Dependence of Slater—Condon parameters on electron configuration. II. Slater—Condon parameters of elements of the first transition series

*P. PELIKÁN, *R. BOČA, *M. LIŠKA, and °L. TURI NAGY

*Department of Physical Chemistry, Slovak Technical University, 880 37 Bratislava

^bDepartment of Inorganic Chemistry, Slovak Technical University, 880 37 Bratislava

^eInstitute of Experimental Pharmacology, Slovak Academy of Sciences, 881 05 Bratislava

Received 27 July 1977

There are proposed approximative relations for the dependence of values of the Slater—Condon parameters $F^{0}(4s,4s)$, $F^{0}(4s,4p)$, $F^{0}(4s,3d)$, $F^{0}(4p,3d)$, $F^{0}(3d,3d)$, $G^{1}(4s,4p)$, $F^{2}(3d,3d)$, $F^{4}(3d,3d)$, $G^{2}(4s,3d)$, $G^{1}(4p,3d)$, $F^{2}(4p,3d)$, and $G^{3}(4p,3d)$ on electron configuration of atoms (ions) of the first transition series. The proposed functions are useful in LCAO MO SCF methods including the dependence of Hartree—Fock matrix on electron configuration of atoms in molecules.

В работе предложены апроксимативные соотношения для зависимостей величин параметров Слейтера—Кондона $F^0(4s, 4s)$, $F^0(4s, 4p)$, $F^0(4s, 3d)$, $F^0(4s, 3d)$, $F^0(4p, 3d)$, $F^0(3d, 3d)$, $G^1(4s, 4p)$, $F^2(3d, 3d)$, $F^4(3d, 3d)$, $G^2(4s, 3d)$, $G^1(4p, 3d)$, $F^2(4p, 3d)$ и $G^3(4p, 3d)$ от электронной конфигурации атомов (ионов) первого переходного периода. Предложенные регрессные функции применимые в ЛКАО МО ССП методах с включением зависимости матрицы Хартри—Фока от электронной конфигурации атомов в молекулах.

The semiempirical methods with an explicit inclusion of electron repulsion were up to this time used for calculation of electron structure only for a small number of coordination compounds. At the present state of parametrization they allow a comparison of some physicochemical properties in series of similar molecules. In contrast to IEHT method they give good results for calculations of equilibrium geometries. In spite of a considerable effort expended in this field (see for example review articles [1-3]), the results have not realized expectation, because they are

Chem. zvesti 32 (5) 592-606 (1978)

SLATER-CONDON PARAMETERS. II

far from the level of the results of analogical methods applied to organic compounds [4]. A great number of semiempirical methods of this kind mutually differ mainly in using different combinations of some fundamental types of the originally proposed approximations to express different integrals [5].

On the basis of the analysis of atomic spectra [6, 7] it was found that all the monocentric integrals needed for the construction of Hartree—Fock matrix are firmly dependent on the charge and electron configuration of the given atom. The first attempts to regard this fact [8] have shown a considerable improvement of results, mainly for polar systems. Because the bonds in coordination compounds are predominantly strongly polar and a great part of these systems is not electroneutral, the consideration of this fact in parametrization is extraordinarily important.

In the present work there is expressed the dependence of Slater—Condon parameters on electron configuration of atoms and ions of the first transition series.

Method and results

If we wish to calculate values of all monocentric integrals of electron repulsion which arise in the basis of s, p, d atomic orbitals, we need to know values of these integrals of the radial part of atomic orbitals [9]: $F^{0}(s,s)$, $F^{0}(s,p)$, $F^{0}(p,p)$, $F^{0}(s,d)$, $F^{0}(p,d)$, $G^{1}(s,p)$, $F^{2}(d,d)$, $F^{2}(p,p)$, $F^{4}(d,d)$, $G^{2}(s,d)$, $G^{1}(p,d)$, $F^{2}(p,d)$, $G^{3}(p,d)$, $R^{1}(s,d,d,d)$, $R^{1}(s,p,p,d)$, $R^{2}(s,p,p,d)$. The last three integrals are not the Slater—Condon parameters and we cannot determine them by analysis of atomic spectra, because they do not occur in expressions for energies of atomic terms. From available experimental data there is not possible to determine the Slater—Condon parameters $F^{0}(4p,p)$ and $F^{2}(4p,4p)$. The next paper of this series will be devoted to evaluation of parameters $R^{1}(4s,3d,3d,3d)$, $R^{1}(4s,4p,4p,3d)$, $R^{2}(4s,4p,4p,3d)$, $F^{0}(4p,4p)$, and $F^{2}(4p,4p)$.

In determination of values of the Slater—Condon parameters F^k and G^k ($k \neq 0$) Hinze and Jaffé [10], Tondello, de Michelis, Oleari, and Sipio [11], and Anno and Teruya [6] have been engaged. In this work we use the results obtained by Anno and Teruya [6], because only these are determined systematically with a correct employment of all available spectral data. These values are listed in Tables 6—12 under the symbol Experimental.

The basis for the calculation of values of Slater—Condon parameters of the type F^{0} are the energetic balances of reactions of the electron exchange

$$A^{(q+1)+} + A^{(q+1)+} \to A^{q+} + A^{(q+2)+}$$
(1)

Anno [6, 12] has shown that energetic effect of this electron transmission can be expressed by using the values of the Slater—Condon parameters relevant to the

Chem. zvesti 32 (5) 592-606 (1978)

most negative ion in eqn (1). Then the parameters F^0 for atoms and ions with electron configuration $d^{\alpha}s^{\beta}p^{\gamma}$ can be enumerated from the following relations

$$2E^{(q+1)+}(d^{\alpha}s^{\beta-1}p^{\gamma}) = E^{q+}(d^{\alpha}s^{\beta}p^{\gamma}) + E^{(q+2)+}(d^{\alpha}s^{\beta-2}p^{\gamma}) + \Delta E(s,s)$$
(2)

$$2E^{(q+1)+}(d^{\alpha}s^{\beta}p^{\gamma-1}) = E^{q+}(d^{\alpha}s^{\beta}p^{\gamma}) + E^{(q+2)+}(d^{\alpha}s^{\beta}p^{\gamma-2}) + \Delta E(p,p)$$
(3)

$$E^{(q+1)+}(d^{\alpha}s^{\beta}p^{\gamma-1}) + E^{(q+1)+}(d^{\alpha}s^{\beta-1}p^{\gamma}) = E^{q+}(d^{\alpha}s^{\beta}p^{\gamma}) + E^{(q+2)+}(d^{\alpha}s^{\beta-1}p^{\gamma-1}) + \Delta E(s,p)$$
(4)

$$2E^{(q+1)+}(d^{\alpha-1}s^{\beta}p^{\gamma}) = E^{q+}(d^{\alpha}s^{\beta}p^{\gamma}) + E^{(q+2)+}(d^{\alpha-2}s^{\beta}p^{\gamma}) + \Delta E(d,d)$$
(5)

$$E^{(q+1)+}(d^{\alpha}s^{\beta-1}p^{\gamma}) + E^{(q+1)+}(d^{\alpha-1}s^{\beta}p^{\gamma}) = E^{q+}(d^{\alpha}s^{\beta}p^{\gamma}) + E^{(q+2)+}(d^{\alpha-1}s^{\beta-1}p^{\gamma} + \Delta E(s,d))$$
(6)

$$E^{(q+1)+}(d^{\alpha}s^{\beta}p^{\gamma-1}) + E^{(q+1)+}(d^{\alpha-1}s^{\beta}p^{\gamma}) = E^{q+}(d^{\alpha}s^{\beta}p^{\gamma}) + E^{(q+2)+}(d^{\alpha-1}s^{\beta}p^{\gamma-1}) + \Delta E(p,d)$$
(7)

where

$$\Delta E(s,s) = F^{0}(s,s) \tag{8}$$

$$\Delta E(p,p) = F^{0}(p,p) - \frac{2}{25}F^{2}(p,p)$$
(9)

$$\Delta E(s,p) = F^{0}(s,p) - \frac{1}{6} G^{1}(s,p)$$
(10)

$$\Delta E(d,d) = F^{0}(d,d) - \frac{2}{63}F^{2}(d,d) - \frac{2}{63}F^{4}(d,d)$$
(11)

$$\Delta E(s,d) = F^{0}(s,d) - \frac{1}{10} G^{2}(s,d)$$
(12)

$$\Delta E(p,d) = F^{0}(p,d) - \frac{1}{15} G^{1}(p,d) - \frac{3}{70} G^{3}(p,d)$$
(13)

We obtain the values ΔE as the difference of average energies of electron configurations on the right and the left side of eqns (2—7). We calculate the values F^0 according to eqns (8—13) in which we replace F^k and G^k ($k \neq 0$) by values obtained from approximative expressions according to eqns (14—16). Average energies of configurations were enumerated as the weighted mean of energies of individual terms with the weighting factor equal to the multiplicity of the given term. Values of the energies of terms from *Moore*'s spectral tables [13] were used. The obtained values of parameters F^0 are listed in Tables 1—5 under the symbol Experimental.

