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The general procedure of calculation of mixing parameters ASY, and AGF,,
in binary systems the components of which do not form compounds is
presented. The excess functions can be calculated in this way assuming that the
phase diagram of the system in question is known and that the corresponding
enthalpies of mixing and of phase transitions are known in the chosen

temperature range as well.

B paGore naH o6wmit xon BblyucieHns QyHkuui cMewmBanus ASE, u AGE
B OMHApHBIX CHCTEMAaxX KOMIIOHEHTbI KOTOPBIX He 0Opa3yloT COEUHEHHs.
M36b1TOYHbIE (DYHKLIMU MOXKHO PACCYMTATh ITUM CIOCOOOM TOJILKO B Cllydae
M3BECTHOM (Da30BOM [MarpaMMbl JAaHHOH CUCTEMBI U U3BECTHBIX COOTBETCTBY-
IOLMX TEMUIOT CMELIEHUs M TEmNOT (ha30BbIX MPEBPALUCHUI B M3GPAHHOM

TEMIEPaTypHOM MHTEpBAJIe.

On the basis of thermodynamic excess functions AHL,., ASt (and therefore
also AGy,.) of a binary system and from their isobaric temperature functions the
values of some energetic and structural properties of the system can be calculated
[1, 2] and compared with those of model solutions [3].

Knowing the isobaric temperature functions of heats of mixing and isobaric

phase diagram of the studied system the thermodynamic molar excess functions can
be calculated as follows.

1. Calculation of excess entropy of a binary solution which coexists with crystals
of component A or B. It is assumed that the concentration of the second
component in the crystals is very low and that the components do not form
compounds.
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I. PROKS

Let us have two phases a and 8 which coexist in equilibrium. The components A
and B are present in both phases. Then it holds

MAJr(x’ Tcu(x’ y)) :u'A-ﬂ(y’ ch(x’ )’)) (1)
and

UB.« (x’ Tc&((xv y)) = MBJ’ (yv ch(x, y)) (2)

x and y are equilibrium mole fractions of component B in the phase a and f3,
respectively, and T.(x, y) is the temperature at which both phases are in
equilibrium (Fig. 1). The phase « is a solution for which in the concentration range
0—x.. and at coexistence of both phases x=y and in the concentration range
Xe.u—1 y Zx (x.. being the mole fraction of component B in the eutectic solution).

If the concentration y of component B in the phase (3 is very low, the equilibrium
between the almost pure crystal of the component A and the solution may be
approximately described by the relation (for x =x...)

taa(X, Teg(x, 0)) = a5 (0, Teg(x, 0)) (3)
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x(y) ) Fig. 1. Phase diagram of a binary system A —B.

This relation can be used for calculation of excess entropy of a solution at the
temperature T.,, (the temperature for which the experimental data are known).
From eqn (3) it follows
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Ha o (x, Tog(x, 0)) = Teg(x, 0) Sa o (x, Teo(x, 0)) =

=H, (0, Teq(x, 0)) — Teo(x, 0) Sa (0, Teg(x, 0)) (4)
or '
$uao o, O = Panles Tl Q)= Hea O Tolr O,
+S45(0, Tey(x, 0)) (5)

The value of the partial molar entropy of component A in the solution at the
temperature T.,, equals

HA.a (xa ch(x7 O)) — HA,(i (0’ Teq(xs 0))
i T.(x,0)

Ttxp =
+J‘ CA,rx(x’ T) dT (6)

Teq(x, 0) T

S-A \a (x > Tcxp) =

+Sa5(0, Toy(x, 0)) +

and thus for the partial molar entropy of mixing it follows

AS_mix.A.n(-x9 Tcxp) = SA.a (x’ Tcxp) - SA a (Oa Texp) =
— HA,H (x, Teq(x’ 0)) = HA-ﬁ (O’ Teq(x’ 0))

+845(0, Teo(x, 0)) +

T.(x,0)
Top T T, (0. 0)
+j CA~G(X’T‘) dT_I:SAB(O’ ch(x’ O))+J’ CAﬁ(O’ T) dT+
Teq(x. 0) T Teg(x. 0) T
AH[r.A(Teq(Ov O)) Tc‘p CA.(I (09 T) ]
+ + SRacor L)
Teq(09 0) Teq(0.0) T dT ( 7)

The term in brackets equals Sa (0, Teyp). AHua(Te(0, 0)) is the change in
enthalpy at the phase transition of f in a at equilibrium temperature. After
rearranging eqn (7) we obtain (for x =x.,)

