Surface adsorption of silicon dioxide in molten silicate systems

V. DANĚK and T. LIČKO

Institute of Inorganic Chemistry, Slovak Academy of Sciences, 842 36 Bratislava

Received 2 October 1981

Dedicated to Corresponding Member M. Zikmund, in honour of his 60th birthday

Surface tension of melts in the system $CaSiO_3$ — $CaMgSi_2O_6$ — $Ca_2MgSi_2O_7$ was measured using the maximum bubble pressure method at the temperatures 1400—1650°C. It has been found that the surface tension decreases with the increasing content of SiO₂. The influence of temperature has not been determined because of experimental error. The surface adsorption of SiO₂ in the ternary system CaO—MgO—SiO₂ was calculated from the experimental values of surface tension. The influence of cations on the value of surface adsorption and on the structure of surface layer is discussed.

Методом максимального давления пузырька было определено поверхностное натяжение расплавов системы CaSiO₃—CaMgSi₂O₆—Ca₂MgSi₂O₇ в температурном интервале 1400—1650°С. Было найдено, что значение поверхностного натяжения понижается с повышением содержания двуокиси кремния в указанной системе. Влияние температуры не удалось определить из-за ошибки измерений. По указанным данным поверхностного натяжения были рассчитаны значения поверхностной адсорбции двуокиси кремния в трехкомпонентной системе CaO—MgO—SiO₂. Обсуждается влияние катионов на значение поверхностной адсорбции и структуры поверхностного слоя.

The surface tension in silicate melts is studied mainly in order to know the surface layer structure of these melts and to gain a better understanding of a number of metallurgical processes, *e.g.* separation of slag from metal, penetration of slag into refractory lining, gas absorption in slages, *etc.* Since the systems in question are multicomponent, the dominant role in the above processes is played by the surface-active component, in the given cases SiO_2 .

The ternary CaO-MgO-SiO₂ system is one of the basic systems from the metallurgical point of view. The surface tension of this system has been little investigated so far. Owing to considerable difficulties at high-temperature physicochemical measurements the corresponding experimental data are scarcely found in literature [1-3]; moreover, these results probably show considerable errors. Comparatively the most correct values are given in [4] for the binary system MeO-SiO₂.

In the present work the measurement of surface tension of melts of the system $CaSiO_3$ — $CaMgSi_2O_6$ — $Ca_2MgSi_2O_7$ has been carried out in the temperature range 1400—1650°C. The experimental results were used for the calculation of surface adsorption of SiO₂ in the system CaO—MgO—SiO₂.

Experimental

The maximum bubble pressure method has been used for melt surface tension measurements. The detailed description of the device used is given in [5]. A PtRh20 capillary having an inner diameter of 2 mm was used. The tip of capillary was shaped to be conical and sharp. The depth of immersion of the capillary into the melt was adjusted with a micrometer screw in the range from 1 to 7 mm with an accuracy ± 0.02 mm. Measuring gas (air) was blown into the capillary with a syringe the piston of which was driven by the connected electric motor. The rate of bubble formation ranged within 2–5 min⁻¹. The gas pressure in the capillary was measured with the use of tempered water manometer. The height of level in the manometric tube was measured with a kathetometer KM-5, USSR, with an accuracy ± 0.01 mm. The sample was placed in a PtRh20 crucible in the centre of heating space of electrical resistance furnace. The temperature was measured with a PtRh6/PtRh30 thermocouple, immersed into the melt, with an accuracy $\pm 5^{\circ}$ C. The accuracy of surface tension determination was ± 4 mN m⁻¹.

The samples were prepared using the compounds $CaSiO_3$ (CS), $CaMgSi_2O_6$ (CMS₂), and $Ca_2MgSi_2O_7$ (C_2MS_2). The compounds were prepared by calcination of $CaCO_3$ and $MgCO_3$, both of anal. grade (Lachema, Brno) and by the subsequent melting with SiO₂, anal. grade (C. Erba, Milan), in the corresponding stoichiometric proportion. Before melting the mixture was kept at the temperature 1200°C for 2 h.

Results and discussion

Experimental values of surface tension of the melts tested are given in Table 1. Since the temperature coefficient of surface tension is comparable with the experimental error, the values given in Table 1 are valid for the whole temperature range investigated. It has been found that the surface tension of melts in the system $CaSiO_3$ —CaMgSi₂O₆—Ca₂MgSi₂O₇ increases with the increasing content of $Ca_2MgSi_2O_7$ (Fig. 1), obviously as a result of the decrease in SiO₂ content. The experimentally found dependence of surface tension on the melt composition in the system CaO—MgO—SiO₂ can be, in the first approximation, described by a simple linear equation

$$\gamma = \gamma_{CaO} \cdot x_{CaO} + \gamma_{MgO} \cdot x_{MgO} + \gamma_{SiO_2} \cdot x_{SiO_2} =$$

$$= (726 \cdot x_{CaO} + 658 \cdot x_{MgO} + 185 \cdot x_{SiO_2}) \text{ mN m}^{-1}$$

