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In this paper three regions found experimentally for the expansion of 
nonuniformly fluidized beds are characterized. A theoretical model of the 
nonuniformly fluidized bed in the system gas —particles is described and 
an equation is derived for the relative expansion of bed. The values of 
relative expansions calculated from this equation are compared with the 
experiment in the system air—particles and with the values calculated 
according to the equation put forward by Pyle and Harrison [1]. Our equation 
is in better agreement with experiment than the equation of Pyle and 
Harrison. 

In previous paper [2] we judged the two-phase model of nonuniformly fluidized beds 
proposed by Pyle and Harrison [1]. In this connection wre have presented some experi
mental data, which we used to elaborate and verify the so-called three-flow model of 
nonuniformly fluidized beds in the system gas (at low pressures) —particles. 

Discussion 

In a nonuniformly fluidized bed appearing in systems gas (at low pressure) —particles 
the aggregates of particles arise by the effect of disturbance forces [3]. In these aggre
gates the particles touch each other. During its existence, the aggregate behaves as 
a separate particle and the parameters characteristic of particle can be attributed to it. 
Only a small part of the fluid passes through the interior of the aggregate. 

According to the experimental data, there are three regions which may be distinguished 
at a relative expansion of nonuniformly fluidized beds. This statement is confirmed by 
Fig. 2 in our preceding paper [2]. 

In the first region, limited by the interval Re\ < Re < jßeCfmax, the relative maximum 
height Lmax/b0 and the relative minimum height LminlL0 increase slowly with the value 
of Re. The bed height fluctuates, but it is relatively distinctly confined and the number 
of particles shot over that demarkation is practically negligible. The visual observation 
showed that moving bubbles were observed only when the values of Re came near to 
the value i?tľc,max. 

In the second region, limited by the interval i?ec,max < Re < ReCtm\n, the relative 
maximum height Lmax/b0 increases with the value of'i?e much more rapidly than it 
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does at Re < i?e0,max, but the relative minimum height Lmin/L0 changes as in the first 
region. The bed height fluctuates considerably and is indistinct while the number of 
particles shot over the level increases with Re. An intensive formation of bubbles was 
observed visually. 

In the third region, limited by the interval Re > i?ec,min. the values LmaJL0 and 
Lmin/L0 increase with Re almost with the same rate as Lma.x/L0 in the second region. 
The formation of bubbles is very intensive, the size of bubbles is comparable with the 
diameter of equipment but no pistons arise. In the second region it was possible to 
determine visually (at least approximately) the boundary between dense suspension 
and particles shot over it; however, it was not possible in the third region. Owing to 
a great number of bubbles the number of particles in a volume unit did not differ much 
from the number of particles in a volume unit of the space filled with the particles shot 
out. Nevertheless, there is a qualitative difference between the bed and the space filled 
with the particles shot out. Whereas there are bubbles of gas, aggregates of particles, 
and separate particles in the bed, no bubbles appear in the space filled with the particles 
shot out. 

The idea that in a dense suspension the aggregates of particles, the separate particles, 
and the gas bubbles occur is the basis of the three-flow model. The separate particles 
and the aggregates will be denoted as effective particles. 

The aggregates are of different size. Since the magnitude of disturbance forces under 
otherwise identical conditions is a quasi-stationary stochastic process [3] it may be 
assumed that 

a) the mass fraction of the particles forming aggregates (and thus also the mass fraction 
of separate particles in bed) is a quasi-stationary stochastic process; 

b) the number of aggregates in bed is a quasi-stationary stochastic process. 
If we choose a convenient measure for the size of aggregates, dx, we can in every mo

ment distinguish the size range of effective particles in bed which is also a quasi-statio
nary stochastic process. 

The maximum range of the sizes of effective particles which has been found may 
then be separated into m equally wide intervals. The mean value d'ei as a class sign, 
i.e. the characteristic size of effective particles may then be attributed to the г-th inter
val. I t is evident that for a certain d'e{ a mass fraction x i of effective particles exists 
in the г-th interval of sizes and this fraction is a quasi-stationary stochastic process. 