Chem. zvesti 32 (5) 592-606 (1978)

Table 1. Experimental and calculated values of F⁰(4s,4s) [eV]

Z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	2	0	1	6.1800	5.7272	0.4528
21	2	0	0	6.9831	6.6720	0.3111
22	2	0	2	6.3088	6.2568	0.0520
22	2	0	1	7.9484	8.1725	-0.2241
23	2	0	3	5.6212	6.7326	-1.1114
24	2	0	4	7.4824	7.1547	0.3278
24	2	0	3	6.9740	8.7407	-1.7667
25	2	0	5	7.1132	7.5229	-0.4097
25	2	0	4	10.6826	7.8085	2.8741
26	2	0	6	9.1195	7.8373	1.2822
26	2	0	5	4.8709	6.0654	-1.1945
27	2	0	7	9.4993	8.0979	1.4014
28	2	0	8	7.5045	8.3047	-0.8002
29	2	0	9	8.3186	8.4577	-0.1391

Table 2. Experimental and calculated values of F⁰(4s,4p) [eV]

. Z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	1	1	1	5.3397	5.7679	-0.4282
21	1	1	0	6.8433	5.0327	1.8106
22	1	1	2	5.6024	5.9361	-0.3336
22	1	1	1	7.7550	7.2743	0.4807
22	1	1	0	6.9889	8.6126	-1.6237
23	1	1	3	5.1129	6.1012	-0.9883
23	1	1	2	7.9204	8.4226	-0.5022
24	1	1	4	6.2328	6.2634	-0.0306
25	1	1	5	6.3896	6.4225	-0.0328
25	1	1	4	10.9592	7.4393	3.5199
26	1	1	6	7.3148	6.5787	0.7362
26	1	1	5	3.2460	5.3077	-2.0617
27	1	1	7	8.1508	6.7318	1.4190
28	1	1	8	5.8453	6.8819	-1.0366
29	1	1	9	7.2337	7.0290	0.2047

Table 3. Experimental and calculated values of F⁰(4s,3d) [eV]

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	1	0	2	7.2014	6.8226	0.3788
21	1	1	1	8.0473	8.5723	-0.5250
21	2	0	1	7.6126	8.5723	-0.9597
21	1	0	1	8.8609	8.9526	-0.0917
22	1	ò	3	7.4075	6.5746	0.8330
22	1	1	2	8.2600	7.8613	0.3987

Chem. zvesti 32 (5) 592-606 (1978)

Table 3 (Continued)

Z	S	P	D	Experi- mental	Approxi- mative	Devia- tion
22	2	0	2	7.9600	7.8613	0.0987
22	1	0	2	9.9556	9.7909	0.1647
22	1	1	1	11.0665	9.8338	1.2327
22	1	0	1	10.0525	10.6689	-0.6163
23	1	0	4	6.5738	7.0628	-0.4890
23	1	1	3	8.5437	8.1125	0.4312
23	1	0	3	11.1158	10.6159	0.5001
24	1	0	5	8.3758	7.9486	0.4273
24	1	1	4	10.0181	8.9871	1.0311
24	1	0	4	9.5173	11.0886	-1.5713
25	1	0	6	8.5111	8.8929	-0.3818
25	1	1	5	8.7515	10.1461	-1.3946
25	2	0	5	7.9815	10.1461	-2.1646
25	1	0	5	12.3127	10.8704	1.4423
26	1	1	6	11.0971	11.2509	-0.1539
26	1	0	7	8.5575	9.5572	-0.9996
26	2	0	6	11.5655	11.2509	0.3146
26	1	0	6	9.1784	9.6223	-0.4440
27	1	1	7	13.2015	11.9626	1.2388
27	1	0	8	10.4773	9.6024	0.8749
27	2	0	7	12.9971	11.9626	1.0345
28	1	0	9	8.9500	8.6898	0.2602
29	1	0	10	6.1932	6.4806	-0.2873
29	1	1	9	10.3495	10.8514	-0.5018
29	2	0	9	10.7708	10.8514	-0.0806

Table	4.	Experim	nen	tal	and	cal	cula	ted
		values	of	\mathbf{F}^{0}	(4p,	3d)	eV	

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	1	1	1	6.4936	7.2289	-0.7354
21	0	1	2	6.0789	5.6066	0.4723
21	0	1	1	7.7183	7.6716	0.0466
22	0	1	3	6.2383	5.6072	0.6311
22	1	1	2	6.7915	6.9682	-0.1767
22	0	1	2	8.6755	8.7064	-0.0309
22	1	1	1	9.9658	8.9757	0.9902
22	0	1	1	9.0160	8.5111	-0.4951
23	0	1	4	5.3765	5.9198	-0.5434
23	1	1	3	7.1225	7.0859	0.0366
23	0	1	3	9.7112	9.3330	0.3782
24	0	1	5	6.7753	6.4450	0.3303
24	0	1	4	8.0363	9.4521	-1.4158
25	0	1	6	7.1283	7,0832	0.0451
25	1	1	5	10.5515	8.9642	1.5873
25	0	1	5	6.1997	8.0583	-1.8586
26	1	1	6	9.5608	8.7141	0.8467

Table 5 (Continued)

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
26	0	1	6	13.3202	17.5881	-4.2678
27	0	0	9	13.4171	16.4054	-2.9883
27	1	0	8	17.1618	16.4832	0.6786
27	0	1	8	17.5036	16.1135	1.3900
28	0	0	10	25.5080	18.9477	6.5603
28	1	0	9	16.9944	18.4699	-1.4755
28	0	1	9	15.9700	18.1003	-2.1303

Table 6. Experimental and calculated values of G¹(4s,4p) [eV]

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	1	1	1	1.5001	1.4674	0.0327
21	1	1	0	3.0622	3.0622	0.0000
22	1	1	2	1.6241	1.6854	-0,0613
22	1	1	1	2.9631	2.9631	0.0000
23	1	1	3	1.8721	1.8059	0.0662
23	1	1	2	3.1118	3.1118	0.0000
24	1	1	4	1.7853	1.8971	-0.1118
25	1	1	5	2.3432	2.0908	0.2524
25	1	1	4	3.4714	3.4714	0.0000
26	1	1	6	3.0208	3.3681	-0.3473
26	1	1	5	3.4466	3.4466	0.0000
27	1	1	7	2.8143	2.5522	0.2621
27	1	1	6	1.7605	1.7605	0.0000
28	1	1	8	2.4052	2.5081	-0.1029
29	1	1	9	2.5663	2.5497	0.0166
29	1	1	8	3.9301	3.9301	0.0000

Table 7. Experimental and calculated values of F²(3d,3d) [eV]

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	~	0		2 0720	3 0005	0.0705
21	0	0	2	3.2730	3.2025	0.0705
21	1	0	2	3.0573	3.6026	0.0547
21	0	1	2	4.1408	3.9748	0.1660
21	0	0	2	4.4756	4.6128	-0.1372
22	0	0	4	3.6821	3.6480	0.0341
22	1	O	3	4.5996	4.6718	-0.0723
22	0	1	3	4.8971	5.1166	-0.2195
22	2	0	2	5.5666	5.6608	-0.0942