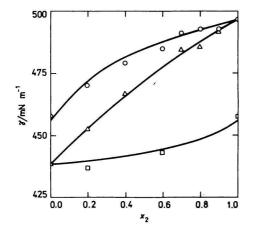
$$\Delta \gamma = \pm 3 \text{ mN m}^{-1}$$
(1)

Table 1

X _{CS}	X _{CMS2}	X _{CsO}	X _{MgO}	$\frac{\gamma_{exp}}{mN m^{-1}}$	$\frac{\gamma_{calc}^*}{mN m^{-1}}$	k
0	1	0.250	0.250	438	439	1
0.2	0.8	0.278	0.222	437	441	1.25
0.6	0.4	0.333	0.167	443	444	2.5
1	0	0.500		458	456	80
0	0.8	0.286	0.238	453	453	1.2
0	0.6	0.318	0.227	467	465	1.4
0	0.3	0.362	0.213	485	482	1.7
0	0.2	0.375	0.208	486	487	1.8
0	0.1	0.388	0.204	493	492	1.9
0.8	0	0.462	0.077	470	472	6
0.6	0	0.438	0.125	479	482	3.5
0.4	0	0.421	0.158	485	488	2.67
0.3	0	0.414	0.171	491	490	2.42
0.2	0	0.409	0.182	493	493	2.25
0.1	0	0.404	0.191	493	494	2.12
0	0	0.400	0.200	497	496	2
0.48	0.32	0.370	0.160	466	461	2.31
0.2	0.6	0.316	0.211	458	456	1.5
0.2	0.13	0.391	0.188	483	486	2.08

Surface tension of melts (γ) in the system CaSiO₃—CaMgSi₂O₆—Ca₂MgSi₂O₇ x_i — mole fractions

* Calculated according to eqn (1).


where γ_i are hypothetical values of the surface tension of the pure oxides at the experimental temperature obtained by the multiple linear regression analysis and x_i are the mole fractions of the oxides. It is obvious that the given equation is valid exactly only for the investigated concentration range of the oxides.

Surface adsorption of SiO₂ in the system CaO—MgO—SiO₂ was calculated for the pseudobinary sections with the constant ratios of the calcium and magnesium oxide contents $x_{CaO}/x_{MgO} = k$. For such a section the Gibbs equation in the form

$$d\gamma = -\Gamma_{MeO} \cdot d\mu_{MeO} - \Gamma_{SiO_2} \cdot d\mu_{SiO_2}$$
(2)

can be applied. Γ_{MeO} and Γ_{SiO_2} are the surface adsorptions and μ_{MeO} and μ_{SiO_2} are the chemical potentials of the corresponding components in the system MeO—SiO₂. The symbol MeO refers to the total amount of the alkaline earth oxides in the given mixture. Supposing that $\Gamma_{MeO} = 0$ (*i.e.* we choose such dividing surface where no

1

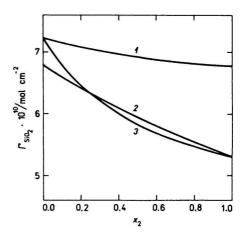


Fig. 1. Surface tension in the investigated systems. $\bigcirc CS-C_2MS_2; \triangle CMS_2-C_2MS_2;$ $\square CMS_2-CS.$ —— calculated according to eqn (1).

Fig. 2. Calculated SiO₂ surface adsorption in the investigated systems as a function of the second component mole fraction.
1. CS—CMS₂; 2. CMS₂—C₂MS₂;
3. CS—C₂MS₂.

excess of MeO is present), we get

$$\Gamma_{\rm SiO_2} = -\frac{\mathrm{d}\gamma}{\mathrm{d}\mu_{\rm SiO_2}} = -\frac{a_{\rm SiO_2}}{RT} \cdot \frac{\mathrm{d}\gamma}{\mathrm{d}a_{\rm SiO_2}} = = -\frac{a_{\rm SiO_2}}{RT} \cdot \frac{\mathrm{d}\gamma}{\mathrm{d}x_{\rm SiO_2}} \cdot \frac{\mathrm{d}x_{\rm SiO_2}}{\mathrm{d}a_{\rm SiO_2}}$$
(3)

The expression $d\gamma/dx_{siO_2}$ can be obtained by the differentiation of eqn (1) with respect to x_{siO_2} . Since $dx_{CaO}/dx_{MgO} = k$ and $dx_{CaO} + dx_{MgO} + dx_{siO_2} = 0$, we get

$$\frac{\mathrm{d}\gamma}{\mathrm{d}x_{\mathrm{siO}_2}} = (\gamma_{\mathrm{SiO}_2} - \gamma_{\mathrm{CaO}}) + \frac{1}{k+1} (\gamma_{\mathrm{CaO}} - \gamma_{\mathrm{MgO}}) \tag{4}$$

