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The influence of the molecular weight distribution of polymers on liquid —
—liquid phase relationships is investigated theoretically and illustrated with
experimental examples. The polydispersity reveals itself in an identical way
irrespective of the kind of system considered. Various types are discussed:
solvent —polymer; solvent —polymer 1—polymer 2; polymer 1—polymer 2;
solvent —non solvent —polymer. In none of these cases is it permitted to
consider the polymeric constituent(s) as a single component. Methods are
described to account quantitatively for polydispersity. The efficiency of
polymer fractionation is briefly commented upon.

In view of the announced scope of the present Meeting, the title of this contribution
might need some explanation. Strictly, in the sense of the thermodynamic definition,
aternary system is built up of three components. However, the systems dealt with at
this Conference must, in fact, be defined as consisting of three constituents. One or two
of these, or even all three, are polymeric substances which are known to contain many
macromolecular components differing at least in chain length. In this paper we argue
that the polydispersity should never be ignored, in particular not in thermodynamic
phenomena, such as phase relationships.

By introducing the term quasi-ternary systems we try to indicate that we are not
lealing with arbitrary multicomponent systems, but that the components in a constituent
are very similar in chemical structure and, in fact, belong to the same homologous series.
This implies that copolymers fall outside the scope of the quantitative considerations
tobe given below. However, the descriptions of the effect of polydispersity will have
(ulitative validity also for copolymers and branched macromolecules.

The quasi-ternary systems to be discussed comprise either a single solvent and two
plydisperse polymers, or two solvents (a good and a poor one) and one polydisperse
plymer. Before turning to these, we should first give attention to some quasi-binary
Wstems, that is to say to a mixture of a solvent and a polydisperse polymer. After that,
vecan proceed to a discussion of the compatibility of two polydisperse polymers. We shall
v that the phenomenon of polydispersity manifests itself in quite a similar way also
nthe more complicated quasi-ternary systems.

Solvent— polymer systems

The meaning of a quasi-binary diagram obtained by plotting liquid —liquid phase
*ations in the usual two-dimensional graph of cloud-point temperature vs. concentration,
—

*Presented at the meeting on “Thermodynamics of Ternary Polymeric Systems’,
batislava, June 29— 30, 1970.
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is not at once obvious. An insight can be obtained by considering a ternary system con.
sisting of the solvent S and two polymer homologues P1 and P of different molecular
weight [1, 2]. Fig. 1 schematically shows the miscibility gap as it may occur in such
a mixture at temperatures where one of the binary solvent —polymer systems is partially

I
solvent S — ¥ polymer mixture X

Fig. 1. Miscibility gap in a ternary Fig. 2. Schematical two-dimensiond
system consisting of a low-molecular- phase diagram referring to quasi-binary
-weight solvent S and two macromole- section T'SX in Fig. 1.
cular homologues P1 and P2 of different cloud-point curve; — -« —:*-
chain length. spinodal; — — — — shadow cure
AA.CsB: cloud-point curve; cCsC": _____ coexistence curves for vario
critical line; A»: precipitation threshold; overall polymer concentrations; O criticd
DCsE: quasi-binary spinodal; AsBs, AK, point.

BL and Q'Q”: tie lines (schematical).

miscible, whereas the other shows complete miscibility (Mp1 < Mps). Located in th
TSP, lateral face is the coexistence curve, well known with partially miscible bina!
systems, where the consolute state O is found at the extreme of the T'(grz) curve (gr
the volume fraction of Pz). Any value of T < T'e corresponds to two cloud points whi
represent coexisting phases. The location of the stability limit of the system (spinodd
is indicated.

Such a binary two-phase region extends into the ternary temperature-composiﬁ@'-
prism. Ternary miscibility gaps have been calculated in great detail by Tompa 34
on whose diagrams Fig. 1 is based. The coexisting phases are denoted by the end poi*
of the tie lines (e.g. A2 and B2, @ and Q"). The locus of these end points is called binod
or coexistence curve. The consolute or critical state is somewhere in the compositi‘
triangle (C’) and here, as in the binary system, the spinodal has a common tange
with the binodal.
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WWe might consider the binary macromolecular mixture X as a first approximation
ofa multicomponent polymer. All solutions of X in § can be represented by points on the
qomposition axis SX. Evidently, T'SX is the plane of drawing for the plot of the cloud
pints of polymer mixture X in S ws. the whole polymer concentration ¢. As a rule, tie
lnes will be so directed as to fall outside the quasi-binary section T'SX, meaning that
ihe cloud-point curve does not represent coexisting phases. Further, the extreme 42 of
the cloud-point curve, called precipitation threshold by Tompa [4, 5], is not a critical
pint, being shifted as it is towards larger ¢(Cs) [6], with respect to the threshold.

