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The basic formulae of the EMOA method have been simplified in the 
present paper. This method is a general one for the construction of hybrid 
atomic orbitals in arbitrary polycentric molecules and is based on the maximum 
overlap principle. Resulting simple matrix equations for hybridization coeffi­
cients can be solved by a fast converging iterative procedure so that much 
computing time is saved. 

Общий метод ЭМОА конструкции гибридных атомных орбиталей 
в любых многоатомных молекулах, основанный на принципе максималь­
ного перекрывания, был значительно упрощен. Результирующую мат­
ричную формулу для коэффициентов гибридизации можно решить быс­
тро сходящимся итеративным процессом при большом сокращении вы­
числительного времени. 

То the most progressive quantum chemical methods for the calculation of 
ground-state molecular properties proposed in the recent decade belongs the 
PCILO (Perturbative Configuration Interaction using Localized Orbitals) method 
[1—4]. In this method, the zeroth-order wave function is constructed using the 
basis set of strictly localized (two-centre) molecular orbitals (SLMOs). Then, the 
many-body perturbation theory is applied and the corrected (perturbed) wave 
function, the electronic energy, and electronic properties of the molecule are 
expressed by algebraic formulae in which only the integrals over the basis set of 
SLMOs occur. In order to obtain the basis set of SLMOs it is suitable to apply the 
well-known principle of hybridization; any SLMO can be calculated in the form of 
a linear combination of a pair of hybrid atomic orbitals. 

However, the construction of the hybrid atomic orbitals (HAOs) from pure 
atomic orbitals is not a trivial problem in the general case. First of all, in a molecule 
which possesses little or no symmetry, the criteria for determining optimum hybrids 
are not unambiguously defined. The most commonly used criteria are: (i) criteria 
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based on properties of projection operators [5—9]; (ii) the geometric criteria 
[10—13]; (iii) the maximum overlap criterion [14—22]. It must be pointed out that 
the maximum overlap criterion gives the HAOs which can be deviated from the 
directions of bonds. 

The general method for construction of HAOs in polycentric molecules, based 
on the maximum overlap criterion, was proposed in paper [23]; it is called the 
EMOA (Extended Maximum Overlap Approximation) method. Some of its 
applications were described in the previous papers of this series [23—26]. In this 
method the hybridization coefficients are calculated solving a matrix equation by 
an iterative procedure. As a matter of fact, the EMOA method in its original form 
is rather time-consuming, as the diagonalization of a large-dimensional matrix is 
used in each step of the iterative procedure. In order to save the computing time, 
the basic matrix formulae of the EMOA method are simplified in this paper. 
However, only the sub-set of bonding HAOs can be obtained by the EMOA 
method. Then, additional criteria for construction of nonbonding HAOs (lone 
lobes) are to be proposed. It is the second problem on which this paper is 
concentrated. 

Method 

In the presented method, the total binding energy of a molecule, e, is written in 
the form of a sum of particular binding energies, ET/1 > over all bonds [23, 25] 

G Nm Nn 

8 = 2 2 X 2 Е?/(1 - Ôrn,n) Ôf(m,0lf(nJ) (1) 

Неге, G is the number of atoms and Nm is the number of bonding HAOs on the 
individual w-th atom. An a priori stated bonding situation in a molecule can be 
fully described by the discrete topological function f(m,i); the values of this 
function are equal to the ordering numbers of bonds (Fig. 1). The topological 

Fig. 1. Numbering system for definition of the topological function. 
О Atoms; -* HAOs; bonds (including lone lobes as nonconnected bonds). 
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function is useful for selecting a pair of HAOs грТ and ip" which "form" a given 
//-th bond on the condition f(m,/) = /i = f(n,/). In eqn (Í), according to the 
maximum overlap principle, the particular binding energies are directly propor­
tional to the overlap integrals of optimum HAOs 

E7f = KZ;n (грГ\ yl) (2) 

The weighing parameters КТГ are regarded as transferable from one molecule to 
another and they can be evaluated in a semiempirical way [23, 25]. The hybridiza­
tion coefficients, a™*, which transform a basis set of atomic orbitals {#ľ} into a set 
of bonding HAOs {г/>Г} (on each m-th atom) can be arranged into a block-
-diagonal (nonsquare) matrix A defined as 

fll.l . . flR,.l 

/ ON,.! flNbR, 

Я.М ai.Rm 

(3) 

or 
W=A ti) (4) 

