point surfaces in 

š quasi-ternary mix tu re containing 
j ]ow-naolecular-weight solvent S 

and two polydisperse polymers 
(Xi a n d X a ) . 

cloud-point curves; 
Q о critical lines; 

spinodals. 

\: and Ли quasi-binary preci­

pitation threshold (schematical). 

Wer, we can d e d u c e some features of a three-dimensional quas i- ternary section. 

% 9 gives a schemat ica l example . 

If the two quasi-binary s o l v e n t — p o l y m e r s y s t e m s conta in miscibility gaps, t h e t w o 

• levant lateral faces of t h e pr i sm will show all t h e detai ls n o t e d in t h e preceding sect ion. 

bee, we m u s t expect cloud-point surfaces a n d coexistence a n d shadow surfaces t o 

tiend into t h e pr i sm a n d t o connect t h e corresponding curves in t h e TSXi a n d TSX2 

î ies. There m u s t be a critical line r u n n i n g along t h e cloud-point surface a n d , wi th in 

-egap, a spinodal surface m u s t be present t h a t touches t h e cloud-point surface a long 

k critical line. 

The miscibility gap m a y be lacking in one of t h e t w o so lvent—polymer sys tems and/or 

•present in t h e polymer 1—polymer 2 sys tem. F u r t h e r , t h e p h e n o m e n a descr ibed m a y , 

'Щ not go w i t h lower consolute demixing, showing t h a t t h e l iquid—liquid p h a s e 

t̂ions in quasi-ternary sys tems m a y v a r y considerably a n d be very compl ica ted . 

Jbtwo experimental examples shown in Figs . 10 a n d 11 i l lustrate t h e effect of poly­

g e n e on t h e s y s t e m p o l y e t h y l e n e — d i p h e n y l e ther . I t appears t h a t t h e s tereoregular i ty 

ftepolypropylene m a k e s qui te a difference as regards t h e phase behav iour , t h e second 

^awii 25,263-287(1972) 271 
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í in ear 
polyethylene 

isolactic 
polypropylene 

164.2 

140.0 

weight 
diphenyl elher 

Fig. 10. Cloud-point surfaces in t he quas i - te rnary sys tem diphenyl e ther -polyety 
lene — crystall izable polypropylene . 

miscibility gap being absen t if t h e isotactic (crystallizable) polypropylene is герЦ 

b y t h e a t a c t i c (non-crystallizing) var ie ty . T h e second miscibility gap in Fig. 10 т 

found t o be closed a t high t e m p e r a t u r e s [15]. 

A n idea a b o u t t h e cause of th i s difference c a n be obta ined from a consideration of 

spinodal . I f t h e AG function is r e w r i t t e n so as t o account for t h e second polymer, web 

AGjRT = (pos'1 In (po + 2yi,t m"!.» In <pi,t + 2>2,ť rn\A In <p2,i + докрой + 

+ 6T02<P0<P2 + gi2<pMP'2> 

where t h e indices 1 a n d 2 refer t o polymers 1 a n d 2, a n d goi, go2 a n d gn are the solvec 

- p o l y m e r 1, s o l v e n t - p o l y m e r 2 a n d polymer 1 - p o l y m e r 2 interact ion parameter? 

Appl icat ion of condit ion (2) leads t o [15] 

1 + («PÖ1 — 29го1) «Plfttw.l + ((pö1 — 20O2) <P2Wlw,2 + 
+ [4groi0o2 — (firoi -f go2 — gi2)2 — 2gi2<p~0

1] <pimw,i<p2mw,2 = 0. 
(spinodal) 

272 
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atactic 

polypropylene 

linear 

polyethylene 

% by 
weight 

diphenyl ether 

% 11. Cloud-point surface in the quasi-ternary system diphenyl ether-polyethy -

lene —non-crystallizable polypropylene. 

The polyethylene sample is the same as in Fig. 10. 