When a cloud point is reached upon a change in the temperature of a homogeneous
wlution, a new phase is on the verge of appearing (e.g. K, L, Bs). Plotting the compositions
o such phases in the two-dirnensional graph means projecting them onto T'SX. The
lcus of these projections is the coexistence curve of the cloud-point curve, which, escaping
lrect experimental determination, is briefly referred to as ‘shadow curve’ [2]. It is
dbvious that cloud-point and shadow curves must intersect in the critical point.

For a system with an overall composition within the heterogeneous region like @, the
wo coexisting phase compositions both lie outside T'SX (@’ and @”) and can also be
pojected. The locus of such projections, called coexistence curve, depends on the overall
plymer concentration ¢ in that the two branches (dilute and polymer-rich phases)
move closer together with increasing ¢. This is easily seen if one considers an increase
ifp from A to B. Summarizing these observations, several of which were made long ago
by Schreinemakers [7], one is led to the conclusion that the complete two-dimensional
phase diagram for a quasi-binary mixture will have the shape shown in Fig. 2. Since the
gpinodal extends into the prism, T'SX intersects the spinodal surface. The quasi-binary
pinodal DCsE has a common tangent with the cloud-point curve at the critical point.

These qualitative considerations on ternary mixtures can be extended to cover truly
multicomponent systems, albeit that these cannot be visualized in the same way as
thove. We have to content ourselves with calculated quasi-binary sections to check
whether the above deductions are general. This can be done by using a suitable equation
of state for the polymer solution. The simplest equation available is the Flory — Huggins
littice expression [8, 9], which gives a good qualitative description of the thermodynamic
properties of polymer solutions. Quantitative agreement with experiment can moreover
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Fig. 3a—c. Calculated two-dimensional phase diagrams for three molecular weiglt
distributions (equal in M. nfand M, different in M;; see Fig. 4).

cloud-point curves; ————- spinodal; — « — « — shadow curves; — —-

coexistence curves for various overall polymer concentrations; O critical points.

readily be obtained. The following considerations are based upon the Flory —Hugg
equation written in the following form

AG[RT = @os3' In g0 + 3 om;* In i + ¢(T's @) pop, h

where 4G = free enthalpy (Gibbs free energy) of mixing per mole of lattice sites,
@o = volume fraction of solvent,
so = number of lattice sites occupied by a solvent molecule,

266 Chem. zvesti 26, 263 —287 (9%)
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@i = volume fraction of macromolecular species 1,

@ = >@i = whole polymer volume fraction,

mi = number of lattice sites occupied by polymer chain ¢ (‘chain length’),
g(T, p) = semiempirical free enthalpy correction term,

R and T have the usual meanings.

Phase diagrams can be calculated on the basis of the equilibrium condition that the
cemical potential of a component is equal in the two phases. The resulting equations
ae transcendent and must be solved numerically [1]. To do so, some assumption must
te made about the molecular weight distribution of the whole polymer. The polymer
womposition is brought into account in the second term on the right-hand side of equation
(1) since

9 = ¢i,
vhere ¢} stands for the volume fraction of species 4 in the solvent-free polymér, i.e. for
the molecular weight distribution.

Fig. 3a—c shows two-dimensional phase diagrams calculated for three molecular
veight distributions having the same weight- and number-average molecular weight Mw
md Mn, but different z-averages M. The distribution curves are shown in Fig. 4. The
aleulation was based upon the assumption that g is independent of ¢. The g(T") function
was left unspecified so that g, instead of 7', appears on the ordinate. All features noted
nthe qualitative ternary example are present also in the multicomponent system (Fig. 3).
Further, the shape of the phase diagram depends markedly on the shape of the distribu-
tion, becoming distorted as Mz increases. Qualitatively, this corresponds to a shifting
of X in Fig. 1, which obviously affects the shape of the quasi-binary section.

