Untersuchungen zum Phasengleichgewicht fest—flüssig in binären Mischungen aus Erdalkalimetall- und Alkalimetallbromiden*

H.-H. EMONS, G. BRÄUTIGAM und W. HORLBECK

Sektion Chemie, Anorganisch-Technische Chemie der Technischen Hochschule "Carl Schorlemmer", 42 Merseburg, DDR

Eingegangen am 9. März 1976

Durch thermische Analyse wurden von den binären Systemen Erdalkalimetallbromid—Alkalimetallbromid folgende Phasendiagramme fest—flüssig überprüft: CaBr₂—LiBr, CaBr₂—NaBr, CaBr₂—KBr, SrBr₂—NaBr, BaBr₂—NaBr, für die in der Literatur zum Teil erhebliche Unterschiede vorliegen.

Die Phasendiagramme $CaBr_2$ —RbBr (2 E, 1 D), $CaBr_2$ —CsBr (2 E, 1 D), MgBr_2—RbBr (3 E, 2 D) und MgBr_2—CsBr (4 E, 3 D) wurden erstmals ermittelt (E = Eutektikum, D = Dystektikum).

Using the method of thermal analysis the following binary systems of the type "solidus—liquidus" formed by alkali earth and alkali metal bromides have been verified: CaBr₂—LiBr, CaBr₂—NaBr, CaBr₂—KBr, SrBr₂—NaBr, BaBr₂—NaBr. Concerning these systems there are partly considerable differences in the literature.

The phase diagrams of the systems $CaBr_2$ —RbBr (2 E, 1 D), $CaBr_2$ —CsBr (2 E, 1 D), $MgBr_2$ —RbBr (3 E, 2 D), and $MgBr_2$ —CsBr (4 E, 3 D) have been established first (E = eutectic, D = dystectic).

Методом термического анализа были проверены фазовые диаграммы типа «твердое вещество—жидкость» следующих бинарных систем: CaBr₂—LiBr, CaBr₂—NaBr, CaBr₂—KBr, SrBr₂—NaBr, BaBr₂—NaBr. Литературные данные, относящиеся к этим системам, значительно отличаются.

Впервые были исследованы фазовые диаграммы систем CaBr₂—RbBr (2 E, 1 D), CaBr₂—CsBr (2 E, 1 D), MgBr₂—RbBr (3 E, 2 D) и MgBr₂—CsBr (4 E, 3 D) (E = эвтектика, Π = дистектика).

Aus Phasendiagrammen können grundsätzliche Aussagen über Zusammenhänge zwischen dem festen und flüssigen Aggregatzustand, die Zahl der koexistierenden Phasen, den Temperaturbereich des flüssigen Zustandes und die in den Systemen auftretenden Wechselwirkungen getroffen werden. Weiterhin ist es möglich, aus den Phasendiagrammen eine Reihe wichtiger thermodynamischer Daten zu berechnen.

^{*} Vorgetragen an der I. Konferenz der Sozialistischen Länder über die Chemie und Elektrochemie geschmolzener Salze, Smolenice, November 24-26, 1975.

	Be	Mg	Ca	Sr	Ba
Li	_	[1]	[1, 2, 9]	[1, 6]	[1, 6, 9]
Na	—	[1]	[1-3, 5]	[1, 6]	[1, 4, 6]
К		[1]	[13]	[1, 6, 7]	[1, 4, 6, 8]
Rb			partiell [10]	[6]	[6]
Cs	—		partiell [11]	[6]	[6]

 Tabelle 1

 Bisher untersuchte Systeme Erdalkalimetallbromid—Alkalimetallbromid

Aus der Literatur sind die in Tabelle 1 aufgeführten Schmelzdiagramme der Systeme Erdalkalimetallbromid—Alkalimetallbromid bekannt.

Da zwischen den Literaturwerten größere Unterschiede vorhanden sind bzw. einzelne Systeme nur teilweise untersucht wurden [10, 11], wurden die Schmelzdiagramme der Systeme CaBr₂—(Li, Na, K)Br, SrBr₂—NaBr und BaBr₂—NaBr überprüft sowie die Systeme CaBr₂—(Rb, Cs)Br und MgBr₂—(Rb, Cs)Br erstmals vollständig bestimmt.

Experimenteller Teil

Der Aufbau der Meßapparatur und die Versuchsdurchführung sind ausführlich in [12, 13] beschrieben.