Table 4 (Continued)

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
26	0	1	7	7.0211	7.7349	-0.7138
26	0	1	6	7.2042	7.7696	-0.5655
27	0	1	8	9.0666	8.3006	0.7660
27	1	1	7	11.2869	9.3502	1.9367
28	0	1	9	6.9778	8,6808	-1.7029
29	0	1	.10	9.9863	8.7760	1.2103
29	1	1	9	9.1259	10.1654	-1.0395

Table 5. Experimental and calculated values of F⁰(3d,3d) [eV]

				Experi-	Approxi-	Devia-
Z	S	P	D	mental	mative	tion
21	1	0	2	11:4972	11 6104	-0 1132
21	0	0	. 3	8.5941	8.1992	0.3949
21	0	1	2	11.4998	11.2407	0.2591
21	0	0	2	13,1765	13.5472	-0.3707
22	1	0	3	11.8764	11.5835	0.2928
22	0	0	4	9.4317	8.7279	0.7038
22	0	1	3	11.9958	11,2138	0.7820
22	1	1	2	12.8083	14,6250	-1.8168
22	0	0	3	14.4253	13.5203	0.9050
22	1	0	2	16.0585	16.9315	-0.8730
22	0	1	2	15.8511	16.5618	-0.7107
22	0	0	2	16.1863	18.8682	-2.6820
23	0	0	5	9.2002	9.5922	-0.3920
23	1	0	4	11.0697	11.8922	-0.8225
23	0	1	4	11.2984	11.5226	-0.2242
23	0	0	4	15.6077	13.8290	1.7787
23	1	0	3	18.0096	16.6846	1.3250
23	0	1	3	17.8198	16.3150	1.5049
24	0	0	6	9.4752	10.7920	-1:3169
24	1	0	5	13.6595	12.5366	1.1230
24	0	1	5	13.5326	12.1669	1.3657
24	0	0	5	14.7789	14.4733	0.3056
24	1	0	4	16.6278	16.7734	-0.1456
24	0	1	4	16.3102	16.4037	-0.0935
25	1	0	6	12.7520	13.5165	-0.7645
25	0	0	7	10.9734	12.3275	-1.3542
25	0	1	б	13.1410	13.1468	-0.0058
25	0	0	6	16.5399	15.4533	1.0866
25	1	0	5	20.3098	17.1978	3.1120
26	0	0	8	11.6171	14.1986	-2.5815
26	1	0	7	14.3117	14.8320	-0.5203
26	0	1	7	14.7360	14.4624	0.2737
26	0	0	7	14.9026	16.7688	-1.8662

Chem. zvesti 32 (5) 592-606 (1978)

Table 7 (Continued)

Table 7 (Continued)

. . .

				Experi-	Approxi-	Devia-
z	S	P	D	mental	mative	tion
22	1	1	2	5.6038	5.8950	-0.2912
22	0	0	3	5.2070	5.1973	0.0097
22	1	0	2	6.4344	6.1560	0.2784
22	0	1	2	6.2113	6.2483	-0.0370
22	0	0	2	6.6700	6.6512	0.0188
23	0	0	5	3.5211	3.5211	0.0000
23	1	0	4	5.2938	5.4281	-0.1342
23	0	1	4	5.8021	5.6017	0.2004
23	2	0	3	6.2980	6.4038	-0.1058
23	1	1	3	6.9427	6.7911	0.1513
23	0	0	4	5.4178	5.6205	-0.2027
23	1	0	3	7.0047	6.6367	0.3680
23	0	1	3	6.8807	6.8823	-0.0016
23	1	1	2	8.3189	8.1794	0.1395
23	0	0	3	6.8807	6.8696	0.0111
23	1	0	2	8.3189	8.3469	-0.0281
23	0	1	2	8.3189	8.2400	0.0788
23	0	0	2	8.4429	8.5495	-0.1067
24	0	0	6	4.9343	4.9343	0.0000
24	1	0	5	6.2113	6.1917	0.0196
24	0	1	5	6,2980	6.4855	0.1875
24	2	0	4	7.8726	7.5669	0.3057
24	1	1	4	7.8354	7.7459	0.0895
24	0	0	5	6.5088	6.3409	0 1679
24	1	0	4	7.5006	7.6423	-0.1417
24	0	1	4	7.5998	7.6794	-0.0796
24	2	0	3	8.2941	8.3919	-0.0978
24	0	0	4	7 7486	7 7177	0.0309
24	1	0	7	8.2569	8 5078	-0.2509
24	0	1	3	8.8272	8.6168	0.2103
24	0	0	2	8 4800	8 6237	-0.1437
24	1	0	2	10 3273	10 2021	0.0352
24	0	1	2	9 9926	10.0487	-0.0561
25	0	0	7	5-0087	5.0087	0.0000
25	1	0	6	7.8974	7.6140	0.2834
25	0	1	6	7 7362	7 6802	0.0560
25	2	0	5	8 1825	8 1627	0.0108
25	1	1	5	8 3437	8 5064	-0.1627
25	0	0	6	7 0701	7 4194	-0.1027
25	1	0	5	9 2602	1.4104	-0.3393
25	0	1	5	0.2093	0.3238	-0.0595
27	2	0	2	0.0412	0.7270	0.1156
27	2	1	4	9.3938	9.0787	-0.0627
27	1	0	4	9.5958	9.7474	-0.1495
25	0	0	5	8.5668	8.4849	0.0819
25	1	0	4	9.5958	9.7458	-0.1500
25	0	1	4	9.5958	9.6907	-0.0949
25	1	0	4	10.9472	10.7361	0.2111
25	1	0	3	10.1537	9.8331	0.3206
25	0	1	3	10.6125	10.7530	-0.1405

	1.000	-		Experi-	Approx1-	Devia-
Z	S	P-	D	mental	mative	tion
26	0	0	8	6.1864	6.1864	0.0000
26	1	0	7	7.5626	7.5839	-0.0213
26	0	1	7	7.7362	7.7951	-0.0590
26	2	0	6	8.6412	8.8898	-0.2485
26	1	1	6	8.9388	9.0321	-0.0933
26	0	0	7	7.6122	7.5318	0.0804
26	1	0	6	8.8148	8,7882	0.0265
26	0	1	6	8.9140	8,7886	0.1254
26	2	0	5	9.7322	9.7330	-0.0008
26	1	1	5	10.3397	10.0108	0.3289
26	0	0	6	8.8768	8,6867	0.1900
26	1	0	5	9.8189	9.9881	-0.1692
26	0	1	5	10.0298	10.1240	-0.0942
26	0	0	5	10.1785	10.2433	-0.0647
26	0	1	4	11.5919	11.5577	0.0341
27	1	0	8	7.9965	8,0090	-0.0125
27	0	1	8	8.0461	8.0176	0.0285
27	2	0	7	9.1991	9.1019	0.0972
27	1	1	7	9.5958	9.3974	0.1985
27	0	0	8	8,1701	8.1859	-0.0158
27	1	0	7	8.7156	9.1793	-0.4637
27	0	1	7	9.2859	9.3328	-0.0469
27	2	0	6	10.9224	10.7838	0.1386
27	1	1	6	10.9224	10.8684	0.0540
27	0	0	7	9.4719	9.2567	0.2152
27	1	0	6	10.7612	10.8118	-0.0506
27	0	1	6	10.6125	10.7544	-0.1420
28	2	0	8	9.8934	9.7714	0.1220
28	1	1	8	9.6206	9.8543	-0.2336
28	1	0	8	10.2157	10.0666	0.1491
28	0	1	8	10.1413	10.0075	0.1338
28	0	0	8	10.1909	10.3618	-0.1709
28	1	0	8	11.0836	10.9911	0.0925
28	0	1	8	10.9844	11.0768	-0.0924
29	2	0	8	11.5051	11.5490	-0.0439
29	1	1	8	11.5051	11.5360	-0.0309
29	1	0	8	11.8770	11,9045	-0.0275
29	0	1	8	11.8522	11.7496	0.1026

