Dependence of spin-orbit interaction constants on electron configuration of atoms and ions

*P. PELIKÁN, *M. LIŠKA, *P. ČERNAY, and L. TURI NAGY

*Department of Physical Chemistry, Slovak Technical University, 880 37 Bratislava

^bDepartment of Inorganic Chemistry, Slovak Technical University, 880 37 Bratislava

^cInstitute of Experimental Pharmacology, Slovak Academy of Sciences, 881 05 Bratislava

Received 26 October 1979

Accepted for publication 19 March 1980

New method for evaluation of spin-orbit interaction constants was used for the systematic determination of ξ_p and ξ_d constants from the atomic spectral data of Moore for the atoms and ions from Be to Zn. The obtained results have shown the significant dependence of spin-orbit interaction constants on the electron configuration of atoms (ions). This dependence was approximated by polynomial functions of s, p, d atomic orbital electron populations. The results obtained may be used in semiempirical all valence (mainly ZDO) methods of quantum chemistry.

Был применен новый метод расчета констант спин-орбитального взаимодействия ξ_p и ξ_d по спектральным данным атомов Мура для атомов и ионов от Ве до Zn. Полученные результаты показывают на отчетливую зависимость констант спин-орбитального взаимодействия от электронной структуры атомов (ионов). Полученные результаты можно использовать в полуэмпирических методах квантовой химии, беря во внимание все валентные электроны (особенно ПДП).

Detailed studies of electron structure of molecules suggest that inclusion of spin-orbit interaction (SOI) plays the important role for correct theoretical interpretation of some experimental results (magnetic phenomena, electronic spectra, photoelectron spectroscopy, *etc.*). Previous works in this field dealt preferentially with techniques permitting inclusion of SOI in the MO calculations [1-3]. As the greater part of results of those calculations is approximately linear

function of the used SOI constants, the necessity of correct parametrization of these constants becomes topical. The previous procedures of semiempirical parametrization have dealt with those cases of electron configurations obtained only from multiplet structure of the basic term. The calculation in this case is reduced to enumeration of the well-known expression [4-6]

$$\Lambda = \pm \frac{\xi}{2S} \tag{1}$$

where Λ is the Lande's parameter and S is the spin quantum number. Dunn [2] has evaluated by means of eqn (1) an extensive set of ξ_d constants for atoms and ions of the first two transition series with electron configurations d^{α} , $d^{\alpha-1}s^1$, $d^{\alpha-2}s^2$. This author has used an extrapolation for the cases in which the experimental data were not known. He has supposed that ξ_d for the given atomic number Z depends only on the number of d electrons and its change within the period is for a given electron configuration proportional to $(Z - \sigma)^4$; σ being a screening constant [7]. But one needs to include also general electron configurations $d^{\alpha}s^{\beta}p^{\gamma}$ in which occur both the SOI constants ξ_d and ξ_p , if one wishes to comprehend the dependence of SOI constants on the electron configuration of the atom.

Method and results

An approximative generalization of the SOI operator for the case of nonequivalent electrons in open-shell levels can be formulated [8] in the form

$$\boldsymbol{V}_{so} = \sum_{i} \boldsymbol{\xi} (\boldsymbol{n}l)_{i} \boldsymbol{I}_{i} \boldsymbol{s}_{i} = \sum_{i} \frac{\alpha^{2}}{2} \left\langle \boldsymbol{r}^{-1} \frac{\partial \boldsymbol{V}}{\partial \boldsymbol{r}} \right\rangle_{i} \boldsymbol{I}_{i} \boldsymbol{s}_{i}$$
(2)

where α is the fine splitting constant and V(r) is the averaged Coulomb potential of the nucleus and the other electrons. We understand under the term "nonequivalent electrons" the electrons with different quantum numbers n or l. The eqn (2) defines simultaneously also the effective SOI constants for the case of nonequivalent electrons.

In electron configurations $d^{\alpha}s^{\beta}p^{\gamma}$ these constants may be abbreviated as ξ_{p} and ξ_{d} and V_{so} may be written as a function [9]

$$\boldsymbol{V}_{so}\left(\boldsymbol{\xi}_{p},\boldsymbol{\xi}_{d}\right) = \boldsymbol{\xi}_{p} \sum_{i \in p} \boldsymbol{I}_{i} \boldsymbol{s}_{i} + \boldsymbol{\xi}_{d} \sum_{i \in d} \boldsymbol{I}_{i} \boldsymbol{s}_{i}$$
(3)

We can, assuming validity of the LS scheme and knowing wave functions of the given atomic term, enumerate the actual spin-orbit splitting as a function of the effective SOI constants by numerical optimization of the criterion of maximal agreement between the calculated and the experimental spin-orbit splitting constants of the given term. The SOI constants obtained in this way depend on the

electron configuration of the atom (ion). It is advantageous to approximate these functions of discrete arguments by continuous functions dependent on the electron configuration (electron populations of individual atomic orbitals). These functions can be used as configuration dependent parameters [10–13] for a computation of some physical properties of compounds containing atoms from Be to Zn.