Die Messungen wurden unter Schutzgas (Argon) durchgeführt. Die Schmelze (ca. 10 g) befand sich in einem Platintiegel. Zur Temperaturmessung dienten zwei in Reihe geschaltete PtRh10—Pt Thermoelemente, die direkt in die Schmelze eintauchten. Die Registrierung der Thermospannung erfolgte durch einen Kompensationsschreiber mit einem Bereich von 1 mV (VEB Meßgerätewerk "Erich Weinert", Magdeburg) bzw. mit einem Digitalvoltmeter, gekoppelt mit einem Drucker vom Typ 4027 (VEB Funkwerk, Erfurt).

Durch Aufnahme einer Eichkurve von Substanzen mit definierten Schmelzpunkten im Temperaturbereich von 350 bis 900°C konnten die tabellierten Thermospannungen der PtRh10—Pt Thermopaare bestätigt werden.

Die Abkühlungsgeschwindigkeiten lagen durchschnittlich bei 4 bis 5 K/min.

Die verwendeten Ausgangssubstanzen wurden wie folgt behandelt:

- Alkalimetallbromide p. a.: stufenweises Erhitzen (ca. 14 Tage) auf 150°C, mehrstündiges Erhitzen unmittelbar vor der Messung bei 350°C.

— Erdalkalimetallbromide p. a.: langsames Erhitzen der Hydrate im Vakuumtrockenschrank auf 180°C (3 Wochen) bei Anwesenheit von P_4O_{10} . Anschließend erfolgte die Entfernung des Restwassers bei 450°C unter HBr-Atmosphäre. Die analytische Bestimmung ergab Reinheitsgrade von durchschnittlich 99,8% MBr₃.

Bei Berücksichtigung aller Fehlerquellen (Temperaturregistrierung, Analytik) ergibt sich bei der Temperaturmessung ein Fehler von ± 1 K. Die Reproduzierbarkeit bei durchschnittlich 6 Parallelmessungen beträgt 99,9%.

Ergebnisse und Diskussion

Die ermittelten Meßwerte der Systeme $CaBr_2$ —(Li, Na, K)Br und NaBr—(SrBr₂, BaBr₂) sind in den Tabellen 2—6 aufgeführt. Tabelle 7 zeigt den

Mol% CaBr.	Kristallisationst	temperatur, °C
	primär	eutektisch
0	550	_
10	548	_
20	544	—
30		538
34	-	536
40	—	539
42,5	-	543
50	553	541
60	577	536
70	608	536
80	668	
90	700	_
100	740	

Thermische Analyse des Systems CaBr2-LiBr

Tabelle 3

Thermische Analyse des Systems CaBr₂-NaBr

Mol% CaBr ₂	Kristallisationst primär	emperatur, °C eutektisch
0	747	
5	730	_
15	695	_
30	643	525
40	598	526
45	558	526
50	544	526
55	550	526
60	—	526
70	620	526
85	680	
100	758	_

Mol% CaBr ₂	Kristallisations primär	stemperatur, °C eutektisch
0	730	
10.	682	524
20	617	524
28	_	525
30		525
35	572	525
40	610	525
50	634	
60	612	564
67,5	_	574
81	654	576
94	710	574
100	740	

Thermische Analyse des Systems CaBr,---KBr

Tabelle 5

Thermische Analyse des Systems SrBr2-NaBr

Mol% SrBr ₂	Kri primär	istallisationstemperatur, (U)	°C eutektisch
0	747		_
5	728		_
15	692		_
30	628		486
40	579		487
55	500		486
60	_		484
70	528		486
85	600		—
90	618		
97	642	(638)	
98	648	(643)	
99	653	(643)	
100	657	(643)	_

(U = Umwandlungspunkt.)

Vergleich unserer Ergebnisse mit Literaturdaten für ausgewählte Zusammensetzungen. Für das System CaBr₂—KBr ergibt sich eine gute Übereinstimmung mit den Ergebnissen von [9], während im System CaBr₂—NaBr bei Übereinstimmung

Mol% BaBr ₂	Kristallisationstemperatur, primär	°C eutektisch	
0	747		
5	725		
15	685		
35	613	603	
40		599	
45	630	605	
55	667	605	
65	722	605	
80	780		
100	857		

Tabelle 6

Thermische Analyse des Systems BaBr₂-NaBr

der eutektischen Zusammensetzung größere Differenzen in den Temperaturen [1] auftreten.