Table 8. Experimental and calculated values of F⁴(3d,3d) [eV]

z	S	P	D,	Experi- mental	Approxi- mative	Devia- tion
21	0	0	3	1.2398	1.2371	0.0026
21	1	0	2	1.8101	2.1720	-0.3619
21	0	1	2	2.1324	2.0764	0.0560

Chem. zvesti 32 (5) 592-606 (1978)

Table 8 (Continued)

Table 8 (Continued)

z	s	P	D	Experi- mental	Approxi- mative	Devia- tion	z	s	P	D	Experi- mental	Approxi- mative	Devia- tion
21	0	0	2	2.8143	2.5877	0.2266	25	1	0	4	6.0377	5.7691	0.2686
22	0	0	4	1.8845	1.6353	0.2492	25	0	1	4	6.0377	6.0061	0.0316
22	1	0	3	2.9501	2.9385	0.0122	25	0	0	4	5.8145	5.7241	0.0905
22	0	1	3	3.0994	3.0167	0.0828	25	1	0	3	6.9427	6.7946	0.1482
22	2	0	2	3.6821	3.6041	0.0780	25	0	1	3	6.9179	7.0386	-0.1207
22	1	1	2	3.4218	3.6191	-0.1973	26	0	0	8	4.1036	4.1724	-0.0688
22	0	0	3	2.9383	3.1908	-0.2526	26	1	0	7	4.7607	5.0351	-0.2744
22	1	0	2	4.4756	3.9331	0.5425	26	0	1	7	4.6987	4.9371	-0.2384
22	0	1	2	3.9921	3.9745	0.0175	26	2	0	6	5.7773	5.5894	0.1879
22	0	0	2	4.1160	4.2621	-0.1460	26	1	1	6	5.7030	5.6724	0.0306
23	0	0	5	1.6613	2.2327	-0.5713	26	0	0	7	5.2566	5.0817	0.1749
23	1	0	4	3.2482	3.2212	0.0270	26	1	0	6	5.5294	5.6494	-0.1200
23	0	1	4	3.4466	3.3705	0.0761	26	0	1	6	5.9013	5.7588	0.1426
23	2	0	3	4.3888	4.1942	0.1946	26	2	0	5	5.9633	6.3217	-0.3584
23	1	1	3	4.2524	4.3240	-0.0716	26	1	1	5	6.5832	6.5338	0.0494
23	0	0	4	3.3598	3.3824	-0.0226	26	0	0	6	5.7773	5.7093	0.0680
23	1	0	3	4.5252	4.3283	0.1969	26	1	0	5	6.6080	6.3230	0,2850
23	0	1	3	4.2772	4.4846	-0.2074	26	0	1	5	6.6080	6.5615	0.0465
23	1	1	2	5.2318	5.1566	0.0752	26	0	0	5	6.1369	6.3243	-0.1874
23	0	0	3	4.2772	4.4625	-0.1853	26	0	1	4	7.3766	7.5673	-0.1907
23	1	0	2	5.2318	5.2743	-0.0424	27	1	0	8	5.9633	5.6713	0.2921
23	0	1	2	5.2318	5.3938	-0.1620	27	0	1	8	5.2318	5.3893	-0.1574
23	0	0	2	5.3806	5.4851	-0.1045	27	2	0	7	6.2609	6.1335	0.1273
24	0	0	6	3.0498	3.0308	0.0190	27	1	1	7	6.2609	6.1223	0.1386
24	1	0	5	3.9797	3.7214	0.2582	27	0	0	8	5.4798	5.6410	-0.1612
24	0	1	5	4.1532	3.8546	0.2986	27	1	0	7	5.6658	6.2472	-0.5815
24	2	0	4	4.5624	4.5137	0.0486	27	0	1	7	6.5708	6.2624	0.3084
24	1	1	4	4.6987	4.6829	0.0159	27	2	0	6	7.0295	6.8320	0.1975
24	0	0	5	3.9673	3.8363	0.1310	27	1	1	6	7.0295	7.0282	0.0013
24	1	0	4	4.5624	4.5555	0.0059	27	0	0	7	6.3972	6.3610	0.0362
24	0	1	4	4.8599	4.7520	0.1079	27	1	0	6	7.0295	6.9591	0.0704
24	2	0	3	4.9715	5.4615	-0.4900	27	0	1	6	7.1659	7.1817	-0.0158
24	0	0	4	4.8847	4.5992	0.2855	28	2	0	8	6.6080	6.7426	-0.1347
24	1	0	3	5.1946	5.4771	-0.2825	28	1	1	8	6.5832	6.6238	-0.0406
24	0	1	3	5.8517	5.6797	0.1720	28	1	0	8	7.2279	6.9036	0.3243
24	0	0	3	5.4054	5.4928	-0.0874	28	0	1	8	7.0667	6.8112	0.2554
24	1	0	2	6.5832	6.5982	-0.0150	28	0	0	8	6.7940	7.0645	-0.2705
24	0	1	2	7.0295	6.7640	0.2655	28	1	0	7	7.6494	7.5247	0.1247
25	0	0	7	4.1780	3.7214	0.4566	28	0	1	7	7.5006	7.7295	-0.2288
25	1	0	6	4.2028	4.3931	-0.1902	29	2	0	8	7.4138	7.5537	-0.1398
25	0	1	6	4.1780	4.4387	-0.2606	29	1	1	8	7.6618	7.7280	-0.0662
25	2	0	5	4.6987	5.0070	-0.3083	29	1	0	8	8.1949	8.0609	0.1340
25	1	1	5	5.2070	5.1553	0.0517	29	0	1	8	8.2941	8.2616	0.0325
25	0	0	6	4.4136	4.4789	-0.0653							
25	1	0	5	4.9591	5.0342	-0.0751							
25	0	1	5	4.8971	5.2089	-0.3118							
25	2	0	4	6.0377	5.8140	0.2246							
25	1	1	4	6.0377	6.0247	0.0130							
25	0	0	5	5.0707	5.0613	0.0093							

SLATER-CONDON PARAMETERS. II

Table 9. Experimental and calculated values of G²(4s,3d) [eV]