The proposed method of semiempirical evaluation of the effective SOI constants has several advantages [9]. A transition from configurations with equivalent electrons to configurations with nonequivalent electrons in open shells does not cause principal complications if a sufficiently general algorithm for generation of wave functions of atomic terms is used. The values, optimizing the chosen criterion of agreement between calculated and experimental splittings of the given atomic terms are taken as the best estimates of the SOI constants. Sum of squares of deviations of measured and calculated values is one of the most used criteria. The spectral energies of J levels are in our case the experimental values [14]. Because these values have normal error distribution with constant dispersion, we can use the criterion of the minimum of the sum of squares of deviations

$$F(\xi_{p},\xi_{d}) = \sum_{i}^{N} \left\{ E_{LS}^{calc}(J_{i},\xi_{p},\xi_{d}) - E_{LS}^{exp}(J_{i},\xi_{p},\xi_{d}) \right\}^{2} = \min$$
(4)

where N is the number of experimentally available levels J_i of the given term, $E_{LS}^{exp}(J_i, \xi_p, \xi_d)$ and $E_{LS}^{calc}(J_i, \xi_p, \xi_d)$ is spectral, resp. calculated energy of the *i*-th J level of the given spectral term. Solving this problem, we can reduce eqn (4) on an undetermined system of linear equations with respect to ξ_p and ξ_d , if we remember that the operator $V_{so}(\xi_p, \xi_d)$ is additive with respect to values of ξ_p and ξ_d . A detailed description of the used method for evaluating values of $E_{LS}^{calc}(J_i, \xi_p, \xi_d)$ and for solving eqn (4) is in [9].

This problem is for configurations $s^m p^n$ or $s^m d^n$ reduced on one linear equation for one unknown, ξ_p or ξ_d , respectively. For the configurations with half-filled plevels of half-filled d levels it is possible to determine only the ξ_d/ξ_p ratio. But one needs one approximation more for the calculation of the individual SOI constants, ξ_p and ξ_d , for configurations $d^a s^b p^\gamma$. The approximation, that all values ξ_p are equal and all values ξ_d are equal in all terms of a given electron configuration, seems to be warranted. The obtained SOI constants will be used for study of electron structure of molecules and this purpose leads to use of values of SOI constants averaged across all terms of the given electron configuration. Using the mentioned presumption, one needs for determination of the constants ξ_p and ξ_d only two terms as we get a system of two equations for two unknowns. If the given electron configuration contains more than two terms, one can solve the under-determined system of linear equations using the least-squares procedure [9].

The SOI constants were obtained using the described method for spectral accessible electron configurations of atoms from Be to Zn. The SOI constants ξ_p^{spect} for atoms and ions with electron configurations $K(2)2s^m 2p^n$ (Table 1),

 $K(2)L(8)3s^m 3p^n$ (Table 2), $K(2)L(8)M(18)4s^m 4p^n$ (Table 3) and SOI constants ξ_p^{spect} and ξ_d^{spect} for electron configurations $K(2)L(8)3s^2 3p^6 3d^{\alpha} 4s^{\beta} 4p^{\gamma}$ (Table 7) were calculated as a weighted mean value from all the available spectral terms [14] in a given electron configuration. One can consider these values to be functions of discrete electron populations of individual atomic orbitals.

The electron configurations of atoms in molecules have in the framework of LCAO MO method usually noninteger values $d^v s^x p^y$, where v, x, y are nonnegative real numbers, obtained by population analysis. So, if one wishes to use the configurationally dependent values of SOI constants in LCAO MO calculation of electron structure of molecules, the mentioned discrete functions must be approximated by functions of continuous arguments v, x, y. The dependence of the effective SOI constants of atoms with electron configurations $K(2)2s^m 2p^n$, $K(2)L(8)3s^m 3p^n$, and $K(2)L(8)M(18)4s^m 4p^n$ was approximated by polynomial functions of the type

$$\xi_{\rho}^{\text{approx}}(x,y) = \sum_{i=0}^{N_{x}} \sum_{j=0}^{N_{p}} B_{ij} x^{i} y^{j}$$
(5)

where N_s , resp. N_p are maximal degrees of polynomial functions in variables x, resp. y. The dependence of the effective SOI constants of atoms of the first transition series on the electron configuration was approximated by polynomial function

$$\xi_{l}^{\text{approx}}(v,x,y) = \sum_{i=0}^{N_{p}} \sum_{j=0}^{N_{d}} B_{ij} v^{i} q^{j}$$
(6)

where l is p or d, q is the atomic charge defined by expression

$$q = Z^{\text{core}} - v - x - y \tag{7}$$

The values of the coefficients B_{ij} were obtained by the least-squares method and the optimal degrees of individual variables N_s , N_p , and N_d in the polynoms were obtained by maximization of correlation coefficient.

The values of coefficients B_{ii} as well as relevant statistic characteristics for individual atoms are listed in Tables 4, 5, 6, 8, and 9. In Tables 1, 2, 3, and 7 all spectral values ξ_l^{spect} , values calculated according to eqns (5) and (6) — ξ_l^{approx} and their deviations are shown. It is not possible in some cases to propose the approximative expressions because of insufficient number of spectral data.