Let a certain aggregate of particle be of the volume F a 

n a, F p 

F a = Па F p + Tga = J (1) 
1 - f a 

where r?a is the number of the equisized particles of equal density gg in a certain aggregate 
of particles, F,> is the volume of one particle, F g a is the volume of the fluid of density gg 

in an aggregate of particles, and ea is the porosity inside aggregate defined by the ratio 
Fgp/Fa. The term equivalent diameter of the aggregate of particles dz stands for the 
diameter of such a sphere which is of equal volume F a as a certain aggregate of particles. 
Since in a certain moment it is not possible to determine the ratio of the number of 
separate particles to the number of aggregates, we shall assume that the bed consists 
only of effective particles with effective diameter dze defined by 

1 
dze = (2) 

2>i/<i 
г = 1 

6 4 4 
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Evidently dze changes with time as a quasi-stationary stochastic process. 
The value of porosity, £a» inside an aggregate changes from ea = 0 when the aggre

gate consists only of one particle up to ca = 0.42 which corresponds to the porosity 
at incipient fluidization of spherical particles approximating an orthorhombic arrange
ment [4]. 

The definition of effective diameter according to equation (2) leads to an idea of a bed 
with particles of different density, which has not been explained mathematically so 
far. The calculation density of the aggregate with a certain effective diameter appeared 
to be a problem. For further considerations we, therefore, introduced the concept of 
the so-called modified diameter of effective particles r/*. This is the diameter of a spherical 
particle of density gv identical with the density of the particles forming a bed at which 
the bed consisting of these imaginary particles would show for w > v:\ equal pulsation 
and average value of the height of dense suspension as the real bed for which d*z is defined 
under otherwise identical conditions. 

If dze changes with time as a stationary stochastic process, then also d*7 changes in 
this manner because both are conditioned by the change in the height of dense suspension 
which is a quasi-stationary stochastic process. With respect to the limited magnitude 
of disturbance forces under otherwise constant conditions [3] an upper limit of the 
quantity d\ exists, which will be denoted as (fl*)lnar 

On the basis of the elimination method according to Beňa [5] we assume that in systems 
fluidized by gas (fi*)inax is a function of the characteristic length dimension of particles 
de (which are assumed to be of equal size), the height of compact bed of particles L0i 

compressibility of gas /?, the effective weight of unit volume of the particle g(gi} — og), 
the density og and dynamic viscosity of gas ju, the incipient fluidizing velocity Wi, the 
superficial gas velocity w, the diameter of equipment D, and the construction of grid 
expressed by means of the parameter K. We shall assume that this parameter is dimension-
less and its value will not depend on w. Dimensional analysis of the set of quantities 

{ ( ' O m a x ' rfe, L0, ß, g(gp - Qr), Q8, ц, wÍ9 ir, D, К) (3) 

led to the following equation among dimensionless products: 

z/max = f i ( i ř e i í j ^ ^ Я09 , . _ ! , x ) , (4) 

where 

ß H 
*ß = (о) 

QzD 

The equation (4) may be simplified on the basis of the following considerations and 
assumptions. 

1. I t is known that Bei is an unambiguous function of Ar. 
2. For Djdc > 10, the effect of the walls of equipment on hydrodynamic regime is 

in uniformly fluidized beds negligible. For the nonuniformly fluidized beds we shall 
assume that the effect of D/de (in our experiments D/de > 248.9) is also negligible and 
the effect of walls represents the simplex L0/D. 

3. For measurements in the same system, i.e. for D = const, p = const (where p 
is the pressure in system), t = const and thus gg = const, ц = const it holds np = const 
even for the criterion defined by equation (-5). 

Chem. zresü 27 (5) (343-653 (1973) ß ^ 5 



O. MIKULA, I. HAVALDA 

4. We proved [3] t h a t in t h e range of t h e d a t a worked u p by us it is valid Lmin/L0 Ф 

Ф f(L0) a n d LmSLX/L0 4= f(L 0 ), i.e. for D = const it m a y be assumed t h a t t h e simplex 

LJD in equat ion (4) will n o t influence t h e value ( t Q i n a x . 

5. T h e value К is considered to be c o n s t a n t in m e a s u r e m e n t s in t h e same system. 

Therefore t h e e q u a t i o n (4) m a y be t rans formed t o t h e form 

Ютах = L { R e i , B e h (6) 

F u r t h e r m o r e , we assume t h a t in t h e interval Bei < Be < Bec,mm (i.e. in t h e first and 

second expansion region) t h e effective particles are a t t h e m o m e n t w h e n t h e relat ive 

height of bed a t t a i n s t h e value Lmin/L0 fluidized equal ly as a t incipient fluidization while 

t h e modified d i a m e t e r d*z reaches t h e i n s t a n t a n e o u s m a x i m u m value (d*z)nmx • T h e observed 

m o d e r a t e increase in t h e height of LmuJL0 w i th respect t o LilL0 (Fig. 2 in p a p e r [2]) 

in t h e interval Bei < Be < BeCtmii) m u s t be explained b y t h e i rregular i ty of t h e shape 

of aggregates. 