0.0378	0.7110	0.1488	a	-	0	10							
-0.0365	0.6849	0.6484	00	•	-	29							
-0.0717	0.6590	0.6149	9	-	0	29	-0.0253	1.0791	1.0538	8	-	-	29
0.0435	0.6533	0.6968	9	-	-	29	-0.0027	1.1181	1.1208	9	0	-	29
-0.0045	0.7322	0.7277	7	-	0	28	-0.0025	0.5554	0.5529	9	-	-	29
0.0408	0.5245	0.5653	80	-	0	28	0.0095	1.2017	1.2113	7	0	-	28
-0.0428	0.4246	0.3818	8	-	-	28	-0.0433	0.9880	0.9447	80	0	-	28
0.0000	0.3702	0.3732	9	-	0	28	0.0460	1.1665	1.2125	8	-	-	28
-0.1061	0.5846	0.4786	6	-	0	27	-0.0003	0.8309	0.8306	9	0	-	28
0.1077	0.6200	0.7277	6	-	-	27	0.0153	1.1377	1.1530	6	0	-	27
0.0265	0.5166	0.5430	7	-	0	27	-0.0349	1.1990	1.1641	6	-	-	27
0.0012	0.3534	0.3546	7	-	-	27	0.0566	0.9141	0.9707	7	0	-	27
-0.0162	0.4092	0.3930	8	-	0	27	-0.0755	0.4561	0.3806	.7	-	-	27
0.0000	0.8964	0.8964	4	-	0	26	0.0000	0.7860	0.7860	00	0	-	27
0.0544	0.6947	0.7501	J	-	0	26	0.0730	1.0354	1.1084	J	0	-	26
-0.0381	0.8043	0.7662	J	-		26	-0.0555	1.1923	1.1369	S	-	-	26
0.0175	0.4847	0.5021	6	-	0	26	-0.1472	1.1154	0.9683	6	0	-	26
-0.0977	0.3891	0.2913	6	-	-	26	0.1918	1.1967	1.3885	6	-	-	26
0.0367	0.2670	0.3037	7	-	0	26	0.0063	0.8169	0.8232	7	0	-	26
0.0000	0.9311	0.9311	ω	-	0	25	-0.0158	1.2444	1.2286	ω	0	-	25
-0.0105	0.8077	0.7972	4	-	0	25	-0.0396	1.1467	1.1071	4	0	-	25
-0.0266	0.9106	0.8840	4		-	25	0.0372	1.2397	1.2770	4	-	-	25
0.0176	0.5787	0.5963	'n	-	0	25	0.0988	0.8781	0.9769	5	0	-	25
0.0941	0.5382	0.6323	5	-	-	25	-0.1483	0.9604	0.8121	თ	-	-	25
-0.0410	0.1947	0.1537	6		0	25	-0.0191	0.7766	0.7575	6	0	-	25
0.0000	0.9174	0.9174	N	-	0	24	-0.0528	1.1859	1.2286	N	0	-	24
0.0343	0.7554	0.7897	ω		0	24	0.0397	1.0104	1.0501	ω	0	-	24
-0.1104	0.6906	0.5802	4	-	0	24	-0.1094	0.9276	0.8182	4	0	-	24
0.0281	0.6637	0.6918	4	-	-	24	0.1318	0.8513	0.9831	4	-	-	24
0.0206	0.5906	0.6112	J	-	0	24	0.0244	0.6227	0.6472	ა	0		24
0.0000	0.9422	0.9422		-	0	23	0.0235	1.1097	1.1332	-	0	-	23
0.0345	0.7788	0.8133	N	-	0	23	0.0207	1.0666	1.0873	N	0	-	23
-0.0499	0.6698	0.6199	2	-	-	23	0.1432	0.8647	1.0079	N	-	-	23
0.0349	0.5702	0.6050	ω		0	23	0.0436	0.9408	0.9844	ω	0	-	23
-0.0050	0.6472	0.6422	ω	-	_	23	-0.0875	1.1178	1.0300	ω	-	-	23
0.0000	0.4674	0.4674	4	-	0	23	-0.0140	0.7876	0.7736	4	0	-	23
-0.04C8	0.8504	0.8096	-	-	0	22	0.1198	0.9427	1.0625	-	0	-	22
0.0436	0.6990	0.7426	-	-	-	22	0.0475	1.2915	1.3390	-	-	-	22
0.0132	0.6215	0.6348	N		0	22	-0.0479	0.9901	0.9422	N	0	-	22
-0.0162	0.9237	0.9075	N	-	-	22	-0.1173	0.4298	0.3124	N	-	-	22
-0.0042	0.4964	0.4922	ω		0	22	0.0170	0.7517	0.7687	ω	0	-	22
0.0043	0.7024	0.7067	-	-	0	21	-0.1721	0.9271	0.7550	-	0		21
-0.0049	0.7054	0.7005	-	-		21	0.0054	0.8228	0.8282	-	-	-	21
0.0013	0.6483	0.6496	N	-	0	21	0.0550	0.6728	0.7277	N	0	-	21
tion	mative	mental	. •		0		tion	mative	mental	Ŀ	"	0	
Devia-	Approxi-	Experi-	,	đ	۵.	4	Devia-	Approxi-	Experi-	,	9	0	
	1												
ت ا	(4p,3d) [e	lues of G	VB				Ľ	(48, 30) [alues of u				
lated	l and calcu	perimental	. E	10	able	н	lated	and calcu	xperimental	•	0 5	TOP	н

Chem. zvesti 32 (5) 592-606 (1978)

599

.

Approxi- Devia-

tion

mative

Table 11. Experimental and calculated values of F²(4p,3d) [eV]

Table 12. Experimental and calculated values of G³(4p,3d) [eV]

						1.1		-				in the second
z	S	P	D	Experi- mental	Approxi- mative	Devia- tion		z	s	P	D	Experi- mental
21	0	1	2	0.8368	0.8041	0.0327		21	0	1	2	0.0811
21	1	1	1	1.3637	1.3551	0.0087		21	1	1	1	0.2740
21	0	1	1	1.0501	1.0304	0.0197		21	0	1	1	0.0807
22	0	1	3	0.6980	0.7804	-0.0824		22	1	1	2	1.2770
22	1	1	2	1.6985	1.6365	0.0619		22	0	1	2	0.2095
22	0	1	2	1.2646	1.3384	-0.0738		22	1	1	1	0.1163
22	1	1	1	1.7109	1.7046	0.0062		22	. 0	1	1	0.4600
22	0	1	1	1.9216	1.9911	-0.0695		23	0	1	4	-0.2318
23	0	1	4	0.9447	0.7379	0.2068		23	1	1	3	0.2120
23	1	1	3	1.3885	1.5265	-0.1379		23	.0	1	3	0.3025
23	0	1	3	1.4257	1.4411	-0.0154		23	1	1	2	0.4513
23	1	1	2	2.0704	2.1413	-0.0709		23	0	1	2	0.4500
23	0	1	2	2.4052	2.1984	0.2068		23	0	1	1	0.7154
23	0	1	1	2.5291	2.4841	0.0451		24	0	1	5	0.1438
24	0	1	5	0.2752	0.5386	-0.3634		24	1	1	4	0.0368
24	1	1	4	1.4133	1.2987	0.1146		24	0	1	4	0.5430
24	0	1	4	1.5869	1.4345	0.1524		24	0	1	3	0.6112
24	0	1	3	2.1944	2.2640	-0.0696		24	0	1	2	0.7339
24	0	1	2	2.5663	2.6940	-0.1277		25	0	1	6	0.6162
25	0	1	6	0.9931	0.6332	0.3599		25	1	1	5	0.3037
25	1	1	5	0.9683	1.1336	-0.1654		25	0	1	5	0.4414
25	0	1	5	1.4629	1.3993	0.0636		25	1	1	4	0.4352
25	1	1	4	2.3184	2.1300	0.1884		25	0	1	4	0.4922
25	0	1	4	2.0952	2.2434	-0.1481		25	0	1	3	0.6782
25	0	1	3	3.0126	2.8925	0.1201		26	0	1	7	0.4364
26	0	1	7	0.6224	0.7749	-0.1525		26	1	1	6	0.0109
26	1	1	6	1.2770	1.2034	0.0734		26	0	1	6	0.5653
26	0	1	6	1.2770	1.4871	-0.2101-	S.,	26	1	1	5	0.7017
26	1	1	5	2.1572	2.1650	-0.0078		26	0	1	5	0.8083
26	0	1	5	2.1076	2.2867	-0.1791		26	0	1	4	0.9050
26	0	1	4	3.1242	3.1617	-0.0375		27	0	1	8	0.2802
27	0	1	8	0.7798	0.7914	-0.0116		27	1	1	7	0.8864
27	1	1	7	1.5001	1.3500	0.1501		27	0	1	7	.0.3806
27	0	1	7	1.5745	1.5973	-0.0228		27	1	1	6	0.6137
27	1	1	6	2.2192	2.3933	-0.1741		27	0	1	6	0.8492
27	0	1	. 6	2.9135	2.4562	0.4573		28	0	1	9	0.4029
28	0	1	9	0.7501	0.7298	0.0202		28	1	17	8	-0.0622
28	1	1	8	1.0625	1.1707	-0.1082		28	0	1	8	0.5195
28	0	1	8	1.5745	1.4634	0.1111		28	0	1	7	0.6670
28	0	1	7	2.2936	2.4843	-0.1907		29	1	1	9	0.8592
29	1	1	9	1.3266	1.3240	0,0025		29	0	1	9	0.9112
29	0	1	9	1.9340	1.9587	-0.0247		29	1	1	8	0.7773
29	1	1	8	2.2936	2.2353	0.0582		29	0	1	8	0.8369
29	0	1	8	2.2812	2.2881	-0.0069						