The presented results show that the proposed regression functions sufficiently describe the dependence of SOI constants on the electron configuration of atoms (ions). Some greater deviations can be elucidated by the fact that the complete sets of spectral values for all terms of some electron configuration only once were taken for obtaining the constants of SOI (*e.g.* the terms with so-called degeneracy of name were excluded).

SPIN-ORBIT INTERACTION CONSTANTS

Table 1 Numerical values of SOI constants for atoms and ions with electron configurations $K(2)2e^{m}2r^{n}$ [meV]

Table 1 (Continued)

			K (2)28 ^m 2p ⁿ	[meV]		Atom	m	n	q	ξ_p^{spect}	ξ_p^{approx}	Deviation
			10				Ne	2	4	2	77.1837	74.0831	3.1007
Atom	m	n	Q	Espect	ξapprox	Deviation		1	5	2	75.0052	73.5659	1.4392
				P				2	5	1	64.6327	66.9027	-2.2700
Be ^N	0	1	1	0.4959				0	5	3	79.5097	80.2204	-0.7196
	1	1	0	0.2479									
	0	2	0	0.2479									
в	0	1	2	2.8101	2.7353	0.0748					Table 2		
	1	1	1	1.8419	1.9915	-0.1495	Num	eri	cal	valu	es of SOI	constants	for atoms
	2	1	0	1.3224	1.2476	0.0748		and	ion	a wi	th electro	on configur	ations
	0	2	1	1.8773	1.8773	0.0000			K	(2)1	(8)3° ^m 3° ⁿ	[mev]	avzono
	1	2	0	1.1689	1.1689	0.0000				(27)	1(0)]9 Jb	[mev]	
с	0	1	3	8.8436	8.8436	0.0000							
	1	1	2	6.6769	6.6769	0.0000	Atom	m	n	q	ξapect	ξapprox	Deviation
	2	1	1	5.2896	5.2896	0.0000					P	P	
	0	2	2	6.3051	6.3051	0.0000	Na [#]	С	1	0	1.4051		
	1	2	1	4.8266	4.8266	0.0000	MgH	0	1	1	7.6038		
	2	2	0	3.6130	3.6130	0.0000	0	1	1	0	5.0475		
N	0	1	4	21.3238	21.3238	0.0000		0	2	0	5.0576		
	1	1	3	17.2858	17.1831	0.1027	41	0	,	2	10 2575	10 6580	-0.4014
	2	1	2	14.4638	14.4638	0.0000		1	÷	1	15 4615	14 6596	-0.4014
	0	2	3	16.2408	16.2408	0.0000		ò	2	÷.	15.1073	14.0000	0.8029
	1	2	2	13.2553	13.4093	-0.1539		Š	5	ċ	0.2569	0.6593	0.0000
	2	2	1	10.7328	10.7328	0.0000		4		0.	9.2900	9.0003	-0.4015
	1	4	0	5,9129	5.8616	0.0513		1	4	U	11.0009	11.0869	0.0000
~			-			0.01(0	Si	0	1	3	38.0192	38.0192	0.0000
0			2	44.0527	43.1358	0.9169		1	1	2	32.1805	32.1805	0.0000
	2		4	30.8031	37.1023	-0.2992		0	2	2	32.2868	32.2868	0.0000
	6	2	2	34 8017	35 6753	-0.8737		2	1	1	23.7206	23.7206	0.0000
	1	2	7	29 5450	30,8669	-1.3219		1	2	1	25.9894	25.9894	0.0000
	2	2	2	25 1848	26 0585	-0.8737		2	2	0	18.3803	18.3803	0.0000
	1			20.0510	17 9927	-0.0131	P	0	1	4	65.6244	65.6244	0.0000
	2	7	0	19 9074	19 8074	3.0092		1	1	3	57.5247	58.1094	-0.5847
	•	5	0	0 5007	11 1220	1.5746		0	2	3	58-6582	58.6582	0.0000
		,	U	3.7333	11.1339	-1.9340		2	1	2	46.2842	46 2842	0.0000
F	0	1	6	80.7495	78.3159	2.4346		1	2	2	48 6204	47 7433	0.0000
	1	1	5	69.4246	67.3345	2.0919		2	2	1	38.6627	38 6627	0.0000
	2	1	4	61.6572	59.7450	1.9121		1	-	0	26 7188	27 0112	0.0000
	0	2	5	65.9905	69.2366	-3.2461				U	20.7100	27.0112	-0.2924
	1	2	4	57.2708	60.4379	-3.1672	S	0	1	5	104.3870	104.3870	0.0000
	2	2	3	50.2987	53.1459	-2.8473		1	1	4	93.5662	93.2158	0.3504
	1	4	2	47.7787	46.6449	1.1337		0	2	4	97.6397	97.6397	0.0000
	2	4	1	40.8411	39.9479	0.8931		2	1	3	78.5179	78.6301	-0.1122
	1	5	1	39.6899	39.7484	-0.0585		1	2	3	81.0008	80.7989	0.2019
	2	5	0	33.3908	33.3489	0.0419		2	2	2	68.5054	68.3371	0.1683
	0	5	2	42.8129	42.0014	0.8115		1	4	1	53.9581	55.9652	-2.0071
Ne	2	1	5	108.7680	107,2176	1.5504		2	4	0	47.6952	47.7513	-0.0561
	ī	2	5	101.6601	101-6601	0.0000		1	5	0	45.0031	43.5483	1.4548
	2	2	4	91.1399	94.2405	-3,1007	Cl	0	1	6	156.2090	157.0690	-0.8600
			-					1	1	5	142.3418	140,6218	1.7200
	1	4	3	87.4804	87.4804	0.0000		0	2	5	151.4007	149 5277	1 8724
			_						-	-		14202213	1.0/24