There exists experimental evidence showing that these calculated phase diagrams
onform to physical reality, first of all in the extensive phase studies on the system
plystyrene —cyclohexane by Rehage et al. [10, 11] (Fig. 5). Data on the system poly-
dhylene —diphenyl ether offer further support [1] (Fig. 6). They also show that the
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Fig. 4. Molecular weight distributions used in the calculation of Fig. 3.
Mvw = 131,700, Mw/Mn = 5.
w10 :Mz/Mw = 2; wiz2 @ Mz/Mw = 3; w14 2 Mz/Mw = 1.
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depression in the cloud-point curve at the critical point calculated for distributip,
w12 and wia may actually occur, and, furthermore, that a shadow curve may bend bag.
wards after having passed the critical point.
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polystyrene concentration (% by weight)

Fig. 5. Experimental two-dimensional phase diagram for the quasi-binary system cyds
hexane —polystyrene. Data from Rehage et al. {10, 11].
cloud-point curve; — « — « -— shadow curve; coexistence curves for various over
polystyrene conecentrations (0 2%; O 6%; A 10%; v 159%; m 209, w/w); e critical poin
found with the phase-volume method.
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Fig. 6a, b. Experimental two-dimensional phase diagrams for two quasi-binary diphey
ether —polyethylene systems [1].

cloud-point curves; — — — — spinodals; — « — « — shadow curves; —

coexistence curves; @ critical points.
The samples differ in molecular weight distribution.

a) Sample L 30-0-7: 0 ¢ = 0.0309; O ¢ = 0.0612; vV ¢ = 0.0734. ‘

b) Sample L 30-5-1: v ¢ = 0.0563; 0 ¢ = 0.0733; m ¢ = 0.0854; A ¢ = 0.0973 (the critic
concentration); O ¢ = 0.1445.

o i
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The spinodal and the critical point can be calculated by equating to zero the second
ad third derivatives of AG with respect to polymer concentration, with allowance being
mde for polydispersity. Gibbs formulated the stability and critical conditions for multi-
component systems [12]. For the spinodal we have (at constant pressure and temperature)

Jsp = [024G/0gidp;| = 0 (@)

{he consolute state being defined by

aJsp/a(Pl aJsp/atp'z
2AG0pr18: 224G o}

I
=

!
g = % 3
|

|
|
vhere i and @; stand for all independent concentration variables (e.g. the volume frac-

tions of all polymer components).
Applied to equation (I) equations (2) and (3) yield

—(229[0@?)p,r = 1/(1 — @) so + l/pmw, (2a)
(spinodal)
—(@y[og3)p.r = 1/(1 — @e)2 8o — malmip; , (3a)

(critical point)

where ¢ = ¢g(T', @) pop, and @c is the critical volume fraction of the whole polymer. Con-
equently, in systems obeying equation (I) the detailed shape of the molecular weight
distribution dpes not enter the expressions for the stability limit and critical state.
Only the weight- and z-average chain lengths mw and m. play a role. This is very fortunate
because unlike the distributions, which are difficult to determine with reasonable accuracy,
sverages like Mw and Mz are readily accessible. The spinodals in Figs. 3a —c are identical
(the distributions are equal in Mw) and the critical points move to higher ¢ according
® M increases [6, 13].

With the right-hand sides of equations (2a) and (3a) containing measurable quantities,

a b
r
' v <Y,
Ye
, e Y> Y.
‘,c
solvent —— ¢ polymer at

Fig. Ta, b. Phase-volume method for locating the critical point.
r = V’[/V" (volumes dilute and polymer-rich phases).
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establishment of consolute states for a series of samples differing in M, and My shoy
allow determination of the interaction function y. Elsewhere, it has been shown t},
this method, in fact, offers a very accurate key to the interaction parameter g [y
In addition to Mw and Mz, the location of gc on the right-hand branch of the cloud-poiy

T T T T T T T
-
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\\%&ﬂ/ 6.66 (v) )
—.6.80 (o) V/D |
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=% p—b—7.00
1t - .
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0 1 | 0 L | L 1 1
0 1 2 at [c] o 2 4 ot (%)

Fig. 8a, b. Experimental determination of the critical concentration in the two systems
of Fig. 6 (see also Fig. 7).

curve must be known. It can be established by measuring the phase-volume ratio &
a function of temperature and concentration. Fig. 7 illustrates this procedure for a binar
mixture. According to the lever rule the phase-volume ratio » is given by

= ~V//V// — ((p// _ (p)/(‘p _ ‘P’),

where ¥’ and V" denote the volumes of the dilute and polymer-rich phases and ¢’ and¢
their whole polymer volume fractions.