Assuming t h a t t h e value of Archimedes n u m b e r (Аг*г)тях 

( ^ ) m a x = Ю т а х (?) 
2 

satisfies t h e inequal i ty (Ar*z)m&x < 105 (what in t h e range of t h e d a t a of our exper iments 

m a y be expected because of Ár e <197; 8955>), t he equa t ion derived by Bena et al. 

[6 — 8] which is valid for part icles of var ious shape 

Be{ = 0.00138 Лг°-8оо (if 200 < Ar < 105) (g) 

m a y be applied t o t h e calculat ion of B i in t h e case of a bed containing effective particles 

wi th a modified m a x i m u m d i a m e t e r ( d * ) m a x . T h u s it m a y be wr i t ten 

(Ле,"Д 1 т х = 0.00138 (Ári)™»?, (9) 
where 

(ДО««- ( 8 ^ ) т « е " K)m a x. но) 

B y insert ing from equat ions (7) a n d (10) in (9) a n d rearranging we obta in 

[ B "1 0-5»0 

K z ) m a x (U) 

0.00138 A J where 

|"ff(gp - gg)gel 0 - 8 

(12] 

B = —. (13) 

F o r indiv idual series of m e a s u r e m e n t s [3] with t h e samples of particles B^ B2, B3. 

a n d 3^ (Table 1, p a p e r [2]) t h e values ( ( / * ) ш х were calculated according t o equat ion (11) 

using t h e values (wlz)maK t a k e n from t h e interval <t#i; irc»miii>. F u r t h e r e laborat ion 
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Fig. 1. Graphical representation of the 

function 
de m 

О sample of particles Вг; • sample of 
particles B2; • sample of particles B3; 

D sample of particles BA. 
graphical representation of the 
empirical equation (14). 

of the calculated values (d*)m a x has shown (Fig. 1) that the empirical equation of the 
form 

(O: = 1.000 
Re \ 0 - 5 9 0 

\ Rev j 
(14) 

complies with the functional relation (6). If we substitute for Bei in (14) from (8) we 
obtain 

(On 48.69 
/ Re \o-í 

I ^4r0.890 / 
(15) 

The basic ideas of the three-flow model may be formulated as follows. 
1. A nonuniformly fluidized bed in the system gas — particles consists of two regions, 

i.e. a dense suspension and gas bubbles. 
In a dense suspension the separate particles and the aggregates of particles occur. 

For the probability mean quantities characterizing the hydrodynamic behaviour of 
nonuniformly fluidized beds (systems gas at low pressures —particles) the characteristic 
length dimension (cř*)8 (so-called modified mean diameter of effective particles) is determin
ing. I t shows the character of effective diameter and is defined by equation 

К 
(<Отах + Me 

1 + A 
(16) 

where Л is a parameter which has not been determined yet. All bubbles are of equal 
volume Vb (cm3), defined [9] by equation 

„ = 0.806 (®±\ 
3/5 

F b = (17) 

(where [Qb] = cm3/s, [g] = cm/s2) and an equal rising velocity iin [cm/s] defined [10, 11] 
by equation 
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«b = 0.792 0°-° Г,1/ (18) 

(where [I 'D] = cm 3 ; [g] = cm/s2). 
2. For a certain system one value (d*)m a x or (c/*)s is attached to each value Re > Rei. 

With increasing Re, the value (fř*)inax increases according to equations (14) or (15) whereas 
the value (r/*)s increases according to equation (16). 

3. The cross section of bed S may be divided in the cross section Sd through which 
the gas enters the dense suspension and the cross section SB through which the gas 
flows in the form of bubbles. I t holds 

£ = £d + £ E . (10) 

4. The total flow-rate of gas Q branches in three flows at the inlet into bed. In the 
first flow the amount ($*z)a enters the bed through the cross section Sa and fluidizes 
the particles of diameter (dz)a equally as at incipient fluidization. The porosity of the 
bed containing these particles (diameter (d*z)s) is, in general, different from that of the 
whole bed at incipient fluidization. In the second flow the amount (Q')a enters the bed 
through the cross section Sd and goes through the aggregates of particles. In the third 
flow the amount (Qt>)a enters the bed through the cross section SB and is the source of 
bubble formation. The material balance of gas may then be expressed by equation 

Q= (<?ta)a + <<?')* + №b)a. (20) 

The disadvantage of this model consists in the fact that it is not possible to perform 
a direct experimental verification of the applicability of equations (16) and (20). 