Table 2 (Continued)

Table 3 (Continued)

Atom	m	n	q	$\xi_p^{\texttt{spect}}$	ξ_p^{approx}	Deviation
CI	2	1	4	123.3145	124.1745	-0.8600
	1	2	4	125.1151	128.8599	-3.7448
	2	2	3	110.0550	108.1826	1.8724
	1	4	2	88.9969	88.9969	0.0000
	2	4	1	82.9043	82.9043	0.0000
	1	5	1	79.6278	79.6278	0.0000
	2	5	0	65.3110	65.3110	0.0000
Ar	0	1.	7	224.6440	224.6440	0.0000
	1	1	6	205.8882	199.6261	6.2621
	0	2	6	224.6440	224.6440	0.0000
	2	1	5	182.6575	182.3968	0.2607
	1	2	5	172.9461	180.0176	-7.0715
	2	2	4	166.3930	165.9889	0.4041
	1	4	3	136.9670	140.8001	-3.8337
	2	4	2	130.9183	133.1732	-2.2540
	1	5	2	125.8353	121.1922	4.6431
	2	5	1	118.3555	116.7653	1.5902

Atom	m	n	q	$\xi_p^{\texttt{spect}}$	ξ ^{approx} p	Deviation
Br	0	1	6	626.4905	626.4905	0.0000
	1	1	5	584.1912	584.1912	0.0000
	0	2	5	806.0191	806.0191	0.0000
	2	1	4	503.3413	499.2447	4.0966
	1	2	4	353.7027	353.7027	0.0000
	2	4	1	327.6323	344.0189	-16.3866
	2	5	0	304.5669	292.2769	12.2899
KrĦ	1	4	3	502.1775		
	2	4	2	456.9390		
	2	5	1	443.9156		

Number of experimental points is insufficient for regression analysis.

		Т	able	4			
Numer	ical	valu	les of	coeffic	ients	B _{ij}	for
atoms	and	ions K(2)2	with s ^m 2p ⁿ	electron [meV]	conf	igure	ations

3.5933

B_{ij} Standard Correlation deviation coefficient

			Та	able	e 3				
Numeri	cal	va	lues	of	SOI	con	stants	for	atoms
and	io	าย	with	el	ectro	on c	onfigu	ratio	ons
	K (:	2)L	M(8)	(18)48	4p ⁿ	[meV]		

								1	0	-0.7793		
Atom	m	n	0	, spect	, approx	Deviation		0	1	-0.8580		
			4	ק< ק	קל			1	1	0.0355	0.1832	0.9898
Ga	0	1	2	141.9935	145.0516	-0.0581	С	0	0	11.3820		
	1	1	1	114.3056	108.1895	6.1161		1	0	-3.5019		
	0	2	1	117.8832	117.8832	0.0000		2	0	0.6469		
	2	1	0	68.2693	71.3274	-3.0581		0	1	-2.5385		
	1	2	0	84.0673	84.0673	0.0000		1	1	0.9455		
Ge	0	1	3	230.4295	234.1704	-3.7409		2	1	-0.2573	0.0000	1.00.00
	1	1	2	199.4592	191.8774	7.4818	N	0	0	26.4060		
	0	2	2	220.6236	220.6236	0.0000		1	0	-6.7936		
	2	1	1	146.0434	149.7843	-3.7409		2	0	1.3438		
	1	2	1	156.3283	156.3283	0.0000		0	1	-5.0830		
As	ĩ	1	3	305.5115	274.1471	31.3644		1	1	1.9423		
	0	2	3	367.7827	367.7827	0.0000		2	1	-0.6331	0.1921	0.9998
	2	1	2	242.9923	242.9923	0.0000	0	0	0	49.3000		
	1	2	2	184.3519	231.3985	-47.0466	-	1	0	-6.1341		
	1	4	0	161.5836	145.9014	15.6822		0	1	-5.5172		
Se	0	1	5	553,7581	545.4104	8.3477		0	2	-0.6478		
	1	1	4	432.6752	449.3706	-16 6954		1	1	-0.4616		
	0	2	4	563.7706	563.7706	0.0000		1	2	0.5622	2.3678	0.9903
	2	1	3	361-6784	353.3307	8.3477		~	•	07 2020		
	1	2	3	275.2261	275, 2261	0.0000	F		0	87.3930		
	1		1	230 6805	270 6805	0.0000			0	-15.8001	-	
	2	4	0	214 7436	214 7436	0.0000		2	0	2.6377		
·	-			2170/430	214.7430	0.0000		0	1	-9.0784		