It can be shown [1, 2] that multicomponent systems also exhibit the volume-rati
behaviour illustrated in Fig. 7. Fig. 8 refers to the system polyethylene —dipheny] ether
and shows that the phase-volume method yields accurate values of gc. In the exampl
of Fig. 8a the critical concentration must evidently lie between 6.6 and 6.89, (w/v)

Solvent — polymer 1— polymer 2 systems

Upon addition of a second polydisperse polymer to the systems discussed so far, tht
situation becomes considerably more complicated. First of all, with simplified systems
visualization as in Fig. 1 is no longer possible, since binary approximation of the tw
polymers already calls for a four-dimensional isotherm. From the preceding considerations

270 Chem. zvesti 26, 263 —287 (197
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fip. 9. Cloud-point surfaces in
gquasi-terna.ry mixture containing
; ow-molecular-weight solvent S
ad two polydisperse polymers

(X1 and Xa).
——  cloud-point curves;
c—— O critical lines;
spinodals.

4 and A:: quasi-binary preci-
tion threshold  (schematical).

e
i

livever, we can deduce some features of a three-dimensional quasi-ternary section.
.9 gives a schematical example.

I'the two quasi-binary solvent—polymer systems contain miscibility gaps, the two
“vant lateral faces of the prism will show all the details noted in the preceding section.
fie, we must expect cloud-point surfaces and coexistence and shadow surfaces to
%nd into the prism and to connect the corresponding curves in the 7'SX: and T'SX:
nes. There must be a critical line running along the cloud-point surface and, within
fegap, 8 spinodal surface must be present that touches the cloud-point surface along
%aitical line.

The miscibility gap may be lacking in one of the two solvent—polymer systems and/or
“pesent in the polymer 1—polymer 2 system. Further, the phenomena described may,
‘my not go with lower consolute demixing, showing that the liquid—liquid phase
*itions in quasi-ternary systems may vary considerably and be very complicated.

The two experimental examples shown in Figs. 10 and 11 illustrate the effect of poly-
"Dylene on the system polyethylene —diphenyl ether. It appears that the stereoregularity
ilhe polypropylene makes quite a difference as regards the phase behaviour, the second

Oen, 2yt -
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Fig. 10. Cloud-point surfaces in the quasi-ternary system diphenyl ether —polyet}
lene —crystallizable polypropylene.

miscibility gap being absent if the isotactic (crystallizable) polypropylene is reph
by the atactic (non-crystallizing) variety. The second miscibility gap in Fig. 107
found to be closed at high temperatures [15].

An idea about the cause of this difference can be obtained from a consideration of
spinodal. If the 4@ function is rewritten so as to account for the second polymer, wel:

AG/RT = @os;" In o + S@1,im7i;In @i + o m3,i In @2,i + goipopr +
+goepopz + gr2g1g2,
where the indices 1 and 2 refer to polymers 1 and 2, and go1, goz and g2 are the solver

—polymer 1, solvent—polymer 2 and polymer 1—polymer 2 interaction parameter
Application of condition (2) leads to [15]

1+ (gg! — 2g01) prmw,1 + (go' — 2g02) Pemwz +
1 [4goiges — (go1 + gox — g12)? — 2g12¢5' ] Prmw,1@am,2 = 0.
(spinodal)

i —g81l
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linear

olyethylene
atactic poiyethy

polypropylene

A

diphenyl ether

fy. 11. Cloud-point surface in the quasi-ternary system diphenyl ether —polyethy-

lene —non-crystallizable polypropylene.
The polyethylene sample is the same as in Fig. 10.

two phases

|
I
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|
|
|

spinodals

curves

—— cloud- point

two phases |
|
/‘T“
. S ¢ X
Fig. 12, Quasi-ternary section SX7T of F ig. 9. —— ¥y,

© T — metastable spinodal; o critical points.
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In the derivation we took so equal to 1 and assumed that none of the g’s depends
concentration. These limitations do not affect the general validity of the following arg
ment.