On the basis of the above model the mean height L& may be expressed a.« follows. 
The flow-rates in the equation (20) express according to th^ir definition the following 

relations: 

Q = wS, (21) 

(QlX = ť"'iz)s Sd = Kz)s (« S), (22) 

(Qb)a = ubSn = uh[(l - x)S], (23) 

where (u\z)s is the incipient fluidizing velocity of the bed corresponding to the particles 
of diameter (<7*)s and 

Sd 

oc = < 1. (24) 
S 

The equality in the relationship (24) is valid only for the incipient fluidization. 
The flow-rate of gas (Q')a which goes through the aggregates of particles may be 

assumed to equal the difference of the flow-rate which belongs to the particles of dia
meter (f/*)s at incipient fluidization for the cross section of column S and the flow-rate 
(Gte)a. Thus it holds 

(Q')a = K ) s S - (wl)s (oc S) = (tii,), [(1 - ос) S]. (25) 

The quantity oc may be expressed independently on the basis of the following consi
deration. Let the fluidized bed be of the height -La at a certain value w > гсц then the 
volume of dense suspension Vd will be 

Vd = SdLa. (26) 
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At incipient fluidization t h e volume of dense suspension T7di is identical wi th t h e t o t a l 
vo lume of bed ľ j . 

r d i = Vi = U S = 1.724 L 0 S , (27) 

provided t h a t t h e particles are spherical and FÍ = 0.420. I f we neglect t h e change in 
t h e porosi ty at incipient fluidization a m o n g t h e aggregates of particles, t h e following 
equat ion will be valid because of t h e change in their shape 

Va = VAl (28) 

from which after inserting from equat ions (26) a n d (27) a n d respecting equat ion (24) 
we obtain 

a = 1.724 — . (29) 
Ld 

T h e velocity of gas ic-ц in di lute suspension referred t o t h e cross section SB is identical 

wi th t h e rising velocity of one bubble иъ. If we s u b s t i t u t e in equat ion (18) for Fb from 

equat ion (17) a n d ((?ь)а = <?ь express by m e a n s of equat ions (20), (21), (22), a n d (25) 

we get after r e a r r a n g e m e n t 

нь = 11.45 D*r*\w - К Д ] 1 ' 5 , (30) 

(where [w] = [>* z ] s = [uh] = cm/s, [D] = cm). 
After subs t i tu t ing t h e accelerat ion d u e to g rav i ty g a n d rearranging in an equat ion 

wi thout dimensional c o n s t a n t equat ions (21), (22), (23), (26), (29), a n d (30) give for 

LiX _ 1.724(</£>)2/5 

L0 (дПу-го- 1 . 3 7 3 0 - {w*M*i 

The value (ir*z)s m a y be calculated from e q u a t i o n (8) if we p u t d 

T h u s we obta in 

* , г,,, /0 .00138 A \ 

where A a n d В are defined by equat ions (12) a n d (13). W e failed t o p u t forward a complete 

concept of t h e qual i ty ). in e q u a t i o n (16). F u r t h e r we shall assume a symmetr ica l distri

but ion of particles according t o size; hence ). = 1. 

B y s u b s t i t u t i n g for (f/*)sfrom (16) in (32) a n d regarding (15) we obta in after rearrang

ing for Л = 1 t h e following equat ion w i t h o u t a n y dimensional c o n s t a n t 

(w\r\ = 0.00138 .4r0-8 9 0 | — ^ - - | j 0.5 1 + 48.69 | — | ' \\ (33) 

\deQJ\ I \А,*-™) J j 
F o r Be = Ra, i.e. (r/*)s = de t h e expression in braces of t h e e q u a t i o n (33) equals one 

a n d it holds (м'Г2)8 = u'i. 