Atom i

в

j

0 0

Table 4 (Continued)

Table 5 (Continued)

Atom	i	j	B _{ij}	Standard deviation	Correlation coefficient
F	1	1	3.1241		
	2	1	-0.9422	3.0127	0.9893
Ne	0	0	73.1542		
	1	0	24.4861		
	0	1	28.9942		
	0	2	-5.5158		
	1	1	-22.4348		
	1	2	3.2409	5.0438	0.9968

Atom	i	j	B _{ij}	Standard deviation	Correlation coefficient
Cl	0	3	3.8142		
	1	1	-47.2981		
	1	2	19.6136		
	1	3	-2.2532	3.5689	0.9986
Ar	0	0	224.6400		
	1	0	2.1009		
	2	0	-7.5102		
	0	1	0.0000		
	1	1	-31.0130		
	2	1	11.4045	5.7732	0.9954

Table 5 Numerical values of coefficients B_{ij} for atoms and ions with electron configurations K(2)L(8)3s^m3pⁿ [meV]

Table 6

Numerical values of coefficients B_{ij} for atoms and ions with electron configurations K(2)L(8)M(18)4s^m4pⁿ [meV]

Atom	i	j	B _{ij}	Standard deviation	Correlation coefficient					the Creek	
Al	0	0 ·	24.2100			Atom	i	j	B _{ij}	Standard deviation	Correlation coefficient
	1	0	-5.9803						03-5 MUSTLE (2013)	- A	
	0	1	-4.5517			Ga	0	0	172.2199		
	1	1	0.9799	0.9833	0.9922		1	0	-39.9083		
Si	0	0	43.7510				0	1	-27.1684		
	1	0	-3.4146				1	1	3.0462	7.4907	0.9917
	2	0	-1.9654			Ge	0	0	247.7172		
	0	t	-5.7324				1	0	-20.0908		
	1	1	-1.1135				0	1	-13.5468		
	2	1	0.6548	0.0000	1.0000		1	1	-22.1023	9.1633	0.9926
P	0	0	72.5900			As	0	0	242.8210		
	1	0	1.1123				1	0	74.0746		
	2	0	-5.2274				0	1	62.4808		
	0	1	-6.9662				1	1	-105.2294	58.6774	0.9389
	1	1	-6.4721			Se	0	0	415.0924		
	2	1	3.0722	1.0940	0.9994		1	0	312.6704		
S	0	0	111, 1303				0	2	-55.9789		
	1	0	0,1025				1	1	-516.8131		
	2	õ	-5-6041				1	2	108.1028	20.4476	0.9983
	0	1	-6.7473				~	•			
	1	i	-9.5664			Br		0	446.9619		
	2	÷	3.8969	1 4551	0.0002		1	0	683.4233		
			5.0,0,	1.4771	0.3332		2	0	-315.7055		
Cl	0	0	120.9505				0	1	179.5286		
	1	0	13.4905				1	1	-704.3989		
	0	1	65.5601				2	1	294.3818	20,8888	0.9989
	0	2	-33.2639								

Tible. 7 Numerical values of SOI constants \hat{S}_{p} and \hat{S}_{d} [meV]