Im System $CaBr_2$ —KBr konnten die Angaben für das Dystektikum von [1, 2] bestätigt werden, während sich bei den eutektischen Temperaturen größere Abweichungen ergaben. Für die Systeme NaBr—(SrBr₂, BaBr₂) zeigte sich eine relativ gute Übereinstimmung mit den Angaben von [1, 6]. Der von *Dworkin* [14] angegebene Umwandlungspunkt des SrBr₂ wurde bei 643°C gefunden und konnte

Abb. 1. Schmelzdiagramm des Systems CaBr₂—RbBr.

Abb. 2. Schmelzdiagramm des Systems CaBr₂—CsBr.

System	Mol% MBr ₂	Temperatur °C	Literatur
CaBr ₂ —LiBr			
E	36	538	eigene Werte
	38	540	[9]
	42,5	563	[1]
CaBr ₂ —NaBr			
E	60	526	eigene Werte
	60	514	[1]
CaBr ₂ —KBr			
E,	33	525	eigene Werte
Praise	35	544	[1]
E ₂	67	574	eigene Werte
	67,5	563	[1]
D	50	636	eigene Werte
	50	637	[1]
SrBr ₂ —NaBr			
Е	60	484	eigene Werte
	60	486	[1]
	58	476	[6]
BaBr ₂ —NaBr			
Е	40	599	eigene Werte
	40	600	[1]

Vergleich der erhaltenen Ergebnisse mit Literaturdaten (E = Eutektikum, D = Dystektikum, P = Peritektikum)

in den Mischungen bis zu einer Konzentration von 97% $SrBr_2$ nachgewiesen werden.

Die Meßwerte der erstmals vollständig bestimmten Schmelzdiagramme der Systeme CaBr₂—(RbBr, CsBr) und MgBr₂—(RbBr, CsBr) sind in den Tabellen 8—11 enthalten.

Für das System CaBr₂-RbBr (Abb. 1) wurden folgende Fixpunkte erhalten:

E ₁	23 Mol% CaBr ₂	588°C,
E_2	77 Mol% CaBr ₂	626°C,
D	50 Mol% CaBr,	742°C.

Mol% CaBr ₂	Kristallisationstemperatur, primär	°C eutektisch
0	689	
5	678	
10	661	587
15	634	590
20	_	588
30	644	590
35	691	589
40	715	
45	736	
50	742	_
55	737	
60	725	621
65	700	623
70	665	624
80	646	626
85	675	626
90	700	-
95	722	_
100	738	

Thermische Analyse des Systems CaBr2-RbBr

Tabelle 9)
-----------	---

•

, , , , , , , , , , , , , , , , , , , ,			
Mol% CaBr ₂	Kristallisationsto primär	emperatur, °C eutektisch	
0	.636	_	
5	631	_	
10	621	578	
15	607	577	
20	586	(578)	
25	589	(577)	
35	763	577	
40	789	_	
50	827		
55	823	_	
60	812	_	
70	771	651	
80	660	654	
85	664	654	
90	693	657	
95	718		
100	738	_	

Thermische Analyse des Systems CaBr2-CsBr

	Kristallisationstemperatur	°C
Mol% MgBr ₂	primär	eutektisch
0	689	_
10	640	419
13	621	418
21	489	419
26	457	419
29	_	419
31	426	418
34	434	—
37	425	417
38	_	418
41	431	417
47	452	418
50	456	_
58	_	452
60	506	453
68	544	450
81	613	452
91	667	450
100	710	

Tabelle 10 Thermische Analyse des Systems MgBr,—RbBr

Die kürzlich von *Ilyasov* [10] für die alkalimetallbromidreichen Mischungen des Phasendiagramms angegebenen Werte ($E_1 = 18 \text{ Mol}\% \text{ CaBr}_2$, 580°C; $P = 25 \text{ Mol}\% \text{ CaBr}_2$, 595°C) konnten nicht bestätigt werden.

Abb. 3. Schmelzdiagramm des Systems MgBr₂---RbBr.

Abb. 4. Schmelzdiagramm des Systems MgBr₂—CsBr.

Mol% MgBr2	Kristallisationstemperatur, primär	°C eutektisch
0	630	
13	560	486
16	551	484
16,5	547	486
20	510	485
21	_	485
24	490	
26	_	488
30	509	488
33,5	516	_
37	509	_
38		505
41	511	503
44	549	506
50	551	_
52,5	550	516
60	543	516
64,4	531	516
69	_	517
70	527	518
78	585	517
81	607	516
91	666	517
100	710	

Tabelle 11

Incrinische Analyse des Systems MgDis—Cse	Thermische	Analyse	des S	vstems	MgBr ₂ —	CsB
---	------------	---------	-------	--------	---------------------	-----

Im System CaBr₂—CsBr (Abb. 2) wurden folgende Fixpunkte erhalten:

\mathbf{E}_{1}	23	Mol% CaBr ₂	577°C,
E_2	82,5	5 Mol% CaBr ₂	654°C,
D	50	Mol% CaBr,	827°C.