Fl9- 12. Quasi-ternary section 8 XT of Fig. 9. 
"" - - metastable spinodal; о critical points. 
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In the derivation we took s0 equal to 1 and assumed that none of the g's depends,, 
concentration. These limitations do not affect the general validity of the following щ. 

" T / t h e g parameters should show the usual linear dependence on reciprocal absob 
temp ^ e q u a t i o n 0 ) would be quadratic in T~K For ag>ven « ^ ^ S ^ d T í 
Fie 9 one could have two spinodal temperatures. A behaviour as displayed by 4 
fystem in bľg. 10 calls for three intersections in certain composition re g lons, so fa 
S L l simple * * , function cannot be appropriate (see Fig. 12) .A % " £ * * £ £ 
includes a linear T term which makes equation (5) bi-quadratic in T. In the descnph 
o ľ l í r p r e s e r s y s t e r n such an extension of the ,(T) function ,s obviously necessary [., 

Polymer 1-polymer 2 systems (compatibility) 

The ТХгХг lateral face of the prism in Fig. 9 relates to the miscibility of two pot 

Рл 0.1 0.3 0.5 07 OS P2 

Fig. 13. Spinodals ( ) and critic. 
points (O) in quasi-binary systems showingtt, 
relative locations of the instable regions j 
mixtures of two polydisperse polymers (up? 
set of curves) and solutions of a polyd^ 
se polymer in a single low-molecular-^ 
solvent (lower set of curves). The ratios 

mw,2/mw,i are indicated. 

The two spinodals a n o - " "" 
refer to a concentration dependent gn W 
/dq>2 = - 0 . 1 and + 0 . 1 , respectively). J 
critical points (0) at the maxima of the spinofe 
refer to 02/01 values of 1, those on the right-lj 
branches to 02/01 values of 0.5, 0.2, 0.1Л1 

0.02, 0.01, 0.001 (from left to right, as fan 
they are indicated); those on the left-** 
branches to 02/01 values of 2, 5, 10, 20, 50, 
1000 (from right to left); o 2 and m stand 

??iz,2/ww,2 and mz,i/ww,i. 
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— weight fraction of silicone 

1.0 

siLi 

Fig. 14. Cloud-point curves of liquid mixtures of silicone (molecular weights 17,000, 

1350, 850) a n d polyisobutene (440. 250). D a t a from Allen, Gee, and Nicholson [16]. 

spinodal. Denot ing mJmw by a, we see t h a t , w i th a\ — o 2 , t h e critical po int will lie a t 

the maximum of t h e spinodal. I n this respect, a polymer m i x t u r e resembles a b i n a r y 

system. However, as shown below, this is t h e only point of analogy. I f 01/02 < 1, t h e 

critical point shifts t o щ values below t h e m a x i m u m of t h e spinodal a n d conversely. 
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), spinodals ( — ) , a n d shadow % . loa, b. Calculated cloud-point curves ( 
curves (—• — •—) for a m i x t u r e of t w o p o l y m e r s . 

ft = monodisperse: m n = mw = m* = 10; Pi = polydisperse: m w = 100; Ww/win = 5; 
Wz/wiw = 7. Critical points : о gi2 = go -\- дкрч-
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The locations of spinodals and critical points indicate that the miscibility gap will 
have the usual asymmetric shape, i.e. shift towards the axis of the constituent with the 
shorter chains. Shovild the shift be in the opposite direction, this must be due either to 

1 

).5 

monodisperse polym 

m = 50 

0.5 

Vf 

50 

binary polymer 
rr^-50 
mz = 62.5 

25 75 — m 

Fig. 10. Monodisperse and binary polymers equal in ?nw. 

— 0.0266? 

—0.04 

—0.04976 

Fig. 17. Compatibility of two chemically different polymers with identical distributions. 
Two binar}' polymers (see Fig. 16): cloud-point curve; shadow curve; 

—, coexistence curves for various values of <pr. 
Two monodisperse polymers: —X— cloud-point curve; — • — • — spinodal; О critical 

point. 
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0.04 < дмр< 0.02667 

g^p = 0.02667 

9MP = 0.04976 

% 18a—с. Isothermal sections showing binodal surfaces referring to the дм? values 
in Fig. 17. 