Atom	ß	r	α	q	ξ ^{spect}	ξ ^{approx} ζp	Deviation	ξ ^{spect}	ξ ^{approx} d	Deviation
Ge	с	1	ι	2	39.18	38.60	C.58	-	_	-
	C	2	C.	1	28.55	29.04	-0.50	-	H	-
	1	1	С	1	28.39	29.04	-0.65	-	-	-
	Û	C.	1	2	-	-	-	9.82	10.21	-0.39
	C	Ċ	2	1	-	-	-	6.54	6.54	0.00
	C	C	3	С	-	-	-	5.78	5.05	C.73
	1	Ü	1	1	-	-	-	8.85	9.53	-0.68
	1	C	2	0	-	-	-	6.53	6.95	-C.42
	2	С	τ.	С	-	-	-	8.33	8.85	-0.52
	С	1	1	1	113.35	18.35	0.00	10.99	9.53	1.46
	C	1	2	0	11.35	11.92	-C.57	5.83	6.95	-1.07
	1	1	1	С	16.84	15.70	1.14	9.71	8.85	C.86
ті	c	1	U	3	67.61	65.88	-1.27	-	-	-
	1	1	C	2	52.75	56.85	1.90	-	-	-
	C	с.	1	3	-	-	-	19.04	19.75	-0.71
	0	C	2	2	-	-	-	15.01	15.54	-0.53
	()	0	3	1	-	-	-	11.95	11.95	G.0C
	ũ	С	4	0	-	-	-	10.68	9.55	1.13
	1	G	1	2	_	-	_	17.97	16.60	1.37
	1	С	2	1	-	-	-	14.01	14.22	-0.21
	1	0	3	С	-	-	_ •	11.52	12.64	-1.12
	2	0	1	1	-	-	-	11.51	13.40	-1.95
	2	C	2	0	-	-	-	13.68	12.89	C.79
	0	1	1	2	21.04	19.14	1.90	17.76	16.60	1.16
	0	1	2	1	26.72	26.72	C	15.49	14.22	1.27
	0	1	3	Ċ	13.15	13.78	-0.63	10.39	12.64	-2.25
	0	2	2	c	9.15	17.87	-8.72	15.02	12.89	2.13
	1	۱	1	1	17.87	21.67	-3.80	12.47	13.46	-0.99
	1	1	2	0	26.49	17.87	10.62	12.82	12.89	-0.07
v	0	1	С	4	104.97	103.95	1.02	-	-	-
	0	0	1	4	-	-	-	30.75	30.79	-0.04
	0	0	2	3	-	-	-	26.29	26.16	0.13
	0	C	3	2	-	-	-	20.37	20.37	0.00
	С	С	4	1	-	-	-	17.30	17.39	-0.09
	1	С	1	3	-	-	-	29.92	30.08	-0.16
	1	0	2	2	-	-	-	25.10	25.82	-0.72
	1	С	3	1	-	-	Ξ.	18.89	24.99	-6.10
	1	0	4	υ	-	-	-	16.16	17.11	-0.95
	2	0	3	0	-	-	-	18.35	18.48	-0.13
	0	1	1	3	67.90	74.51	-6.61	30.34	30.08	C.26
	С	1	2	2	62.94	49.18	13.76	26.16	25.82	0.34
	0	1	3	1	16.22	27.95	-11.73	31.35	24.99	6.36
	0	1	4	0	14.40	10.83	3.57	18.10	17.11	0.99
	1	1	2	1	13.46	13.46	0.00	16.04	15.91	0.13
Cr	0	1	0	5	150.59	141.14	-9.45	=	-	-
	o	0	1	5		-		47.46	46.57	0.89
	0	0	2	4	-	-	-	42.05	43.33	-1.28
	0	0	3	3	-	-	-	32.52	33.88	-1.36
	0	0	4	2	-	-	-	29.45	27.55	1.90

Atom	β	r	α	ą	5p ^{spect}	ξ ^{approx} p	Deviation	5d spect	ξdpprox	Deviation
Cr	0	0	6	0	. .	-	-	12.05	12.20	-0.15
	1	0	1-	4	-	-	-	45.72	46.99	-1.27
	1	0	2	3	-	-	-	39-51	37.95	1.56
	1	С	3	2	-	-	-	29.54	28.46	1.08
	1	0	4	1	-	-	-	27.62	22.90	4.72
	2	0	3	1	-	-	-	27.22	28.17	-C.95
	2	0	4	C	-	-	-	20.13	22.75	-2.62
	0	1	1	4	101.30	124.68	-23.38	46.46	46.99	-0.53
	0	1	2	3	114.43	101.02	13.41	40.85	37.95	2.90
	0	1	3	2	75.63	70.14	5.49	25.76	28.46	-2.70
	0	1	4	1	27.08	32.06	-4.98	17.14	22.90	-5.76
	1	1	4	0	34.47	34.47	0.00	26.32	22.75	3.57
Mn	0	1	0	6	203.73	200.90	2.83	-	-	-
	0	0	1	6	-	-	-	67.19	66.44	C.75
	0	0	2	5	-	-	-	62.33	62.78	-0.45
	0	0	3	4	-	-	-	47.81	50.22	-2.41
	0	0	4	- 3	-	-	-	41.92	37.14	4.78
	0	0	6	1	-	-	-	19.06	19.40	-0.34
	0	0	7	0	-	-	-	7.85	7.98	-0.13
	1	0	2	4	-	-	-	57.97	60.45	-2.68
	1	O	3	3	-	-	-	49.53	48.61	C.92
	1	0	4	2	-	-	-	42.75	38.55	4.20
	1	0	6	0	-	-	-	30.21	29.65	0.56
	2	0	4	1	-	-	-	42.15	39.96	2.19
	0	1	1	5	139.33	154.86	-15.53	66.28	67.46	-1.18
	C	1	2	4	138.13	115.10	23.03	65.17	60.65	4.52
	0	1	3	3	75.20	81.62	-6.42	48.63	48.61	0.02
	0	1	4	2	48.30	54.41	-6.11	27.81	38.55	-10.74
	0	1	6	0	21.04	18.84	2.19	29.65	29.65	0.00
Fe	0	1	0	7	277.95	272.40	5.55	-	-	-
	0	0	1	7	-	-	-	92.98	93.59	-0.63
	0	0	2	6	-	-	-	88.39	86.25	2.14
	0	0	3	5	-	-	-	66.09	69.93	-3.84
	0	0	4	4	-	-	-	59.31	56.14	3.17
	0	С	6	2	-	-	-	50.06	50.08	-0.02
	0	0	7	1	-	-	-	46.73	48.72	-1.99
	0	С	8	0	-	-	-	31.66	31.88	-0.22
	1	0	3	4	-	-	-	69.49	67.77	1.72
	1	0	6	1	-	-	-	50.46	49.30	1.16
	1.	0	7	C.	-	-	-	47.30	41.57	5.73
	2	0	6	C	-	-	-	49.85	51.27	-1.42
	0	1	2	5	194.38	219.38	-25.00	94.02	92.79	1.23
	0	1	3	4	207.41	185.19	22.22	64.01	67.77	-3.76
	0	1	6	1	49.17	51.94	-2.77	50.19	49.30	C.89
Co	0	0	3	6	-	-	-	87.46	87.46	0.00
	0	0	4	5	-	-	-	81.76	81.76	0.00
	0	0	7	2	-	-	=	65.65	65.65	0.00
	0	0	8	1	-	-	-	47.53	47.53	0.00
	0	0	9	0	-	-	-	48.30	48.30	0.00