Figs. 2 — 5 present some d a t a on relat ive expansion L&/L0 = {(Re) (full lines) which 

have been calculated on t h e a s sumpt ion t h a t Я = 1 according t o equat ions (31) and 

(33) for a series of m e a s u r e m e n t s wi th t h e samples of part icles Bx, B2, S 3 , a n d BA fluidized 

b y air [2]. I t is obvious t h a t t h e agreement between t h e values of relat ive expans ion 

(31) 

- (fZ*)s a n d ?n = (wa
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Fig. 3. Confrontation of the relative 
expansions LA/L0 calculated from equa
tion (31) with experimental values 
and with relative expansions L/L0 accord
ing to Pyle and Harrison [1] — — 
for a sample of particles B2 (Ar = 350) 

fluidized by air. 
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values. 
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Fig. 4. Confrontation of the relative 
expansions La/L0 calculated from equa
tion (31) with experimental values 
and with relative expansion L/L0 accord
ing to Pyle and Harrison [1] — — — 
for a sample of particles B3 (Ar = 908) 

fluidized by air. 
A incipient fluidization; с experimental 

values. 

Fig. 5. Confrontation of the relative 
expansions La/LQ calculated from equa
tion (31) with experimental values 
and with relative expansion L/L0 accord
ing to Pyle and Harrison [1] — — — 
for a sample of particles BA (Ar = 8955) 

fluidized by air. 
A incipient fluidization: experimental 

values. 
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La/L0 calculated according t o equat ions (31) a n d (33) a n d the e x p e r i m e n t a l values is 

relat ively good. T h e m a x i m u m percentua l deviat ion of t h e values La/L0 according t o 

e q u a t i o n (31) w i t h respect to t h e smoothed e x p e r i m e n t a l d a t a is 14%. 

I t is ev ident from t h e course of theoret ical curves a n d t h e set of exper imenta l points 

t h a t t h e q u a n t i t y A is a t least a function of t h e gas velocity a n d t h e size of particles 

while t h e effect of part ic le size is more m a r k e d (it de termines t h e sys temat ic deviat ion) . 

F o r sufficient u n d e r s t a n d i n g of A further e x p e r i m e n t a l d a t a are necessary. I t m a y be 

supposed t h a t Я is a function of t h e convenient ly defined F r o u d e n u m b e r which characte

rizes in a sense t h e degree of inhomogenei ty of fluidized bed. 

F o r comparison, Figs. 2 — 5 also show (dashed lines) t h e equat ions of relat ive expans ion 

L/L0 = f(Be) where t h e value L was calculated from t h e following e q u a t i o n derived b y 

Pyle a n d Harrison [1] according t o two-phase model of t h e nonuni formly fluidized bed 

- a - = 1 (34) 
L K(v: — vi) — г< bi 

T h e agreement between t h e exper imenta l values of re lat ive expansion a n d t h e values 

calculated according t o e q u a t i o n (31) is in t h e whole range of Re a n d for all samples 

of particles invest igated m u c h b e t t e r t h a n it is in t h e case of t h e values calculated accord

ing t o equat ion (34) derived by Pyle a n d Harrison. 

I n conclusion it m u s t be pointed o u t t h a t equat ions (31) a n d (33) were verified only 

for Ar 6 <197; 8955) if air a t a tmospher ic pressure was used as a fluidizing gas. 

F u r t h e r m o r e it would be convenient t o examine t h e effect of different compressibi l i ty ß, 

of q u a n t i t y L0/D, and of different kinds of grids. 

Symbols 

Ar = g d3 (gv — gg) gg /и~2 — Archimedes n u m b e r 

(Ar*z)miLX Archimedes n u m b e r defined by t h e re lat ionship (7) 

dc character is t ic length dimension of part ic le 

dze effective d i a m e t e r of effective part ic les defined by t h e re lat ionship (2) 

dz modified d i a m e t e r of effective part ic les 

( d z ) m a x m a x i m u m modified d i a m e t e r of effective part icles 

(dz)H character i s t ic length dimension defined b y e q u a t i o n (10) 

D inner d i a m e t e r of co lumn 

д acceleration d u e t o g rav i ty 

К p a r a m e t e r character iz ing t h e grid or dimension less coefficient in equat ion 

(34) 