If the g parameters should show the usual linear dependence on reciprocal absolu.
temperature equation (5) would be quadratic in T-1. For a given composition, say (i
Fig. 9, one could have two spinodal temperatures. A behaviour as displayed by th
system in Fig. 10 calls for three intersections in certain composition regions, so th
the usual simple g(T') function cannot be appropriate (see Fig. 12). A better approximatis
includes o linear T' term which makes equation (5) bi-quadratic in T'. In the descripti-
of the present system such an extension of the g(T) function is obviously necessary (1

Polymer 1—polymer 2 systems (compatibility )

The TX1X: lateral face of the prism in Fig. 9 relates to the miscibility of two pol
disperse polymers differing in chemical structure. This kind of quasi-binary system is¢
considerable technological importance. Miscibility of two polymers is a rare phenomena
because the entropy of mixing per unit volume is very small (2nd and 3rd terms:
equation (9)). Hence, subtle interaction effects may influence the phase behaviourt
a considerable degree.

Some idea of the role of interactions and molecular weight distributions can be obtain
from Fig. 13, which shows spinodals calculated for various combinations [15]. Dependi
on the mz values of the two polymers, the critical point may be nearly anywhere ontt

Fig. 13. Spinodals ( ——) and cri
points (0) in quasi-binary systems showing
relative locations of the instable regions ]
mixtures of two polydisperse polymers (upt
set of curves) and solutions of & polydis
se polymer in a single low-molecular-wef
solvent (lower set of curves). The ratios
My 2/Mw,1 are indicated. ‘
The two spinodals — — — — and — "
refer to a concentration dependent g e
/o2 = —0.1 and +0.1, respect;ively).Tr
critical points (@) at the maxima of the spinots
refer to as/a1 values of 1, those on the right s
branches to asfai values of 0.5, 0.2, 01 o
0.02, 0.01, 0.001 (from left to right, as far:
they are indicated); those on the lefths
branches to ag/a1 values of 2, 5, 10, 20, 50,1
1000 (from right to left); az and o stand-
Mzy2[Mw2 and Mz,1 /M1
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0 0.2 0.4 0.6 08 10
PIB

weight fraction of silicone —— sili

Fig. 14. Cloud-point curves of liquid mixtures of silicone (molecular weights 17,000,
1350, 850) and polyisobutene (440, 250). Data from Allen, Gee, and Nicholson [16].

spinodal. Denoting mz/mw by a, we see that, with a1 = as, the critical point will lie at
the maximum of the spinodal. In this respect, a polymer mixture resembles a binary
system. However, as shown below, this is the only point of analogy. If ai/as < 1, the
eritical point shifts to @z values below the maximum of the spinodal and conversely.

0.04- 4
g, 006| s
0.08- -
010+ ]
P 02 0.4 08 A R
2
Fig. 15a, b. Calculated cloud-point curves (—————), spinodals (—--————), and shadow

curves (— « — « —) for a mixture of two polymers.
Pi = monodisperse: ma = mw = m. = 10; P2 = polydisperse: mw = 100; mw/mn = 5;
mezfmw = T. Critical points: O g12 = go + g1g2.

Chem, i 263 —¢
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The locations of spinodals and critical points indicate that the miscibility gap wil
have the usual asymmetric shape, 4.e. shift towards the axis of the constituent with the
shorter chains. Should the shift be in the opposite direction, this must be due either t,

1= monodisperse  polymer

v m=50

0.5

50 ~——m

0.5 binary  polymer

” m, =50
! my =62.5
25 75 —=m

Fig. 16. Monodisperse and binary polymers equal in mw.

T T T T T u T v — 0.02667
Gup
|
i
0.04 —0.04
0.05 —0.04976
006
007
0.08 —0.08
AR IR R PRSP T N
M 0.2 04 0.6 0.8 P
m, =50 —Y my =50
m, =62.5 my=62.5

Fig. 17. Compatibility of two chemically different polymers with identical distributions.

Two binary polymers (see Fig. 16): ————— cloud-point curve; — — — shadow curve;
—, — — coexistence curves for various values of gr.
Two monodisperse polymers: —xX— cloud-point curve; — « — « — spinodal; @ eriticel
point.

276 Chenm. zvesti 26, 263 —287 (1977
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0.04 < g,, < 0.02667

Gyp = 0.02667

Gup = 0.04976

fg. 18a—¢. Tsothermal sections showing binodal surfaces referring to the gmur values
in Fig. 17.
O critical points.
Fig. 18c¢ shows the location of a tie line (@ ——-@).

Oem, zesti 26, 203 —
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a large difference between the two a values or, perhaps more probably, to a concentratio
dependence of gi2. Fig. 13 shows two examples for the 10/100 case calculated on the
basis of a linear concentration dependence of gi:. If 9g12/opz > 0, the unstable regio
is shifted towards the Ps axis, i.e. towards the axis of the constituent with the large
chains.