Atom	ß	r	α	q	ξ ^{spect} p	ξ ^{approx}	Deviation	ζ ^{apect}	ξapprox	Deviation
Co	1	0	6	2	-		_	73.68	74.68	-1.00
	1	0	7	1	-	-	-	48.30	58.45	-10.15
	1	0	8	0	-	-	-	54.72	54.76	-0.04
	2	0	6	1	-	-	-	67.65	67.65	0.00
	2	C	7	0	-		=	69.37	69.10	0.27
	0	1	2	6	167.42	206.46	-39.04	197.59	197.59	0.00
	0	1	3	5	272.27	210.84	61.43	86.92	86.92	C.0C
	0	1	6	2	101.61	130.24	-28.63	75.68	74.68	1.00
	O	1	7	1	56.50	72.13	-15.63	68.59	58.47	10.12
	1	1	7	0	44.99	44.99	0.00	68.84	69.10	-0.26
Ni	Ü	С	3	7	-	-	-	110.40	85.30	25.10
	С	0	4	6	-	-	-	108.12	145.77	-37.65
	, ċ	C	8	2	-	-	-	70.21	61.93	9.28
	1	0	7	2		-	-	92.20	85.84	6.36
	1	C	8	1	-	-	-	77.50	73.81	3.69
	1	O	9	0	-	-	-	73.28	61.60	11.68
	2	C	8	0	-		-	64.43	85.70	-21.27
	c	1	2	7	230.60	190.86	39.74	194.74	209.08	-14.34
	C	1	3	6	106.83	164.85	-58.02	388.18	369.36	18.82
	0	1	7	2	113.95	78.31	35.64	98.29	85.84	12.46
	0	1	8	1	59.65	61.04	-1.39	78.67	73.81	4.86
	1	1	8	0	38.94	38.94	0.00	77.60	85.70	-8.10
	C	1	9	0	29.54	45.52	-15.98	76.81	61.60	15.21
Cu₩	C	0	9	2	-	-	-	102.75	110.60	-7.85
	1	0	8	2	-	-	-	104.68	100.57	4.11
	1	0	9	1	-	-	-	100.49	106.44	-5.95
	2	0	8	1	-	-	-	84.40	84.40	0.00
	2	C	9	0	-	-	-	101.26	102.27	-1.01
	0	1	8	2	98.18			96.47	100.57	-4.10
	С	1	9	1	39.79			128.09	106.44	21.65
	1	1	9	0	61.73			95.43	102.27	-6.84
Zn [#]	1	0	9	2	-	-	-	133.48		
	2	0	9	n.	-	-	-	134.79		
	0	1	9	2	69.05			199.32		
	0	1	10	1	72.15			-	-	-
	1	1	10	0	47.91			-	-	-

Table 7 (Continued)

* Number of experimental points is insufficient for regression analysis.

x

SPIN-ORBIT INTERACTION CONSTANTS

Table g. Numerical values of coefficients B_{ij} for ξ_p constants [meV]

Table 9 (Continued)