In order to obtain an equation for the hybridization matrix A, eqn (Í) is to be 
rewritten in the matrix form as follows 

where 

£ = ^ T r ( £ ) 

E = ASATQ1 

(5) 

(6) 

In eqn (6), S is the overlap integral matrix of atomic orbitals, and the topological 
weighing parameters matrix Q is defined as 

Qp,q ~ Л,,/ ( 1 — О ш > л ) öf(m,i),f(„,/) (7) 

for indices 
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р=ЛГ, + ЛГ 2 +... + ЛГт-1 + / (8) 

q=Nl + N2+... + Nn-l+j (9) 

As it was proved in paper [23], for optimum HAOs which maximize the molecular 
binding energy the following equation holds 

A=(QASTSATQT) l2QAST (10) 

It is the basic formula of the EMOA method which can be solved by an iterative 
procedure. Eqn (6) slightly differs from the original form [23] in the definition of 
the matrix Q but it is more convenient for molecules consisting of я bonds. In order 
to calculate the inverse square roots in eqn (10), the diagonalization procedure is 
to be used in each iteration. It is, of course, the most time-consuming step of the 
EMOA method. This step is tedious especially in the case of a large number of 
bonding HAOs in a molecule. 

In order to exclude the diagonalization of large-dimensional matrices, eqn (10) 
is to be modified. It was pointed out that the matrix A must take a block-diagonal 
form. This condition was secured in the original form of the EMOA method by 
additional neglecting overlap integrals between formally nonbonded HAOs at each 
step of the iterative procedure. However, this condition is equivalent to the other 
one, e.g. the matrix QAST is to be a block-diagonal one; the form of the matrix 
QAST must be the same as the form of the matrix A. Owing to the block-diagonal 
form of matrices A and QAST, eqn (10) is fully factorized on a set of the following 
equations 

Am = (BmBl)-l/2Bm (11) 

Here, Am is the matrix of hybridization coefficients, a™k; it transforms a basis set of 
pure atomic orbitals into a set of bonding HAOs on the given m-th atom. In eqn 
(11), the matrix Bm is defined as 

G Nn Rn 

(ВД.* = 2 2 2 <*Г IX7) ab KT," (1 - ômjt) 6l(m,i)J(nJ) (12) 
n i I 

(Rn is the number of AOs on the я-th atom.) Then, the formula for the molecular 
binding energy takes the form 

e=\t^[(BmBiyn] (13) 

Eqns (11) and (12) can be solved by the following iterative procedure. Firstly, 
an initial approximation of hybridization coefficients is to be chosen. For example, 
we can start from canonical (sp, sp2, sp3, etc.) HAOs: they determine the initial 
approximation of matrices (0)Am. Then, the first approximation of ( 1 )Sm is calcu-
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lated by means of eqn (12), and the matrix product ( в ш в „ ) is diagonalized with an 
unitary matrix Um 

(BmBT

myV2 = UT

mD-m

V2Um (14) 

Here, in conformity with the postulate of the maximum trace of the matrix E, we 
accept the positive sign of the square roots of the reciprocal elements of the 
diagonal matrix Dm. Finally, the first approximation of the matrix ( 1 ) 4 m is 
calculated using the equation 

wAm = CBm

wBlrinmBm (15) 

This process is repeated up to the self-consistency and its convergence is rapid 
(after 4—6 iterations). By the simplified approach proposed here only the number 
G of matrices BmBT

m is to be diagonalized; the maximum dimensions of these 
matrices are 4 (or less than 4) in the valence s—p basis set and 9 (or less than 9) in 
the valence s—p—d basis set. 