. Ha.a(x, Teg(x, 0)) = Hap(0, Tey(x, 0))
Asmix. .a xa Tex = . - +
A ( p) ch(x’ 0)
Texp CA a (x, T) Tey(©-0) CA B (O, T) AH" A (ch (O, 0))
+ e : dT — =—ta e -
.[ch(x.()) T Tey(x.0) T ch(ov O)
Tcxp ~
_J’ CA.a(TE)a T) dT (8)
Teg(0. 0)

The right side of eqn (8) can be expanded by adding zero differences of the
quantities ; then
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Agmix.A «@ (x, Tcxp) =
- I:IA.u (x7 ch(xa 0)) - HA.B(()v ch(x1 O)) + HA.(x (07 ch(x’ 0)) - HA.a (07 Teq(xa 0))
T.(x,0)
+
Tor  Caulx,T) f Tor Cuo(0,T) j Caa(0,7)
+ ———=dT+ —="—=dT - —=——"—=dT
fT.l(x‘()) T Teglx. 0) T Teg(x. 0) T
_J-T (1) 0) CA ”SIE) T) dT+J'T (0 0) CA "(0 T) dT JT (n 0) CAQ(O T)
Teqlx. 0) G(x. 0) Teg(x. 0)
Ale.A (T“,(0,0)) Te CA.u (0’ T)
B e el I 9
Tu0,0)  Jrgow T T ©)
After arithmetic operations we obtain the final relationship
AS o n (s Tong) = AH iono(X, Teg(x, 0)) + AH, 4 (Teox, O))
Te(x,0)
Tesn) ~ . Tml((),(l)
+f Alex.A,u(x, T) dT+f AClr,A (Os T) dT
Teqy(x. 0) T Teg(%::0) T

_ Ale.A(Teq(O’ O))

T.,(0, 0) (10)

In the same way we can calculate the partial molar entropy of mixing of
component B in the range x=x., and at the temperature T..,. (The same
assumption about coexistence of almost pure substance B with melt as in the
former case has to be fulfilled.)

HBu(y Toq(x 1)) HBﬁ(l ch(x 1))

Smix.B,u(x 2 TUXP) Lq(x 1 )
Tor  Caa(x,T) f 0 Cap(LT) g - AHus(Tey(1, D)
+ ~Halis 2 ) 4P dT - k -
J’ch(L 3 T W 1) T ch(lv 1)
- GeeleDar (11)
Teq(1,1) T
or
B AH 5. o(X, Teg(x, 1)) + AH, 5(Teo(x, 1))
ASmix,B.u(x‘ TCXP) - eq(x 1)
" ACapdeT) g, [* ACuLT) iy AHea(Tu(L 1)
+ mix,B,a > dT+ T, 2 dT_ T, eq 2k 12
Jch(x.l) T Teglx. 1) T Teq(l’l) ( )
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At the eutectic temperature both almost pure crystal components A and B
coexist in equilibrium with a eutectic solution and therefore it is possible to
calculate partial molar entropies of mixing  for both components
(AS mixaa(Xew> Texp) and AS i 5.o(Xeu> Texp). The values AS i 5.o(X, Texp) fOr X = Xou
and ASmix,A,“(x,Tcxp) for x=x.. are calculated using relevant integrated
Gibbs—Duhem equations.

For x =x.,

AS‘mix.B.u(xw Tcxp) = A's_mix.B.u(xuu( B Tcxp) -

AS (x, T, )
mix. A exp 1 = =
_ f = AAS i r (X, Tory) (13)

ASmix.Aa(Xeurs Texp) X

and for x = x...
AS_mix.A Ne3 (X, Tcxp) = ASmix.A Jx(xcul £ Tcxp) -

A8 g T ) X ~
B .I. l dASmix.B.ﬂ(x’ TC"I”) ( 14 )
ASminpCreu- Tex) L X

The excess entropy of a solution of components A and B at the temperature T.,,
is given by the relation
Asiix.u(xa Tcxp) = Asmix.u(xv Tcxp) - Asmix(ld),u(x’ Tuxp) =
= (1 - x) AS—mix,A Jl(x7 Tcxp) + XASmix.B.u(x, Tcxp) +
+R[(1—x)In(1—x)+xInx] (15)
2. Approximate calculation of excess entropy at the formation of liquid phase «

in a binary system A—B the components of which in the phase f form solid
solutions with limited solubility but do not form any compounds.