О critical points. 
Fig. 18c shows the location of a tie line (ф ф). 
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a large difference between the two a values or, perhaps more probably , to a concentration 
dependence of 912. F ig . 13 shows two examples for t he 10/100 case calculated on the 
basis of a l inear concentra t ion dependence of gi>. If дд\.2\дщ > 0, t h e unstable region 

is shifted towards t h e P 2 axis, i.e. t o w a r d s t h e axis of t h e cons t i tuent wi th the larger 

chains. 
This finding m a y be considered t o shed some light on t h e unexpected locations of 

cloud-point curves r e p o r t e d b y Allen, Gee, a n d Nicholson [16]. These authors studied 

m i x t u r e s of low-molecular-weight polyisobutenes a n d silicones a n d found miscibility 

gaps shifted t o w a r d s t h e silicone axis. T h e silicones, however, h a d t h e longer average 

chain lengths of t h e t w o polymers . Fig . 14 gives t h e exper imenta l cloud-point curves 

a n d Fig . 15 two curves calculated from equat ion (1) w i th given values of s0. T h e calculated 

curves are n o t qui te representat ive, first of all because in calculations w i t h equation (I). 

po lymer 1 is t a k e n t o be monodisperse; however, Fig . 15b shows t h e shift towards the?, 

axis u n d e r t h e influence of t h e posit ive concentra t ion dependence of gi2, which outweighs 

t h e effect of t h e e n t r o p y of mixing here. 

Cloud-point curves can also be calculated for two polydisperse polymers . Let us first 

consider t h e s tep from monodisperse t o b inary polymers a n d assume t h e two molecular 

weight d i s t r ibut ions t o be identical (see Fig . 16). T h e cloud point, coexistence and shadow 

curves for such a symmetr ica l case are shown in Fig. 17. As t o t h e t r u l y binary 50/5« 

sys tem, t h e cloud-point curve (which for this sys tem is identical t o t h e coexistence 

P, 0.2 0.4 0.6 0.8 
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mz =62.5 

1 

0.5 

polymer 2 

mz-53.125 

_L 
25 50 75 25 50 75 

Fig. 19. Compatibi l i ty of two chemically 

different polydisperse polymers P i a n d 

P2 w i t h identical exponent ia l distribu­

t ions (raw = 50; Ww/wn = 1.33; W/./raw 

= 1.25). 

. cloud-point curve; — . — • — 

shadow curve; , - - coexistence 

curves for various values of <рг-

278 

Fig. 20. Compatibi l i ty of two chemically 

different b inary polymers (distributions 

shown). 

cloud-point curve; — • - ' 

shadow curve; о critical point. 
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curves) will of course be symmetr ica l , wi th t h e critical po int located a t t h e m a x i m u m . 

For the two binary polymers we find t h e same spinodal as before ( w w i = Ww2 = m) 

and the critical point is located in t h e m a x i m u m of t h e spinodal (аг — 02). We n o t e t h a t 

the maximum of t h e cloud-point curve also coincides wi th t h e critical point , b u t t h e 

coexistence curves for a given overall concentrat ion <pP are n o t symmetr ica l w i th respect 

i0 p̂ = 0.5. Nei ther do t h e shadow a n d cloud-point curves coincide, t h e former being 

located under t h e la t te r over t h e whole composit ion range. 

At first sight, t h e a s y m m e t r y wi th identical d is t r ibut ions in t h e two polymers m i g h t 

seem surprising. However, if we consider a three-dimensional i sothermal section of t h e 

four-dimensional temperature-composi t ion diagram, we see t h a t t h e s y m m e t r y is only 

partial. F r o m Fig. 18, which is a schematic representat ion of such i sotherms re lat ing 

to the #12 values in Fig. 17, it appears t h a t , in fact, only t h e МгъРгь a n d MIÖPIÖ axes 

are symmetrical; t he other two (M25P75 and P25M75) are not . This explains why t h e 

diagram in Fig. 17 shows the peculiar features indicative of polydispersi ty in t h e const i­

tuents. 