The calculation off the lone lobe functions (nonbonding HAOs) is the second 
problem dealt with in this paper. By the EMOA method only the number Nm of 
bonding HAOs has been calculated on each w-th atom. Full basis set of 
orthonormal HAOs (that includes both the sub-set of bonding HAOs and the 
sub-set of lone lobes) contains Rm functions on the m-th atom. It is important to 
point out that, in the general case, an infinite number of different sub-sets of lone 
lobes can be constructed for which the orthogonality conditions are well fulfilled, 
e.g. the lone lobes are orthogonal with bonding HAOs and also with themselves. 
For example, we can apply the Schmidt's orthogonalization process starting from 
the sub-set of bonding HAOs to which the number Rm - Nm of linear independent 
functions is added. However, the finding of these linear independent functions is 
not a trivial problem, in the general case. 

In order to obtain the lone lobe functions, the use of the projection operators' 
technique is proposed here. The matrix 

Pm = AlAm (16) 

is a projector defined in the sub-space of bonding HAOs as the following equations 
are fulfilled 

P2

m=Pm (17) 

Tr(Pm) = Nm (18) 

Then, the complementary projector 

Lm = L-Pm (19) 

(lm is the unit matrix) is defined in the sub-space of the lone lobes and it holds 
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Li = Lm (20) 

Tr(Lm) = Rm-Nm (21) 

From the total number Rm , only the number Rm - Nm of rows in the matrix Lm is 
linearly independent. In practice, we construct a trial square matrix 

A : = ( i l ) (22) 

where the nonsquare matrix L^ is represented by the selected number Rm —Nm of 
rows of the square matrix 

Lm=lm-AT

mAm (23) 

If the trial matrix A'm has the nonzero determinant, the Schmidt's orthogonalization 
process can be applied on rows of the matrix A'm and the resulting matrix (after 
normalization of rows) is obtained. 

We often wish to construct a set of lone lobes which are equivalent in their 5, p or 
d characters. In the valence s—p basis set the s character, ns, and the p character, 
np, of a lone lobe are defined as 

Nm l/2 

«. = {[l-f («и)2]/(Я«-^)} (24) 
пР = (\-п1Г (25) 

The construction of the equivalent sub-set of lone lobes is usually based on the 
geometric ideas [27]. Here, the alternative algebraic way is proposed. The resulting 
(equivalent) lone lobe АГ={я"; «ľ^; я " у ; <СЛ is calculated in the form of 
a linear combination of two normalized initial lone lobes as 

A7 = aA7 + ßA: (26) 

f or r, t Ф и e (Nm + 1, Rm). From the condition of the given ns or np character of the 
lone lobe A?, the following equations are obtained for the coefficients a and ß 

aZ = nt = aaZ + ßaZ (27) 

a2 + ß2=l (28) 

Eqns (27) and (28) have the solutions 

a = (n5aZ ± aZ VĎ)/[(<C)2 + « ) 2 ] (29) 

ß = (n5-aaZ)/aZ (30) 

if the following conditions are fulfilled 
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D = (aZs)
2 + (a7,)2-n>0 (31) 

- l ^ a , / S ^ + l (32) 

In the case of the valence s—p—d basis set the process proposed here can be 
generalized: in the combination via eqn (26) more initial normalized vectors are to 
be considered. 

Results and discussion 

In order to demonstrate applications of the EMOA method on calculations of 
polyatomic molecules, Cu(NH3)2(NCX)2 complexes were chosen (X = O, S). Here, 
15 atoms, 47 AOs, and 36 bonding HAOs are to be considered. Calculations in 
plane geometries were performed using the Slater [28] basis set of AOs with 
exponents for the Cu-AOs according to Gouterman [29]. The bonding situation 
with 14a and 4л bonds was considered and the corresponding bonding model is 

Fig. 2. Bonding model of the Cu(NH3)2(NCX)2 complexes (X = O, S). 

illustrated in Fig. 2. The topological function describing this bonding situation is 
given in Table 1. All weighing parameters KT/ were equal to 1.0 in the calcula­
tions, e.g. eqns (1), (5) or (13) correspond to the sum of the overlap integrals of 
bonding HAOs over bonds. For the individual iterations, the trace of the matrix E 
is listed in Table 2. Starting from the basis set of canonical HAOs the convergence 
of the iterative procedure is good for the complex when X = S. Using the calculated 
EMOA-HAOs of the complex for X = S as a starting set in calculations of the 
complex for X = 0, the convergence of the EMOA method is accelerated (Tab­
le 2). The resulting HAOs in the dßspa form are listed in Table 3. 