This finding may be considered to shed some light on the unexpected locations of
cloud-point curves reported by Allen, Gee, and Nicholson [16]. These authors studied
mixtures of low-molecular-weight polyisobutenes and silicones and found miscibility
gaps shifted towards the silicone axis. The silicones, however, had the longer averag
chain lengths of the two polymers. Fig. 14 gives the experimental cloud-point curve
and Fig. 15 two curves calculated from equation (1) with given values of so. The calculated
curves are not quite representative, first of all because in calculations with equation (1)
polymer 1 is taken to be monodisperse; however, Fig. 15b shows the shift towards the :
axis under the influence of the positive concentration dependence of g1z, which outweighs
the effect of the entropy of mixing here.

Cloud-point curves can also be calculated for two polydisperse polymers. Let us firt
consider the step from monodisperse to binary polymers and assume the two moleculs
weight distributions to be identical (see Fig. 16). The cloud point, coexistence and shado
curves for such a symmetrical case are shown in Fig. 17. As to the truly binary 50/
system, the cloud-point curve (which for this system is identical to the coexistenc

R 02 04 06 08 &
—T T T i
0.03F bt
" A I
A 02 0.4 0.6 08 B B 'l
e b 0.05 1‘
004
9,
¥ 0.07
92
005 l PR SR L
polymer 1 polymer 2
0.06 " 1 m, =50 1 m,=40
m, =62.5 my=53.125
lo.s 05
007 v | L 1 L 1 1 ‘ L J J_I——
25 50 75 25 50 7
—mi
Fig. 19. Compatibility of two chemically Fig. 20. Compatibiligy of two chemiclf
different polydisperse polymers P1 and different binary polymers (distributios
P, with identical exponential distribu- shown).
tions (mw = 50; mw/mn = 1.33; mzfmw cloud-point curve; —«—'
= 1.25). shadow curve; O critical point.
cloud-point curve; — e« —* —
shadow curve; ,—— coexistence

curves for various values of @a.
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qaurves) will of course be symmetrical, with the critical point located at the maximum.

For the two binary polymers we find the same spinodal as before (mwi = mw2 = m)
ad the critical point is located in the maximum of the spinodal (¢, = a2). We note that
the maximum of the cloud-point curve also coincides with the critical point, but the
wexistence curves for a given overall concentration gp are not symmetrical with respect
10 po = 0.5. Neither do the shadow and cloud-point curves coincide, the former being
lcated under the latter over the whole composition range.

At first sight, the asymmetry with identical distributions in the two polymers might
«em surprising. However, if we consider a three-dimensional isothermal section of the
four-dimensional temperature-composition diagram, we see that the symmetry is only
partial. From Fig. 18, which is a schematic representation of such isotherms relating
to the g1z values in Fig. 17, it appears that, in fact, only the Ms5P2; and M7P2; axes
are symmetrical; the other two (M2sP7s and P2sM7s) are not. This explains why the
diagram in Fig. 17 shows the peculiar features indicative of polydispersity in the consti-
tuents.

Similarly as in the preceding discussion in quasi-binary systems, the extension from
binary to multicomponent polymers does not disclose any new features. Fig. 19 shows
a two-dimensional phase diagram for two identical continuous distributions with the
ssme mw and mz values as the two binary polymers in Fig. 17. The only difference is
a further widening of the miscibility gap relative to that in the truly binary example.

As soon as the two distributions come to differ to some extent, the asymmetry manifests
itself, ¢.@. in the shadow curve, which assumes the location known in polymer solutions,
ie. with one branch under and the other one over the cloud-point curve (Fig. 20).

Solvent—non solvent— polymer systems

The most common type of quasi-ternary system is the solvent— precipitant —polymer
solution frequently used in polymer fractionation. The simplest case — solvent—non
solvent —binary polymer — can be considered with the aid of a three-dimensional isother-
mal section. Fig. 21 gives an example.

If the influence of temperature in the discussions of quasi-binary systems is replaced
hy that of non solvent (volume fraction i) all the peculiarities referred to above are
noted also in quasi-ternary systems. Mixtures of the binary polymer X with solvent S and
non solvent NS are represented by points in the quasi-ternary section S—NS—X. The
cloud-point curve ABC is obtained by plotting the @1 value at incipient phase separation
vs. the whole polymer concentration gz (= @2,1 + @2,2). It has a precipitation threshold B
which will, as a rule, not coincide with the critical point in section S— NS — X. We further
note that the cloud-point curve should not be expected to represent coexisting phases
and there will be shadow and coexistence curves.