L fluidized bed height 

Xmax, Lmin m a x i m u m a n d m i n i m u m height of t h e nonuni formly fluidized bed a t t h e 

t i m e of observat ion u n d e r c o n s t a n t condit ions 

Lxi = Amin D2 Qp — height of c o m p a c t bed of part ic les 

Li bed height a t incipient fluidization 

Дч = '-— — average height of fluidized bed 
о 

m mass of t h e sample of part icles 

n a n u m b e r of part icles in a n aggregate 

Be = w de Qg fi~l —- Reynolds n u m b e r 

i?ee.maX Reynolds n u m b e r character iz ing t h e break of t h e curve log (Lm?.xlL0) = 

= f(log Be) 
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•Rec,min Reynolds n u m b e r character izing the break of t he curve log (LminíL0) = 
= f(log Re) 

Re-y = Wide Q g ju'1 - - Reynolds n u m b e r a t incipient fluidization 

(i,,cL)max Reynolds n u m b e r defined by relat ionship (W) 

S cross section of column 
An p a r t of t he cross section of column S t h rough which gas enters the d i lu te 

suspension 
*Sd p a r t of the cross section of column S t h rough which gas enters the dense 

suspension 
Q to ta l flow-rate of gas th rough the bed 
Qb flow-rate of gas in t h e bubble phase th rough the bed 

(Q')a average flow-rate of gas passing th rough aggregates of part icles 

(Qb)a average flow-rate of gas effected by bubbles 

(*?iz)a average flow-rat e of gas a t t ached to t h e part icles of (d*z)3 d iameter a t 
incipient fluidization 
rising velocity of a separa te bubble in t he vicinity of t he incipient fluidiza
t ion 

пь rising velocity of bubbles t h r o u g h bed 

Vb bubb le volume 

Fp part ic le vo lume 

Fца volume of gas in a n aggregate of part icles 

l\i vo lume of dense suspension a t w > w\ 

Y\ vo lume of bed a t incipient fluidization 

F a vo lume of a n aggregate of part icles 

superficial gas velocity 

?/'i incipient fluidizing velocity 

(?rL)inax incipient fluidizing veloci ty a t t a c h e d t o t h e effective part icles of ( ^ ) m a x 

diameter 

(u'jZ)s incipient fluidizing velocity a t t a c h e d t o t h e effective part icles of (c?*)s d ia

m e t e r 

y. p a r a m e t e r defined b y re lat ionship (24) 

ß compressibil i ty of gas 
f porosi ty of fluidized bed 

porosi ty of bed a t incipient fluidization 
pa porosi ty inside an aggregate of part icles 
A undefined pa rame te r in equa t ion (16) 

dynamic viscosity of gas 
л,з dimensionless complex defined b y re lat ionship (5) 

densi ty of gas 

densi ty of part icles 

References 

1. Pyle , D. L. a n d Harr i son, D., Chem. Eng. Sei. 22, 1199 (1967). 

2. Mikula. O., Beňa, J . , a n d H a v a l d a , L, Chem. Zvesti 27, 634 (1973). 
3. Mikula. O., Beňa, J . , a n d H a v a l d a , L, Collect. Czech. Chem. Commun. 37, 2343 (1972). 
4. O u t o n . L. C. a n d Fräser , H . J . , J. Geol. (Chicago) 43, 785 (1935). 
o. Beňa, J . , Chem. Zvesti 10, 571 (1956). 
6. Beňa, J . , Habilitation Thesis. Slovak Technical Univers i ty , Brat i s lava, 1959. 

g K O Chem. zvesti 27 (5) 643-053 (1973)' 



THREE-FLOW MODEL OF XO>4XIFORMLY FLFIDTZED BEDS 

7. Beňa, J., Ilavský, J., and Kossaczký, E., Chem. Prüm. 10, 35, 285 (1960). 
8. Beňa, J., Ilavský, J., Kossaczký, E., and Valtýni, J., Proceedings of the Conference 

on Fluidization Technique, p. 56. Prague, 1961. 
9. Rajinder, K. and Rao, K. N., Chem. Tech. (Berlin) 19, 733 (1967). 

10. Toei, R., Matsimo, R., Kojima, H., Nagai, Y., and Nakagawa, K. Yu. S., Memoirs 
of the Faculty of Engineering, Kyoto University, p. 475. Kyoto, 1965. 

11. Toei, R., Matsimo, R., and Nagai, Y., Memoirs of the Faculty of Engineering. Kyoto 
Unicersity, p. 428. Kyoto, 1966. 

Ti';msl,it(4l by R. Domanský 

Chem. zvesti 27 (5) 643-653 (1973) 653 