In paper [6] it has been found that the activity of arbitrary component in CaO-MgO-SiO₂ melts can be expressed, with a good approximation, using the *Haase* approach to activity calculation [7, 8]. The activity of SiO₂ can be then calculated according to the equation

$$a_{\rm SiO_2} = \frac{x_{\rm Si^{4+}}}{x_{\rm Si^{4+}}^0} \left(\frac{x_{\rm -O^-}}{x_{\rm -O^-}^0}\right)^2 = \left(\frac{3x_{\rm SiO_2}}{2+x_{\rm SiO_2}}\right)^3 \tag{5}$$

where $x_{Si^{4+}}$, $x_{Si^{4+}}^0$, x_{-O-} , and x_{-O-}^0 are the ionic fractions of silicon and of shared oxygens in the melt and in the pure molten silica and x_{SiO_2} is the mole fraction of SiO₂ in the melt. The way of activity calculation is given in [6]. The expression

$$\frac{\mathrm{d}x_{\mathrm{SiO}_2}}{\mathrm{d}a_{\mathrm{SiO}_2}} = \frac{(2+x_{\mathrm{SiO}_2})^4}{162 \cdot x_{\mathrm{SiO}_2}^2} \tag{6}$$

can be obtained by the differentiation of eqn (5). Substituting eqns (4-6) in eqn (3) we obtain the final expression for surface adsorption of SiO₂ in the system under investigation

$$\Gamma_{\rm SiO_2} = -\frac{1}{RT} \left[(\gamma_{\rm SiO_2} - \gamma_{\rm CaO}) + \frac{1}{k+1} (\gamma_{\rm CaO} - \gamma_{\rm MgO}) \right] \cdot \frac{x_{\rm SiO_2} (2 + x_{\rm SiO_2})}{6}$$
(7)

The dependences of SiO_2 surface adsorption on the composition in the systems $CaSiO_3$ — $CaMgSi_2O_6$, $CaSiO_3$ — $Ca_2MgSi_2O_7$, and $CaMgSi_2O_6$ — $Ca_2MgSi_2O_7$, calculated according to eqn (7), are represented in Fig. 2. It is evident that the surface adsorption of SiO_2 increases with its increasing concentration in the melt.

The cationic influence upon the SiO₂ surface adsorption is shown in Fig. 3. The SiO₂ surface adsorption has been calculated on the assumption that the validity of eqn (1) can be, in a rough approximation, extended for the whole concentration region of the system CaO-MgO-SiO₂. The calculation has been carried out for the boundary binary systems CaO-SiO₂ ($k = \infty$) and MgO-SiO₂ (k = 0). For comparison, the dependence of Γ_{siO_2} on the silica activity in the FeO-SiO₂ system, found in [9], is also represented in Fig. 3. It can be seen from the figure that the SiO₂ surface adsorption increases with the increasing electropositivity of cation,

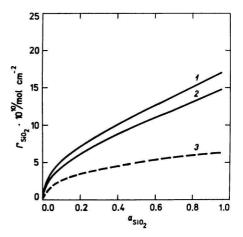


Fig. 3. Calculated SiO₂ surface adsorption as

a function of the SiO₂ activity in the systems MeO—SiO₂. 1. CaO—SiO₂; 2. MgO—SiO₂ (both in this

work); 3. FeO-SiO₂ (Ref. [9, 11], 1420°C).

while the character of the dependences is the same in all cases. From the results of X-ray diffraction study in the molten MeO—SiO₂ system (Me = Ca, Mg, Fe) it follows that the mean statistical coordination number of the cation in these melts decreases in the order Ca > Mg > Fe [10, 11]. Cations attempt to be coordinated as high as possible with negatively charged unshared oxygens of silicate groups. Consequently, the excess of SiO₄ tetrahedron is formed in the melt surface region. By the weaker attraction between the cations and SiO₄ tetrahedrons and thus by higher coordination number of cation the higher concentration of SiO₄ tetrahedrons in the melt surface in the case of more electropositive cation can be explained.

Acknowledgements. The authors wish to express their gratitude to Ing. I. Proks, CSc. for his interest and helpful discussion.

References

- 1. King, T. B., J. Soc. Glass Technicians 35, 241 (1951).
- 2. Ermolaeva, E. V., Ogneupory No. 5, 221 (1955).
- 3. Panov, A. S., Kulikov, P. S., and Tsylev, L. M., Zh. Fiz. Khim. 37, 169 (1963).
- 4. King, T. B., in *The Physical Chemistry of Melts*, p. 35. Symposium, Inst. Min. Metall., London, 1953.
- 5. Daněk, V. and Ličko, T., Silikáty 25, 153 (1981).
- 6. Pánek, Z. and Daněk, V., Silikáty 21, 97 (1977).
- 7. Haase, R., in *Physical Chemistry*, Vol. 1, p. 352. (Eyring, H., Henderson, D., and Jost, W., Editors.) Academic Press, New York, 1971.
- 8. Saboungi, M. L. and Blander, M., J. Amer. Ceram. Soc. 58, 1 (1975).
- 9. Richardson, F. D., *Physical Chemistry of Melts in Metallurgy*, Vol. 2, p. 441. Academic Press, London, 1974.
- 10. Waseda, Y. and Toguri, J. M., Met. Trans. 8B, 563 (1977).
- 11. Waseda, Y. and Toguri, J. M., Met. Trans. 9B, 595 (1978).

Translated by T. Ličko