Similarly as in the preceding discussion in quasi-binary sys tems, the extension from 

binary to mul t icomponent polymers does not disclose any new features. Fig . 19 shows 

a two-dimensional phase d iagram for two identical cont inuous dis t r ibut ions wi th t h e 

same mw and m z values as t he two binary polymers in Fig. 17. The only difference is 

a further widening of t he miscibility gap relat ive to t h a t in t he t ru ly b inary example . 

As soon as the two dis tr ibut ions come to differ to some ex ten t , t he a s y m m e t r y manifests 

itself, i.cb. in the shadow curve, which assumes the location known in polymer solutions, 

i.e. with one b ranch under and t h e other one over t he cloud-point curve (Fig. 20). 

Solvent—поп solvent—polymer systems 

The most c o m m o n type,of quasi-ternary sys tem is t h e s o l v e n t — p r e c i p i t a n t — p o l y m e r 

solution frequently used in polymer fract ionation. T h e simplest case — s o l v e n t — n o n 

solvent—binary polymer — can be considered with t h e aid of a three-dimensional isother­

mal section. Fig. 21 gives a n example . 

If the influence of t e m p e r a t u r e in t h e discussions of quasi-binary sys tems is replaced 

by that of non solvent (volume fraction (pi) all t h e peculiarit ies referred t o above are 

noted also in quasi-ternary systems. Mixtures of t h e b i n a r y polymer X wi th solvent S a n d 

non solvent NS are represented b y points in t h e quasi-ternary section S — NS—X. T h e 

cloud-point curve ABC is obta ined by p lot t ing t h e cpi va lue a t incipient phase separat ion 

vs. the whole polymer concentrat ion <p2 ( = 9̂ 2,1 + 992,2). I t has a prec ip i ta t ion threshold В 

which will, as a rule, n o t coincide wi th t h e critical point in section S — NS — X. We further 

note that the cloud-point curve should not be expected t o represent coexisting phases 

and there will be shadow a n d coexistence curves. 

Quasi-ternary sections for polydisperse polymers m a y be calculated by m e a n s of 

equation (4), in which all mi,t are p u t equal t o 1, so t h a t <pi m a y be considered t o represent 

the non solvent concentrat ion. I n Fig. 22, where X denotes a n exponent ia l (Schulz — Z i m m ) 

distribution, the polydispersity reveals itself in a similar way as it does in quasi-binary 

systems. Fig. 23 shows t h a t t h e critical point travels t o larger whole p o l y m e r concentra­

tions according as M7. increases a t cons tant Mw. 

These figures were calculated for a given set of g values. T h e choice of these m a r k e d l y 

affects the location of t h e miscibility gap, as is borne out b y Fig. 24. T h e two-phase 

regions will be largest if t h e solvent is n o t too good, a n d t h e n o n solvent n o t too poor. 

An interesting quasi-ternary case is a sys tem t h e t w o low-molecular-weight c o m p o n e n t s 
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Fig. 21. Miscibility g a p in a q u a t e r n a r y sys tem conta ining t w o macromolecular homo-

logues Pi a n d Рг, a solvent S a n d a n o n solvent NS. T h e chain lengths of P i and P2 

differ (7П2 > mi) . 

Cloud-point curve of po lymer m i x t u r e X: ABC; critical l ine: — о — О - ; t ie line for 

sys tem A: • •; t ie lines in t h e t r u l y t e r n a r y s y s t e m S—NS—Pi: . 

Fig. 22. Calculated cloud-point ( ), shadow (—•-—•—) a n d coexistence ( ) 

curves in a quasi-ternary s y s t e m for goi = 0, goz = 0, «712 = 1. P o l y m e r distribution X' 

exponent ia l , My,: 131.7 X 103, Mw/Mn = 2. Solvent, n o n solvent a n d whole polymer 

concentra t ions : <pof 931, q?2. 