The equilibrium between phases a and f3 is described precisely by eqns (1) and
(2) from which the following relationships can be derived

HA.u (x’ ch(x’ y)) - ch(x»))) SA-« (x» ch(xvy)) = HA-H (O’ ch(x,y)) -
= Te(*,y) Sap(0, Tey(x,¥)) + RTeo(x, y) In a5 (y, Teu(x.y)) (16)

and

HB‘U (x? Tcu(x’)))) - ch(x*Y) Sﬂ-u(-x’ ch(x,y)) = HB-ﬁ(l’ ch(x’y)) -
— Teo(x,¥) So.6(1, Teq(x, ) + RTeq(x. ) In a5.5(y, Tea(¥,y)) (17)
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If the value of y in the phase 3 with prevailing component A (resp. B) is near to
zero (resp. to one) the activity coefficient may be considered in both cases as unit
and the activity of component A (resp. B) in the phase  with prevailing
component A (resp. B) may be replaced by mole fraction of the component. Then

treating eqns (16) and (17) in the same way as described in the previous paragraph
we obtain for x =x.,

AS-mix(ﬁs).A.“ (x, Tcxp) - HA.a (-x, ch(x’y)) - HAVﬁ(O, ch(xs Y)) o

Tey(x,y)
o Caar, T) TS0 Cup(0,T) 7. AHia(Tei(0,0))
* e A= 0. T) s AHua(Te B
J raen T raen T T..(0.0)
Tv:xp
_L . %(TQ:_.T_)dT—R In 2(Tey(x.y)) (18)

where z=1—y. For x Zx..

AS—mix(l}s).B.u(xv Tcxp) : HBJI (x’ ch(x, y)) - HB“S(I’ TCQ(x’ y)) +

Te(x,y)
Too Cgu(x,T) fT“"”*’ GCsp(1,T) AHu5(Te(1,1))
+ —="—=dT - ‘ dr-—= ‘ | B
J;,\.Mx.y) T Tey(x.y) T ch(1, 1)
Lo
‘f Coall.D) 47— R 10 y(Tu(xoy) (19)
JTeaun T

The quantities having the index (fs) denote the system in which a solution with
low solubility of components is formed. Further treatment is similar as in the

paragraph 1. Eqns (18) and (19) can be written in the simplified form; e.g. for
ASmix(ﬁs).Bu(x ) Tcxp)

AS rixpo5.0(X s Texp) = AS i 5.o(%, Texp) = R In y(Teq(%,y)) (20)
3. Calculation of AGE,,.
The values of AGH,, are calculated using the definition equation (T, = const)
AGfy=AHz— Top ASfu= AHui— Texy ASti 210
Eqns (8, 10—12, 15, 18—20) can be derived also from the temperature

dependence of the changes in Gibbs energy, or more efficiently, from the Planck
function @
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al: _ AG—mix.u(xa T)]
[ T } . [aAq_bmix.(x(xa T):| _ AI:Imix‘u(xs T) (22)
aT L aT . T®

and

a[———AG"(T)] 3ln
[aAtp,,(T)] _ T R as | _AHJ(T) (23)
3T | L aT e oT J,, T ;
The second relationship is a special case of the van’t Hoff reaction isobar (the
LeChatelier—Shreder equation). '

4. Measurements of AH,,,.

The excess quantities ASr., and AGy.,, (AHLi.= AH,,,) can be calculated using
eqns (15—21) assuming that the phase diagram of the system, heats of mixing and
heats of phase transitions are known in the studied temperature range.

4.1. For the systems in which mixing of pure components is sufficiently fast
AH,,, can be measured directly at chosen temperature using calorimetry for
mixing.

4.2. Dealing with the systems which do not obey the condition of sufficiently fast
mixing AH,,;, must be determined using the following relation

AHmix.u(xv Tcxp) = Hz (xa Tcxp) - ( 1 - x) HA,u (()a Tcxp) - XHB,u( l s Tcxp) =
= Hrcl.rx(xv Tcxp) - (l - x) Hrul.A.u(Oa Tcxp) - XHrcl,B,(x( I’ Tcxp) (24)

where all quantities H,, are increments in enthalpy measured with respect to the
convenient reference state (which is the same for all phases).

4.2.1. Dealing with the systems in which equilibrium is quickly achieved after
cooling the convenient reference state can be the mechanical mixture of crystals of
pure components at laboratory temperature. This condition is fulfilled e.g. in the
case of some system:s consisting of inorganic salts. The values H,., can be measured
in this case using drop calorimetry.

4.2.2. For the systems in which equilibrium after cooling is not achieved in
reasonable time (e.g. metal alloys, systems known from silicate technology) as
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standard state can be recommended the state of the system in an appropriate
solution or in a mixture of its combustion products at chosen temperature, etc. In
this case the values H,, in eqn (24) must be replaced by the quantities

Hrcl = - (AHCOQI + AHsnl(comh)) (25)

AH.,. is the change in enthalpy measured at cooling the sample in drop calorimeter
and AH omvy 15 heat of dissolution (or combustion) of the sample which was
cooled up to laboratory temperature in the drop calorimeter. In this experimentally
most complicated case heat of mixing can be obtained by the method of “double
calorimetry of the same sample”, i.e. using drop calorimetry and subsequently
determining heat of solution or combustion.
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