In the presented calculations a diagonalization of large-dimensional matrices is 
unnecessary; only 15 small matrices are to be diagonalized in each step of the 
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Table 1 

Topological function f (m, /) describing the bonding situation in Cu(NH3)2(NCX)2 complexes 

Atom 
z'-th bonding H АО on the m-th atom 

Cu 

N 

С 

X 

N 

С 

X 

N 

H 

H 

H 

N 

H 

H 

H 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

6 

1 

2 

5 

7 

10 

10 

11 

12 

13 

14 

15 

16 

17 

18 

1 

2 

5 

6 

7 

12 

16 

11 

3 

3 

8 

8 

13 

17 

15
1 

4 

4 

9 

9 

14 

18. 

• f ( m , i ) 

Table 2 

Convergence of the EMOA method for Cu(NH3)2(NCX)2 complexes 

Trace of the matrix E 
Iteration 

X = Sa 

1 
2 
3 
4 
5 
6 
7 
8 
9 

16.646000 
19.447232 
19.642283 
19.661161 
19.662689 
19.662856 
19.662879 
19.662882 
19.662883 

a) Start from canonical HAOs. 
b) Start from resulting HAOs of X = S. 

X = O
b 

19.831090 

19.859515 

19.859547 

19.859547 
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Table 3 

Resulting hybridization in dßspa on individual atoms of 
Cu(NH3)2(NCX)2 complexes 

Bond 

A—В No. 

N—Cu 11 
N—Cu 1 
N—С 2 
C—X 5 

A(o) 

2.406 
0.864 
1.157 
1.218 

x=o 

B(a) 

2.227 
1.896 
0.821 
0.602 

B(ß) 

1.227 
0.896 

A(a) 

2.408 
0.802 
1.247 
0.900 

x=s 

B(a) 

2.239 
1.886 
1.111 
1.192 

Biß) 

1.239 
0.886 

iterative procedure. There are 7 matrices of the dimension 4 x 4 (1 for Cu, 4 for N, 
and 2 for С atoms) and 8 matrices of the dimension l x l (6 for H and 2 for 
X = O, S atoms). Results obtained by means of eqns (11) and (12) are exactly the 
same as those produced by the original form of the EMOA method, but the 
computing time is much shorter. It is the principal result of this communication. 

The second application presented here concerns the dependence of the PCILO 
method on the use of various sets of lone lobes. In the PCILO method, the 
second-order ground-state molecular energy can be written in the form 

E?> = E? + E% + E™ (33) 

where £? } is the zeroth-order ground-state molecular energy (that corresponds to 
the single Slater determinant of occupied SLMOs), Ела is the second-order 
derealization energy, and E™ is the second-order correlation energy. The method 
for calculating the individual energy terms (the modified PCILO method) is 
described elsewhere [3, 4] on the CNDO/2 or INDO levels of Hamiltonian 
approximations. In the HF molecule (with the bonding model H—Fi) the bonding 
H АО on the fluorine atom was maintained in sp0595 as it follows from the EMOA 
method. Three different sub-sets of lone lobes were considered: (i) a set with two 
pure AOs of the p type; (ii) a set of nonequivalent lone lobes produced by the 
Schmidt's orthogonalization procedure; and (iii) a set of equivalent lone lobes. The 
resulting individual energy terms obtained by the modified PCILO method are 
listed in Table 4. As the single Slater determinant is invariant with respect to 
unitary transformation applied on the set of occupied spin-orbitals, so the 
zeroth-order ground-state energy E? has to be maintained by all sub-sets of lone 
lobes. It is well fulfilled in our calculations (Table 4). However, the corrected 
second-order ground-state energy depends on the use of lone lobes. As for 
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Table 4 

Molecular energy terms (eV) of HF molecule in the second order of the perturbation theory obtained by 
the modified PCILO method using various basis sets of HAOs 

Hybridization 
in spa form 

Bonding HAO 
Lone lobe 
Lone lobe 
Lone lobe 

1 
2 
3 
4 

a 

0.595 
1.680 

Pure px 

Pure py 

Basis set of HAOs 

b 

0.595 
7.041 

15.082 
4.361 

с 

0.595 
7.041 
7.041 
7.041 

A) CNDO/2 Hamiltonian 

- E?> 
Б(2) 

del 

- £«r 
- E? 