О critical point ; spinodal. 
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% 23. Calculated cloud-point ( ) and shadow ( ) curves in quasi-ternary 
eystems for goi = 0, g02 = 0, gn = 1. Polymer distributions: Mw = 131.7 X 10»; X i : 

iWw/ilin = 2. Mz/Mw = 1.5; X2: monodisperse; X 3 : Мф!п = itfz/Afw = 10. 
epinodal; tie lines for monodisperse polymer; о critical points. 

. 24. Coexistence curves (— , ) for an exponential distribution (ilfw = 131.7 X 
X 103; Mw/Mn = 2) for various indicated sets of 0̂2/̂ 01/̂ 12 values. 

, tie lines. Whole polymer concentration <p2 = 0.01, unless stated 
otherwise. 
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Fig. 25. Calculated cloud-point curves ( ), spinodals ( ) and critical 

po int s (•) in a quasi-ternary solvent — n o n solvent—polydisperse polymer system 

X: MY, = 4 X 105; Mw/Mn = 2.15; Mz/Mw = 2. Various sets of go2/goi/gi2 values, J: 

0.517/0/0.7; B: 0.5/0/0.65; C: 0.45/0/0.6; D: 0.4/0/0.517. 

Fig. 26. E x p e r i m e n t a l cloud-point curves ( ) in t h e sys tem cyclohexane (S)-

— ethylcyc lohexane (NS)—polystyrene (X) a t various t e m p e r a t u r e s . • critical pou№ 

determined b y t h e phase-volume m e t h o d . 

— — — cloud-point curve in t h e s y s t e m benzene (S)— m e t h a n o l (NS)— polystyren 

(X) . X: MY, = 4.1 X 105; M w / M n = 2.8; Mz/Mw = 2.0. 
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[which are both в solvents, while its temperature is intermediate between the two 0 

oints. One might look upon Fig. 25 as an example of such a system. The distribution X 
ŝso chosen as to roughly conform to a sample of polystyrene with which cloud-point 

ffleasurements were performed in mixtures of cyclohexane and ethylcyclohexane. The 

Fig. 27. Schematical ternary phase 
diagram for a solvent—non solvent — 
-monodisperse polymer system. The 
phase-volume ratio r is given by ri/r2. 

0 critical point. 

0 0.2 OA 0.6 

grams of NS after cloud-point 

Fig. 28. Experimental phase-volume ratio 
r for various values of the volume frac­
tion of the whole polymer at the cloud 
point. System: cyclohexane (S) — ethyl­
cyclohexane (NS)— polystyrene at 33°C 

(see Fig. 26). 

results in Fig. 26 show that one actually finds the gradual shift of the cloud-point curve 
predicted by Fig. 25. I t further shows that a cloud-point curve may exhibit a depression 
(benzene-methanol) as suggested by some of the calculated examples. 

The location of critical points can be established in a similar way as in quasi-binary 
systems. Measurement of the phase-volume ratio as a function of the amount of non 
solvent added beyond the cloud point yields a similar kind of relationship. Fig. 27 illu­
strates this; Fig. 28 gives an experimental example. 

Polymer fractionation 

Fractionation of polymers with respect to chain length by liquid —liquid separation 
has always received much attention in polymer science. We may restrict ourselves there­
fore to referring to the comprehensive reviews [17 — 21] that have appeared on this 
subject, and only add a few marginal notes relevant to the present context. 
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Fig. 29. Fractionation efficiency, expressed as Mw/Mn of the fraction vs. fraction size 
for various values of the overall polymer concentration <p. 

fraction in concentrated phase; — fraction in dilute phase. The abscissa 
shows xy the relative size of the fraction in the concentrated phase. 

The interaction parameter is given by g = go -f- giq?; values of gi are indicated. Cha­
racteristics of the initial distributions are given on the right. 