21	0	1	2	0.0811	0.1636	-0.0825
21	1	1	1	0.2740	0.3623	-0.0883
21	0	1	1	0.0807	0.0610	0.0197
22	1	1	2	1.2770	1.0210	0.2560
22	0	1	2	0.2095	0.1937	0.0158
22	1	1	1	0.1163	0.0271	0.0892
22	. 0	1	1	0.4600	0.4737	-0.0137
23	0	1	4	-0.2318	-0.2019	-0.0300
23	1	1	3	0.2120	0.1616	0.0504
23	.0	1	3	0.3025	0.2555	0.0470
23	1	1	2	0.4513	0.7182	-0.2669
23	0	1	2	0.4500	0.4910	-0.0409
23	0	1	1	0.7154	0.7439	-0.0285
24	0	1	5	0.1438	0.1809	-0.0371
24	1	1	4	0.0368	0.2119	-0.1751
24	0	1	4	0.5430	0.2482	0.2948
24	0	1	3	0.6112	0.6356	-0.0244
24	0	1	2	0.7339	0.6119	0.1220
25	0	1	6	0.6162	0.6205	-0.0043
25	1	1	5	0.3037	0.2007	0.1030
25	0	1	5	0.4414	0.4275	0.0138
25	1	1	4	0.4352	0.3850	0.0501
25	0	1	4	0.4922	0.7257	-0.2335
25	0	1	3	0.6782	0.7162	-0,0380
26	0	1	7	0.4364	0.4293	0.0071
26	1	1	6	0.0109	0.1872	-0.1763
26	0	1	6	0.5653	0.3903	0.1750
26	1	1	5	0.7017	0.6183	0.0834
26	0	1	5	0.8083	1.0017	-0.1933
26	0	1	4	0.9050	0.7872	0.1179
27	0	1	8	0.2802	0.2802	0.0000
27	1	1	7	0.8864	0.7877	0.0987
27	0	1	7	.0.3806	0.5007	-0.1201
27	1	1	6	0.6137	0.6107	0,0030
27	0	1	6	0.8492	0.8225	0.0267
28	0	1	9	0.4029	0.4036	-0.0007
28	1	12	8	-0.0622	0.0106	-0.0728
28	0	1	8	0.5195	0.4412	0.0783
28	0	1	7	0.6670	0.6648	0.0022
29	1	1	9	0.8592	0.8548	0.0044
29	0	1	9	0.9112	0.9154	-0.0041
29	1	1	8	0.7773	0.7362	0.0411

Chem. zvesti 32 (5) 592-606 (1978)

0.8800

-0.0431

In the framework of LCAO MO approximation electron configuration of atoms in molecules acquires as a rule noninteger values $d^v s^x p^y$, where v, x, y are nonnegative real numbers obtained by population analysis. Thus, if we want to use the configurationally dependent values of monocentric integrals, obtained by the analysis of atomic spectra in MO calculation of electron structure of molecules, we must approximate the discrete functions with the continuous ones. Then we consider individual monocentric integrals to be functions of continuous arguments which are represented by populations of the individual levels of the valence sphere of an atom, or functions of atomic charge and its atomic number. The dependence on the atomic number is included to render the maximum possible number of known experimental data in the regression.

The most suitable polynomial functions are of the following types

$$F(Z,Q) = \sum_{i=0}^{N_Z} \sum_{j=0}^{N_Q} B_{ij} Z^i Q^j$$
(14)

$$F(Z,Q) = \sum_{i=0}^{N_z} \sum_{j=0}^{N_o} B_{ij} Z^i (Q+1)^j$$
(15)

$$F(Z, v, Q) = \sum_{i=0}^{N_z} \sum_{j=0}^{N_d} B_{ijo} Z^i v^j + \sum_{i=0}^{N_z} \sum_{j=0}^{N_d} B_{ijo} Z^i v^j$$
(16)

$$+\sum_{i=0}^{N}\sum_{k=1}^{N}B_{iok}Z^{i}Q^{k} + \sum_{j=1}^{N}\sum_{k=1}^{N}B_{ojk}v^{j}Q^{k}$$
(16)

$$F(Z, v, x, y) = \sum_{i=0}^{N} \sum_{j=0}^{N} B_{ijoo} Z^{i} v^{j} + \sum_{i=0}^{N} \sum_{k=1}^{N} B_{ioko} Z^{i} x^{k} + \sum_{i=0}^{N} \sum_{l=1}^{N_{p}} B_{iool} Z^{i} y^{l} + \sum_{j=1}^{N_{d}} \sum_{k=1}^{N_{s}} B_{ojko} v^{j} x^{k} + \sum_{k=1}^{N_{d}} \sum_{l=1}^{N_{p}} B_{ookl} x^{k} y^{l}$$

$$(17)$$

$$F(Z, v, x, y) = \sum_{i=0}^{N_z} \sum_{j=0}^{N_d} B_{ijoo} Z^i v^j + \sum_{i=0}^{N_z} \sum_{k=1}^{N_i} B_{ioko} Z^i x^k + \sum_{i=0}^{N_z} \sum_{l=1}^{N_p} B_{iool} Z^i (y+1)^l + \sum_{j=1}^{N_d} \sum_{k=1}^{N_s} B_{ojko} v^j x^k + \sum_{j=1}^{N_d} \sum_{l=1}^{N_p} B_{ookl} x^k (y+1)^l$$

$$(18)$$

Z is the atomic number, Q is the atomic charge, x, y, v are the populations of s, p, d valence orbitals, respectively. The constants B were determined by the least-squares method and the optimum degrees of polynomials N_Z, N_Q, N_s, N_p, N_d were determined by the maximization of the correlation coefficient.

Chem. zvesti 32 (5) 592-606 (1978)

Table 16. Numerical values of B_{ijk} 's for function $F^{0}(4p, 3d) [eV]$

i	j	k		^B ijk	٩.	
0	0	0		0.12591724	x	10 ²
1	0	0		0.10279628	x	10 ¹
0	1	0	-	0.60386716	x	10 ¹
0	2	0		0.42039315		
0	0	1	-	0.34923361	x	101
1	1	0		0.20000012		
1	2	0	-	0.16584784	x	10-1
1	0	1		0.92659630	x	10-1
0	1	1		0.23824099	x	10
0.	2	1	-	0.39321501		
Co co	rre eff	lati icie	on nt	0.7958		
St de	and via	ard tion		1.2620		

Table 13. Numerical values of B_{ij} 's for function $F^{0}(4s, 4s)$ [eV]

i	j	B _{ij}	
0	0	- 0.17824361 x	10 ²
T	0	0.16864641 x	101
2	0	- 0.26902984 x	10-1
0	1	- 0.19432986 x	103
1	1	0.17248220 x	10^{2}
2	1	- 0.37854408	
Co	rre	lation 0.6164 icient 0.6164	
St	and	ard 1.4928 tion	

Table 14. Numerical values of B_{ij} 's for function $F^{0}(4s, 4p) [eV]$

i	j		B _{ij}
0	0		0.15419761 x 10 ¹
1	0		0.23280751
2	0	-	$0.15034334 \times 10^{-2}$
0	1	-	0.29613501 x 10 ³
1	1		0.25514732×10^2
2	1	-	0.54514638
Co co	rre] effi	ation cient	0.5746
St de	anda	ard ion	1.7108

Table 15. Numerical values of B_{ijk}'s for function F⁰(4s,3d) [eV]

	_			· · · · · · · · · · · · · · · · · · ·		
i	j	k		B _{ijk}		-
0	0	0		0.16556008	x	10 ²
1	0	0	-	0.29858570		
0	1	0	-	0.18108587	x	10 ²
0	2	0		0.11677389	x	101
0	0	1	-	0.11239755	x	10 ²
1	1	0		0.78158675		
 1	2	0	-	0.56470560	x	10-1
1	0	1		0.45475789		
0	1	1		0.25578768	x	101
0	2	1	-	0.48777289		
Co	rre	lat ici	ion ent	0.8750		
St de	and	ard	n	1.0347		

Table 17. Numerical values of B_{ijkl} 's for function $F^0(3d, 3d)$ [eV]