770.162 
1.793 
0.175 

772.131 

770.162 
2.124 
0.175 

772.462 

770.162 
2.157 
0.175 

772.495 

B) INDO Hamiltonian 

- E? 
- Eľeí 

£<2> 
- E?> 

734.600 
1.820 
0.273 

736.693 

734.600 
2.142 
0.270 

737.013 

734.600 
2.174 
0.270 

737.044 

a) Nonequivalent lone lobes; two pure AOs (px and py). 
b) Nonequivalent lone lobes. 
c) Equivalent lone lobes. 

calculations it can be concluded that the best molecular energy after perturbative 
configuration interaction is produced with the sub-set of equivalent lone lobes. It is 
the second principal result of this communication. 

References 

1. Diner, S., Malrieu, J. P., Jordan, F., and Gilbert, M., Theor. Chim. Acta 15, 100 (1969). 
2. Jordan, F., Gilbert, M., Malrieu, J. P., and Pincelli, U., Theor. Chim. Acta 15, 211 (1969). 
3. Boča, R. and Pelikán, P., Theor. Chim. Acta 50, 11 (1978). 
4. Boča, R., Collect. Czech. Chem. Commun. 44, 3141 (1979). 
5. Polák, R., Int. J. Quantum Chem. 4, 271 (1970). 
6. Polák, R., Int. J. Quantum Chem. 6, 1077 (1972). 
7. Roby, K. R., Mol. Phys. 28, 1441 (1974). 

Chem. zvesti 34(1) 18—28 (1980) 
27 



R. BOČA 

8. Boyle, L. L., Chem. Phys. Lett. 5, 493 (1970). 
9. Deplus, A., Leroy, G., and Peeters, D., Theor. Chim. Acta 36, 109 (1974). 

10. Pauling, L., /. Amer. Chem. Soc. 53, 1367, 3225 (1931). 
11. Slater, J. C, Phys. Rev. 38, 1109 (1931). 
12. Del Re, G., Theor. Chim. Acta 1, 188 (1963). 
13. Del Re, G., Int. J. Quantum Chem. 1, 293 (1967). 
14. Murrell, J. N., J. Chem. Phys. 32, 767 (1960). 
15. Golebiewski, A., Acta Phys. Pol. 23, 243 (1963). 
16. Gilbert, T. L. and Lykos, P. G., J. Chem. Phys. 34, 2199 (1961). 
17. Lykos, P. G. and Schmeising, H. N., J. Chem. Phys. 33, 288 (1961). 
18. Mártensson, O. and Öhrn, Y., Theor. Chim. Acta 9, 133 (1967). 
19. Lindner, P. and Mártensson, O., Acta Chem. Scand. 23, 429 (1969). 
20. Randič, M. and Maksič, Z. В., Theor. Chim. Acta 3, 59 (1965). 
21. Randič, M. and Maksič, Z. В., Chem. Rev. 72, 43 (1972). 
22. Hubač, L, Laurinc, V., and Kvasnička, V., Chem. Phys. Lett. 13, 357 (1972). 
23. Boča, R., Pelikán, P., Valko, L., and Miertuš, S., Chem. Phys. 11, 229 (1975). 
24. Miertuš, S., Boča, R., Pelikán, P., and Valko, L., Chem. Phys. 11, 237 (1975). 
25. Boča, R., Pelikán, P., and Valko, L., Chem. Zvesti 33, 289 (1979). 
26. Boča, R., Pelikán, P., and Valko, L., /. Mol. Struct. 50, 161 (1978). 
27. Claverie, P., Daudey, J. P., Diner, S., Giessner-Prettre, CI., Gilbert, M., Langlet, J., Malrieu, J. P., 

Pincelli, U., and Pullman, В., QCPE, Program No. 220. Indiana University, Indiana. 
28. Slater, J. C, Phys. Rev. 36, 57 (1930). 
29. Zerner, M. and Gouterman, M., Theor. Chim. Acta 4, 44 (1966). 

Translated by R. Boča 

28 Chem. zvesti 34(1) 18—28 (1980) 