Quasi-ternary sections for polydisperse polymers may be calculated by means of
equation (£), in which all ma,; are put equal to 1, so that g1 may be considered to represent
the non solvent concentration. In Fig. 22, where X denotes an exponential (Schulz — Zimm)
distribution, the polydispersity reveals itself in a similar way as it does in quasi-binary
systems. Fig. 23 shows that the critical point travels to larger whole polymer concentra-
tions according as M- increases at constant M.

These figures were calculated for a given set of g values. The choice of these markedly
affects the location of the miscibility gap, as is borne out by Fig. 24. The two-phase
regions will be largest if the solvent is not too good, and the non solvent not too poor.

An interesting quasi-ternary case is a system the two low-molecular-weight components
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Fig. 21. Miscibility gap in a quaternary system containing two macromolecular homo-

logues P1 and Pz, a solvent S and a non solvent NS. The chain lengths of P1 and P,
differ (mg > mi).

Cloud-point curve of polymer mixture X: ABC; critical line: — 0 —— O —; tie line for

system A: B

NS 04 — 0.2

Fig. 22. Calculated cloud-point (———), shadow (— « — « —) and coexistence (— — —}
curves in a quasi-ternary system for go1 = 0, goz = 0, g1z = 1. Polymer distribution X:
exponential, Mw: 131.7 X 103, Mw/Mx = 2. Solvent, non solvent and whole polymer
concentrations: @o, @1, @z.
O critical point; —————— spinodal.
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0.5, .
NS 0.05 —, 0.1 X

Fig. 23. Calculated cloud-point (——) and shadow (— - —-—) curves in quasi-ternary

ystems for go1 = 0, goa = 0, g12 = 1. Polymer distributions: Mw = 131.7 X 103 Xi:
Ma/Ma = 2. Mz/Mw = 1.5; X»: monodisperse; Xs: My/Mn = Mz/Mw = 10.

spinodal; — — — tie lines for monodisperse polymer; O critical points.

Ny

Pig. 24. Coexistence curves (— , — —) for an exponential distribution (Mw = 131.7 X
X 108; Mw/Ma = 2) for various indicated sets of goz/goi/g12 values.
“——, —~ — — tie lines. Whole polymer concentration @z = 0.01, unless stated
otherwise.
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Fig. 25. Calculated cloud-point curves (————), spinodals ( ——) and ecritial

points (®) in a quasi-ternary solvent—non solvent—polydisperse polymer systen
X: Mw =4 X 10° Mw/Mn = 2.15; Mz/Mw = 2. Various sets of goz/goi/gi2 values, 4
0.517/0/0.7; B: 0.5/0/0.65; C: 0.45/0/0.6; D: 0.4/0/0.517.

o XC ) L

N.
s 02 0.4 06 ¥$—

Fig. 26. Experimental cloud-point curves (————) in the system cyclohexane (5
—ethyleyclohexane (N.S)—polystyrene (X) at various temperatures. @ critical poirt
determined by the phase-volume method.
— — — cloud-point curve in the system benzene (S)—methanol (N.S)—polystyr®
(X). X: Mw = 4.1 X 105 Mw/Mn = 2.8; Mz/Mw = 2.0.

289 Chem. zvesti 26, 263 —281(1%




laml'ID—LIQUID EQUILIBRIA

|
{vhich are both @ solvents, while its temperature is intermediate between the two (2]

aints. One might look upon Fig. 25 as an example of such a system. The distribution X
4550 chosen as to roughly conform to a sample of polystyrene with which cloud-point
pasurements were performed in mixtures of cyclohexane and ethyleyclohexane. The

ol 1
0 0.2 0.4 0.6

grams of NS after cloud - point

Fig. 27. Schematical ternary phase Fig. 28. Experimental phase-volume ratio
diagram for a solvent—non solvent— r for various values of the volume frac-
-monodisperse polymer system. The tion of the whole polymer at the cloud
phase-volume ratio » is given by ri/ra. point. System: cyclohexane (S)—ethyl-

O critical point. cyclohexane (NS)—polystyrene at 33°C

(see Fig. 26).

results in Fig. 26 show that one actually finds the gradual shift of the cloud-point curve
predicted by Fig. 25. It further shows that a cloud-point curve may exhibit a depression
(benzene —methanol) as suggested by some of the calculated examples.