Mit den von *Ilyasov* [11] bestimmten Daten für E_1 (16 Mol% CaBr₂, 578°C) ergibt sich eine gute Übereinstimmung in der eutektischen Temperatur, jedoch eine erhebliche Abweichung in der eutektischen Zusammensetzung.

In Tabelle 12 sind die Schmelztemperaturen ausgewählter Zusammensetzungen der Systeme MgBr₂—(RbBr, CsBr) aufgeführt (Abb. 3 und 4). Die erhaltenen Ergebnisse zeigen, daß mit steigender Differenz der Ionenpotentiale der Erdalkalimetall- bzw. Alkalimetallionen die Wechselwirkungen in der Schmelze und als Resultat der Verlauf der Liquiduskurven komplizierter werden. Während die Liund Na-Systeme vom eutektischen Typ sind, ergeben sich in den K-, Rb- und

System	Mol% MgBr ₂	Temperatur °C	Verbindung
MgBr ₂ —RbBr			
E,	29	419	
E ₂	38	417	
E ₃	58	452	
D	33,3	434	Rb ₂ MgBr ₄
D_2	50	456	RbMgBr ₃
MgBr ₂ CsBr			
E,	21	485	
E ₂	26	488	
E ₃	38	505	
E4	69	517	
D	25	490	Cs ₃ MgBr ₅
D_2	33,3	516	Cs ₂ MgBr ₄
D ₃	50	551	CsMgBr ₃

 Tabelle 12

 Schmelztemperaturen ausgewählter Zusammensetzungen in den Systemen MgBr,—(Rb, Cs)Br

Cs-Systemen auf Grund der Assoziation der Bromidionen an die Erdalkalimetallionen in der Schmelze Verbindungen im festen Zustand. Diese starken spezifischen Wechselwirkungen zwischen den Anionen und Kationen werden durch die negativen Werte der von Østvold [15] bestimmten Mischungsenthalpien bestätigt (Abb. 5).

Abb. 5. Mischungsenthalpien der Systeme MgBr₂—(Li, K, Rb, Cs)Br [15].
1 NaBr—MgBr₂; 2. KBr—MgBr₂;
3. RbBr—MgBr₃; 4. CsBr—MgBr₃.

Literatur

- 1. Kellner, G., Z. Anorg. Allg. Chem. 99, 191 (1917).
- 2. Morgenstern, H., Diplomarbeit. TH Merseburg, 1968.
- 3. Spieß, O., Diplomarbeit. TH Merseburg, 1966.
- 4. Herbst, G., Diplomarbeit. TH Merseburg, 1966.
- 5. Ilyasov, I. I. und Litvinov, Y. G., Ukr. Khim. Zh. 41, 658 (1975).
- 6. Riccardi, R., Sinistri, C., Campari, G. V. und Magistris, A., Z. Naturforsch, 25A, 5 (1970).
- 7. Prokhorov, V N., Krivousova, I. V., Kozhina, Y. Y. und Efinov, A. Y., Vestn. Leningrad. Univ. 4, 89 (1974).
- 8. Bloom, H., Knaggs, I. W., Molloy, J. J. und Welch D., Trans. Faraday Soc. 40, 1458 (1953).
- 9. Ilyasov, I. I., Iskandarov, K. I., Davranov, M. und Rodinov, A. I., Ukr. Khim. Zh. 41, 435 (1975).
- 10. Ilyasov, I. I., Davranov, M. und Grudyanov, I. I., Zh. Neorg. Khim. 20, 232 (1975).
- 11. Ilyasov, I. I., Iskandarov, K. I., Davranov, M. und Berdieva, R. N., Zh. Neorg. Khim. 20, 250 (1975).
- 12. Porada, H. J., Diplomarbeit. TH Merseburg, 1974.
- 13. Schröter, I., Diplomarbeit. TH Merseburg, 1975.
- 14. Dworkin, A. S. und Bredig, M. A., J. Phys. Chem. 67, 697 (1963).
- 15. Østvold, T., Dr. Dissertation. Trondheim, 1971.