284 Chem. zvesti 26, 263-287 (1972) 

file:////-0.1


fll'ID-LIQUID EQUILIBRIA 

g1>0 = 0<0 
X'X'X 

g1 ^0=0<0 

fig. SO. Influence of t h e extension of t h e miscibil ity gap on fract ionation ef ficiency. T h e 

interaction p a r a m e t e r depends on concentra t ion: g = go -f дкр. 

% 31a, b. Fract ionat ion efficiency calculated for two initial d i s t r ibut ions a n d various 

sets of t h e interact ion p a r a m e t e r s ^02/^01/^12. 

Drawn curves: polymer-rich phase, dashed curves: di lute phase (b = Mw/Mu), x is t h e 

relative size of t h e fraction in t h e concentra ted phase, a) go2-goi-gvi. 

'•0-1.2-1; 2. 0-1.4-1; 3. 0-1.6-1; 4, 0-1.8-1; 5. 0.45-0-0.6 (also quasi-binary); <p = 0.01. 

b) 0o2-goi-gri2. Í . 0.45-0-0.6; 2. 0-0-1; 3. 0-1-1; 4. 0-1.4-1; <p = 0.01. 
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The efficiency of a p repara t ive fract ionation depends on a n u m b e r of experiment* 
condit ions such as whole polymer concentra t ion, fraction size, etc. [22]. As to quasi-Ыгщп 

systems, in which phase separat ion is b r o u g h t a b o u t b y a change in temperature, calculi 

t ion shows t h a t preference should be given t o such sys tems in which t h e interact^ 

p a r a m e t e r increases w i t h t h e p o l y m e r concentra t ion. Fig . 29 i l lustrates this for a oli 

function of t h e form: g = go + дкр. These findings are in agreement w i t h those reporte: 

in D r . K a m i d e ' s contr ibut ion t o t h e present Meeting. T h e cause of th is phenomeno; 

is t o be sought in t h e extension of t h e miscibility gap, which depends on t h e g(<p) relation 

Fig . 30 gives a schematical example . 

Fig. 32. F r a c t i o n a t i o n efficiency in two quasi-

-ternary polys tyrene sys tems. Fraction m 

c o n c e n t r a t e d phase, b" = Mw/Mn of the fraction 

(see Fig. 31). 

• benzene — m e t h a n o l (24°C); o cyclohexane-

— ethylcyclohexane (33°C). 

U n d e r comparable condit ions (at go va lues where <p a n d fraction size x are equal 

we find t h a t t h e miscibil ity gap is wider w i t h gi > 0 t h a n w i t h gi = 0, and narrow 

with g i < 0. This m e a n s t h a t t h e fract ion in t h e c o n c e n t r a t e d phase X" will be nearer 

t o t h e p u r e c o m p o n e n t Рг if g\ > 0. T h e widest gap goes w i t h t h e longer tie lines, теашш 

t h a t t h e composit ions of t h e phases differ m o r e according as g\ is larger. I t is obvioit 

t h a t this effect favours t h e f ract ionat ion efficiency. 

A similar aspect can be n o t e d in quas i- ternary f ract ionat ion d iagrams. Fig. 31 give 

t w o calculated examples which indicate t h a t a s o l v e n t — n o n solvent pair which 

is near to demixing (#oi large) is very unfavourable, whereas t h e bes t result is obtains 

with a non solvent of n o t too poor a n d a solvent of n o t too good dissolving power. Judge! 

from Fig . 24 one would conclude t h a t th is behaviour again goes w i t h t h e extension of tlí 

miscibility gap . Fo r qual i ta t ive exper imenta l evidence see Fig. 32. 

Conclus ions 

The polydispersi ty existing, as is well known, in v i r tua l ly all polymers , should not 

neglected in s tudies on liquid —liquid phase relat ionships in sys tems containing macro-

molecular cons t i tuents . I t manifests itself in several ways and dis t inct ly influences tM 

quan t i t a t ive in terpre ta t ion of phase equilibria. Fo r tuna t e ly , i ts influence can readilj 

be accounted for since it appears only in t h e form of some average molecular weigb 

in impor t an t conditions such as consolute s t a t e and s tabi l i ty l imits . 
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