_	_							_
i	j	k	1		^B ijkl			
0	0	0	0	-	0.13664214	x	103	
1	0	0	0		0.10050080	x	10 ²	
2	0	0	0	-	0.10997682			
0	1	0	0	-	0.67368617	x	10 ¹	
0	2	0	0		0.27778017			
0	0	1	0	-	0.19367667	x	101	
0	0	0	1	-	0.23064341	x	101	
Co	rre eff	lat ici	ion ent	53	0.8293			
St	and via	ard tio	n		2.0562			

Table 18. Numerical values of B_{ij}'s for function G¹(4s,4p) [eV]

i	j	В	ij	
0	0	0,5258	2741 x	10 ⁶
1	0	0.1313	1437 x	10 ⁶
2	0	- 0.1363	9073 x	105
3	0	0.7541	2728 x	103
4	0	- 0.2340	9239 x	10 ²
5	0	0.3867	7523	
6	0	- 0.2657	1468 x	10-2
0	1	0.5854	0942 x	106
1	1	- 0.1461	3573 x	106

Chem. zvesti 32 (5) 592-606 (1978)

SLATER-CONDON PARAMETERS. II

Table 18 (Continued)

i	j				B _{ij}			
2	1		٥.	151	701	34	x	105
3	1	-	0.	838	193	50	х	103
4	1		0.	259	967	94	x	10 ²
5	1	-	0.	429	1066	68		
6	1		0.	294	470	50	x	10-2
Co	rrel	atio	n it	0.	984	4		
St de	anda viat	rd		0.	3090	С		

Table	19.	Numerical	values	of	Bijkl	's
		for funct	ion F ² (3d.	3d) [e	vī

i	j	k	1		B _{ijkl}		
0	0	0	0	_	0.32054076	x	106
1	0	0	0		0.37486733	x	105
2	0	0	0	-	0.14530535	x	104
3	0	0	0		0.18667090	x	10 ²
0	1	0	0		0.51733593	х	106
0	2	0	0	-	0.33069577	х	106
0	3	0	0		0.10707995	х	106
0	4	0	0	-	0.18535566	х	105
0	5	0	0		0.16287400	х	104
0	6	0	С	-	0.56937537	x	102
0	0	1	0	-	0.95921571	х	102
0	0	0	1	-	0.10955426	х	103
1	1	0	0	-	0.60760009	x	102
1	2	С	0		0.38994653	х	102
1	3	0	0	-	0.12670171	х	102
1	4	0	0		0.21996269	x	104
1	5	0	0	-	0.19377143	х	103
1	6	0	0		0.67890749	х	10
1	0	1	0		0.16590080	x	102
1	0	С	1		0.10185466	x	102
2	1	0	0		0.23666407	х	104
2	2	0	0	-	0.15257084	x	104
2	3	0	0		0.49763330	x	103
2	4	0	0	-	0.86667455	х	102
2	5	0	0		0.76552729	х	10'
2	6	0	0		0.26883875		
2	0	1	0	-	0.62494287		
2	0	0	1	-	0.38494013		~
3	1	0	0	-	0.30571421	x	102
3	2	0	0		0.19808703	x	102
3	3	0	0	-	0.64883934	x	10
. 3	4	0	0		0.11339373	x	10
3	5	0	0	-	0.10044710		~
3	6	0	0		0.35361005	x	10-2

Chem. zvesti 32 (5) 592-606 (1978)

Table 19 (Continued)

i	j	k	1		B _{ijkl}		
3	0	1	0	2	0.77847012	x	10-2
3	0	0	1		0.47599056	x	10-2
0	1	1	0	-	0.76285305	x	10 ²
0	1	0	1		0.28443009	x	102
0	2	1	0		0.45880414	х	10 ²
0	2	0	1	-	0.15370153	x	10 ²
0	3	1	0	-	0.14015423	x	10 ²
0	3	0	1		0.42539016	x	101
0	4	1	0		0.23014694	х	101
0	4	0	- 1	-	0.63976158		
0	5	1	0	-	0.19325122		
0	5	0	1		0.50015047	x	10-1
0	6	- 1	0		0.65059551	x	10-2
С	1.6	0	1	-	0.15982473	x	10-2
0	0	1	1		0.14194351		
Co	orre	lat ici	ion ent	-	0.9975		8 P.
St	and	ard tio	n		0.2170		

Table 20. Numerical values of $B_{i,jk1}$'s for function F^4 (3d,3d) [eV]

i	j	k	1		B _{ijkl}		
0	. 0	Ó	0	-	0.97738412	x	103
1	0	0	0		0.12131614	x	103
2	C	0	0	-	0.50935163	х	1C ¹
3	0	0	0		0.73143613	x	10-1
0	1	0	0		0.16257306	х	1C3
0	2	0	0	-	0.78722443	х	1C ²
0	3	0	0		0.83200777	x	101
0	0	1	0		0.59393664	х	10 ²
0	0	0	1	ч <u>г</u>	0.53040154	х	101
1	1	0	0	-	0.13765830	x	10^2
1	2	0	С		0.73549267	х	10 ¹
1	3	0	0	-	0.84657804		
1	0	1	0	-	0.81056878	х	1C ¹
1	0	0	1		0.15688674		
2	1	0	0		0.35016806		
2	2	0	0 <	-	0.21427645		
2	3	0	0		0.27855185	х	10-1
2	0	1	0	÷.,	0.35763945		
2	0	0	1		0.30463639	х	10-1
3	1	0	-0	-	0.26971048	х	10-2
3	2	0	0		0.18940804	x	10-2
3	3	0	0	-	0.29539367	x	10-3
3	0	1	0	-	0.51809794	x	10-2
3	0	0	1	-	0.66997175	x	10-3
0	1	1	0		0.58955682		

Table 20 (Continued)

i	j	k	l		^B ijkl		
0	1	0	1		0.68601558		
0	2	1	0	-	0.13967777		
0	2	0	1	-	0.14433957		
0	3	1	0		0.97608456	х	10-2
0	3	0	1		0.78454603	х	10-2
0	0	1	1	-	0.26415767	x	10-1
Co	rre eff	lat ici	ion		0.9906		
Standard deviation			n		0.2550		

Table 21. Numerical values of B_{ijk} 's for function $G^2(4s,3d)$ [eV]

i	j	k		B _{ijk}		
0	0	0	-	0.11455318	x	104
1	0	0		0.92973076	х	102
2	0	0	-	0.17229575	x	101
0	1	0		0.25863178	x	104
0	2	0	-	0.19084621	х	104
0	3	0		0.62673258	x	103
С	4	0	-	0.82657276	x	1C ²
0	5	0	-	0.10644581	х	101
0	6	0		0.11616411	x	101
0	7	0	-	0.71316415	x	10-1
0	0	1		0.22219675	x	101
1	1	0	-	0.21820459	x	103
1	2	0		0.16768532	х	103
1	3	0	-	0.59443351	х	102
1	4	0		0.96717132	x	101
1	5	0	-	0.45948678		
1	6	0	-	0.43470169	x	10-1
1	7	0		0.39131452	х	10-2
1	0	1	-	0.24871251	х	101
2	1	0		0.42410120	х	101
2	2	0	-	0.33535039	x	101
2	3	0		0.12424209	х	101
2	4	0	-	0.22181820		
0	5	1		0.78248232		
0	6	1	-	0.55145855	х	10-1
0	7	1		0.15861732	x	10-2
Co	rre eff	lation icient	ð.	0.9517		
St de	Standard deviation			0.1600		