The location of critical points can be established in a similar way as in quasi-binary
systems. Measurement of the phase-volume ratio as a function of the amount of non
solvent added beyond the cloud point yiclds a similar kind of relationship. Fig. 27 illu-
strates this; Fig. 28 gives an experimental example.

Polymer fractionation

Fractionation of polymers with respect to chain length by liquid —liquid separation
has always received much attention in polymer science. We may restrict ourselves there-
fore to referring to the comprehensive reviews [17—21] that have appeared on this
subject, and only add a few marginal notes relevant to the present context.
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Mp = 10°

A My /M =10
Mz /My =10

Mp =10

r Mw/Mn=10

Mz/My =10

1 Ma=10¢

3 My /Mn=2
Mz/My =2

Pig. 29. Fractionation efficiency, expressed as Mw/Mn of the fraction ¢s. fraction sis
for various values of the overall polymer concentration .
—~—— fraction in concentrated phase; — — — fraction in dilute phase. The absciss
shows z, the relative size of the fraction in the concentrated phase.
The interaction parameter is given by g = go + g1p; values of g1 are indicated. Chx
racteristics of the initial distributions are given on the right.
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X X XXX X
<0 initial g,<0=0<0

fiy. 30. Influence of the extension of the miscibility gap on fractionation efficiency. The
interaction parameter depends on concentration: g = go + 1.

0T T T T T

12} -

1 1 1 1 [ 1 L 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.% 0.6 08 1

X —_—X

Fig. 31a, b. Fractionation efficiency calculated for two initial distributions and various
sets of the interaction parameters goz/go1/g12.
Drawn curves: polymer-rich phase, dashed curves: dilute phase (b = Mw/Mn), x is the
relative size of the fraction in the concentrated phase. a) goz-go1-g12.
1.0-1.2.1; 2. 0-1.4-1; 3. 0-1.6-1; 4. 0-1.8-1; 5. 0.45-0-0.6 (also quasi-binary); ¢ = 0.01.
b) goz-go1-g12. 1. 0.45-0-0.8; 2. 0-0-1; 3. 0-1-1; 4. 0-1.4-1; ¢ = 0.01.
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The efficiency of a preparative fractionation depends on a number of experimey,
conditions such as whole polymer concentration, fraction size, etc. [22]. As to quasi-bim,{
systems, in which phase separation is brought about by a change in temperature, caley;
tion shows that preference should be given to such systems in which the interact;
parameter increases with the polymer concentration. Fig. 29 illustrates this for a
function of the form: g = go + g1p. These findings are in agreement with those repor;
in Dr. Kamide’s contribution to the present Meeting. The cause of this phenomen
is to be sought in the extension of the miscibility gap, which depends on the g(e) relati
Fig. 30 gives a schematical example.

-

2L | Fig. 32. Fractionation efficiency in two qus
~g\0\0\ -ternary polystyrene systems. Fraction |
concentrated phase, b” = Mw/Mn of the fract

(see Fig. 31).

0 01 0.2 0.3 0.4 @ benzene —methanol (24°C); o cyclohexan-
—ethyleyclohexane (33°C).

Under comparable conditions (at go values where ¢ and fraction size x are equl
we find that the miscibility gap is wider with g1 > 0 than with g1 = 0, and naron
with g1 < 0. This means that the fraction in the concentrated phase X” will be nea
to the pure component P if g1 > 0. The widest gap goes with the longer tie lines, mean:
that the compositions of the phases differ more according as g1 is larger. It is obvi
that this effect favours the fractionation efficiency.

A similar aspect can be noted in quasi-ternary fractionation diagrams. Fig. 31 g
two calculated examples which indicate that a solvent—non solvent pair which i
is near to demixing (go1 large) is very unfavourable, whereas the best result is obtau
with a non solvent of not too poor and a solvent of not too good dissolving power. Judy
from Fig. 24 one would conclude that this behaviour again goes with the extension of {:
miscibility gap. For qualitative experimental evidence see Fig. 32.

Conclusions

The polydispersity existing, as is well known, in virtually all polymers, should not!
neglected in studies on liquid —liquid phase relationships in systems containing ma
molecular constituents. It manifests itself in several ways and distinetly influences !
quantitative interpretation of phase equilibria. Fortunately, its influence can reil
be accounted for since it appears only in the form of some average molecular wei
in important conditions such as consolute state and stability limits.
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