				<u></u>		Atom	i	j	B _{ij}	Standard deviation	Correlation
Atom	i	j	Bij	deviation	coefficient		0		4 0124		
Sc	0	~	10 1706			11		0	4.9134		
	,	0	19.4788				2	0	0.0200		
		•	-0.54				2		-1.4151		
	•	1	9.9028	1 1465	0.0074		,	-	4.7010		
			-0.9140	1.1409	0.9974		2		-0.0004	1 6055	0 8816
Ti	0	0	32.7850				٤		-0.0994	1.0099	0.0010
	1	0	-9.7059			v	0	C	-117.9582		
	2	0	1.1235				1	0	80.6180		
	0	1	12.0302				2	0	-11.7131		
	1	1	-27.5314				C	1	76.1483		
	2	1	12.9706	10.3110	0.9662		0	2	-10.4528		
v	0	0	-55.3510				1	1	-35.0927		
	1	0	16.5451				1	2	5.2368		
	0	1	39.8262				2	1	4.5781		
	1	1	-2.0528	13.8656	0.9729		2	2	-1.2023	4.0082	0.9070
Cr	0	0	225 2308			Cr	0	0	83.9462		
	1	0	-47 6912				1	0	-21.9859		
	0	1	-16.8197				2	0	1.6714		
	,		3 6037	20 8681	0.9611		0	1	-1.5297		
	÷.		5.0051	20.0001	0.9011		0	2	-1.3993		
	0	0	103.1201				1	1	-7.4408		
	1	0	-14.0474				1	2	2.5571		
	0	1	16.2953				2	1	1.8248		
	1	1	-3.1398	16.9660	0.9842		2	2	-0.4112	3.8729	0.9696
Fe	0	0	144.4909			Mn	0	0	111,2124		
	1	0	-21.0278				1	0	-49-8767		
	0	1	18.2725				2	0	12.2185		
	1	1	2.5575	34.0098	0.9867		3	0	-1.0286		
Co	0	0	371.1809				0	1	-9.0109		
	1	0	-46.5987				1	1	10.8129		
	0	1	-27.5423				2	1	-3.0118		
	T	1	7.8108	58,4831	0.9205		3	1	0.1959	4.9679	0.9787
	~	~	12 (110			D -	~	~	100 4400		
Tab		0	-13.6440			re		0	109.4429		
	1		0.2/32				1		-9.0977		
		1	29.0831	56 9076	0 9746		0	2	-00.3113		
			-0.8736	20.0930	0.8/46		0	2	32.0741		
							1	د ،	-2.1290		
							-	2	13.4922		
	le	. Nu	merical val	ues of coe	fficients		-	2	-4.5550	3 0010	0.0807
B: for ξ , constants [meV]					mev]			S	0.2012	3.9010	0.9897
		10	-u	-	-	Co	0	0	390.1795		
				Standard	Connelation		1	0	-73.4533		
Atom 	i	j	Bij	deviation	coefficient		2	0	3.9408		
							0	1	-359.4229		
Sc	0	0	10.7490				0	2	54.2337		
	1	0	-1.9015				0	3	1.7778		
	0	1	1.7730				1	1	77.4199		
	1	1	-1.0915	1.0602	0.9004		1	2	1.0894		
							1	3	-3.0891		

Table 9 (Continued)

Standard Correlation Standard Correlation Atom i j Bij Atom i j B_{ij} deviation coefficient deviation coefficient 1 -4.165C Ni 1 1 266.9767 Co 2 2 2 -1.0195 2 1 -33.9919 3 0.3848 7.2102 C.9944 3 1 1.6636 27.1555 C.9765 2 Ni C С 6061.9464 O 0 -204.0600 Cu 0 -1823.4321 С 34.0370 1 1 0 182.7496 112.1960 2 (1 3 C -6.0.249 1 1 -12.0035 12.7195 0.6302 C -823.9508 1

One must be very careful using the proposed regression functions for extrapolation of values of the SOI constants outer of the area defined by used spectral data because these functions were not tested outer of this area.

The obtained values of constants of spin-orbit interaction are the effective values because they represent the spin-orbit interaction and the other types of interactions included in the Hamiltonian. Use of these parameters in methods with configurationally dependent parameters ensures a consistency between the parametrization of the SCF calculation [10–13] and parametrization of the postprocessors.

References

- 1. Turner, D. W., Baker, C., Baker, A. D., and Brundle, C. R., *Molecular Photoelectron Spectroscopy*. Wiley—Interscience, New York, 1970.
- 2. Dunn, T. M., Trans. Faraday Soc. 57, 1441 (1961).

Table 9 (Continued)

- 3. Schiff, L. I., Quantum Mechanics. McGraw-Hill, New York, 1955.
- 4. Condon, E. U. and Shortley, G. H., Theory of Atomic Spectra. University Press, Cambridge, 1935.
- 5. Blume, M. and Watson, R. E., Proc. Roy. Soc. A270, 127 (1962).
- 6. Blume, M. and Watson, R. E., Proc. Roy. Soc. A271, 565 (1963).
- 7. Slater, J. C., Quantum Theory of Atomic Structure, Vol. 1-3. McGraw-Hill, New York, 1960.
- 8. Griffith, J. S., The Theory of Transition Metal Ions. University Press, Cambridge, 1964.
- 9. Pelikán, P., Liška, M., and Černay, P., J. Mol. Struct., in press.
- 10. Turi Nagy, L., Pelikán, P., and Liška, M., Chem. Zvesti 32, 577 (1978).
- 11. Pelikán, P., Boča, R., Liška, M., and Turi Nagy, L., Chem. Zvesti 32, 592 (1978).
- 12. Pelikán, P., Liška, M., Boča, R., and Turi Nagy, L., Chem. Zvesti 32, 607 (1978).
- 13. Turi Nagy, L., Pelikán, P., and Liška, M., Chem. Zvesti 32, 616 (1978).
- 14. Moore, C. E., Atomic Energy Levels as Derived from the Analysis of the Optical Spectra, Vol. 1-3. National Bureau of Standards, Circular No. 467. Washington, D.C., 1971.

Translated by P. Pelikán