Table	22.	Nume	erical	val	Lues	of	Bij	ik ^{'s}
		for	functi	on	G ¹ (4p,3	a)	[eV]
	2							

i	j	k		B _{ijk}			
0	0	0		0.16555487	x	107	
1	0	0	-	0.43654873	x	106	
2	0	0	÷	0.47957155	x	105	
3	0	0	-	0.28087908	x	104	
4	0	0		0.92485994	x	10 ²	
5	0	0	-	0.16230669	х	101	
6	0	0		0.11858829	x	10-1	
0	1	0	-	0.31410610	x	105	
0	2	0		0.17763564	х	100	
0	3	0	-	0.28791767	x	105	
0	0	1		0.11022272	x	100	
1	1	0		0.51948525	x	104	
1	2	0	-	0.39569733	x	107	
1	3	0		0.66230471	х	104	
1	0	1	-	0.26424377	x	102	
2	1	0	-	0.40329310	х	103	
2	2	0		0.36524915	x	104	
2	3	0	-	0.63248152	х	103	
2	0	1		0.26322274	х	104	
3	1	0		0.22541847	x	10^{2}	
3	2	0	-	0.17886380	x	103	
3	3	0		0.32097795	х	10 ²	
3	0	1-	-	0.13947191	x	103	
4	1	0	-	0.95287396			
4	2	0		0.49032886	x	101	
4	3	0	-	0.91305851			
4	0	1		0.41463954	x	101	
5	1	С		0.24079772	x	10-1	
5	2	0	-	0.71402077	x	10-1	
5	3	0		0.13805248	х	10-1	
5	0	1	-	0.65584255	х	10-1	
6	1	0	-	0.25212255	х	10-3	
6	2	0		0.43206836	х	10-3	
6	3	0	-	0.86691202	х	10-4	
6	0	1		0.43122713	х	10-3	
0	1	1	-	0.98041671			
0	2	1		0.20227796			
0	3	1	-	0.11422109	x	10-1	
Correlation 0.9716							
St	and via	ard	n	0.1100			

Chem. zvesti 32 (5) 592-606 (1978)

	i	j	k		B _{ijk}		
	0	7	0		0.15023608		
	0	0	1	-	0.21189686	x	10 ²
	1	1	0		0.59326083	x	10 ²
	1	2	0	-	0.35008750	x	10 ²
	1	3	0		0.46854902		
	1	4	0		0.53493135	x	101
	1	5	0	-	0.17523858	x	101
	1	6	0		0.21798409		_
	1	7	0	-	0.95967189	х	10-2
	1	0	1		0.39257747	x	101
	2	1	0	-	0.89742166		
	2	2	0		0.64833581		1.0
	2	3	0	-	0.71816618	x	10-1
	2	4	0	-	0.68856443	x	10-1
	2	5	0		0.26357942	x	10-1
	2	6	0	-	0.34623185	x	10-2
	2	7	0		0.15691632	x	10-3
	2	0	1	-	0.73905081	x	10-1
	0	1	1	-	0.64925936	x	10 ²
	0	2	1		0.54256204	x	10^{2}
	0	3	1	-	0.23079148	x	10 ²
	0	4	1		0.54686297	х	10 ¹
	0	5	1	-	0.73025711		
	0	6	1		0.51319283	x	10-1
•	0	7	1	-	0.14735746	x	10-2
	Co co	rre eff	latio	on nt	0.9411		
	St de	and via	ard tion		0.2201		

Table 23. Numerical values of B_{ijk} 's for function $F^2(4p, 3d)$ [eV]

					and the second			_
	i	j	k		B _{ijk}			
	0	0	0	-	0.42013352	x	10 ²	
	1	0	0	-	0.10733315	x	10 ²	
	2	0	0		0.13420003	x	101	
	3	0	0	-	0.35139129	x	10-1	
	0	1	0		0.38809453	x	103	
	0	2	0	-	0.24670376	x	103	
	0	3	0		0.36228208	x	10 ²	
	0	4	0	-	0.26679394	x	101	
	0	0	1	-	0.15030779	х	103	
	1	1	0	-	0.43605595	x	10 ²	
	1	2	0		0.31246634	х	10 ²	
	1	3	0	-	0.45599939	х	10 ¹	
	1	4	0		0.30507551			
	1	0	1		0.16949370	х	10 ²	
	2	1	0		0.14636800	x	101	
	2	2	0	-	0.13003577	х	10 ¹	
	2	3	0		0.19425625			
	2	4	0	-	0.12063524	х	10-1	
	2	0	1	-	0.62080669			
	3	1	0	-	0.12170482	х	10-1	
	3	2	0		0.17317047	х	10-1	
	3	3	0	-	0.27233876	х	10-2	
	3	4	0		0.16160382	x	10-3	
	3	0	1		0.74668203	x	10-2	
	0	1	1	-	0.18199613	х	10 ¹	
	0	2	1		0.55839395			
	0	3	1	-	0.69845921	х	10-1	
	0	4	1		0.32721052	x	10-2	
-	Co	rre eff	lat	ion ent	0.9765	a.)		
	St de	and	ard	n	0.2411			

Table	24.	Nume	erical	va.	lues	of	Bij	k's
		for	funct:	ion	G ³ (4	φ , 2	3a) (eV]

.

i	j	k	B _{ijk}	
0	0	0	0.10108317×10^3	
1	0	0	$-0.36844253 \times 10^{1}$	
2	0	0	- 0.23070281	
0	1	1	-0.64177691×10^3	
0	2	0	0.23328989×10^3	
0	3	0	0.13705945×10^3	
0	4	0	-0.11643706×10^3	
0	5	0	0.30966279×10^2	
0	6	0	- 0.35575376 x 10 ¹	

Chem. zvesti 32 (5) 592-606 (1978)

Resulting functions for $F^2(3d, 3d)$ and $F^4(3d, 3d)$ have the form of eqn (18), for $G^2(4s, 3d)$; $G^1(4p, 3d)$, $F^2(4p, 3d)$, $G^3(4p, 3d)$, $F^0(4s, 3d)$, and $F^0(4p, 3d)$ the form of eqn (16), for $G^1(4s, 4p)$ the form of eqn (15), for $F^0(4s, 4s)$ and $F^0(4s, 4p)$ the form of eqn (14) and for $F^0(3d, 3d)$ the form of eqn (17). Numerical values of coefficients B_{ijkl} , B_{ijk} , and B_{ij} are listed in Tables 13—24, where also the correlation coefficients of individual regression functions are included. Functional values of approximative expressions for electron configurations, available from spectral data, are listed in Tables 1—12 under the symbol Approximative. In these tables under the symbol Deviation the deviations of approximative values from experimental values of relevant integrals are also listed.

From the comparison of experimental and approximative values of individual Slater—Condon parameters it follows that suggested functions well agree with the dependence of spectral values on the electron configuration of an atom (ion). Therefore, we can use them for interpolation of the values relevant to noninteger electron configurations obtained by the population analysis in LCAO MO calculations. The analysis of the parameters $F^{0}(4p,4p)$, $F^{2}(4p,4p)$, $R^{1}(4s,3d,3d,3d)$, $R^{1}(4s,4p,4p,3d)$, and $R^{2}(4s,4p,4p,3d)$ which are necessary for enumeration of the monocentric repulsion integrals in the framework of LCAO MO approximation should be the content of the next paper of this series.

References

- 1. Burton, P. G., Coord. Chem. Rev. 12, 37 (1974).
- 2. Pelikán, P., Turi Nagy, L., Liška, M., and Boča, R., Chem. Listy 69, 915 (1975).
- 3. Davies, D. R. and Webb, G. A., Coord. Chem. Rev. 6, 95 (1971).
- 4. Čársky, P., Chem. Listy 66, 910 (1972).
- 5. Klopman, G. and O'Leary, B., Fortschr. Chem. Forsch. 15, 445 (1970).
- 6. Anno, T. and Teruya, H., J. Chem. Phys. 52, 2840 (1970).
- 7. Anno, T. and Teruya, H., Theor. Chim. Acta 21, 127 (1971).
- 8. Klopman, G. and Polák, R., Theor. Chim. Acta 22, 130 (1971).
- 9. Pelikán, P. and Turi Nagy, L., Chem. Zvesti 28, 594 (1974).
- 10. Hinze, J. and Jaffé, H. H., J. Chem. Phys. 38, 1834 (1963).
- 11. Tondello, E., de Michelis, G., Oleari, L., and di Sipio, L., Coord. Chem. Rev. 2, 65 (1967).
- 12. Anno, T., J. Chem. Phys. 47, 5535 (1967).
- Moore, C. E., Atomic Energy Levels as Derived from the Analysis of the Optical Spectra, Vol. 1-3. National Bureau of Standards, Circular No. 967. Washington, D.C., 1971.

Translated by M. Kozlík