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A systematic thermodynamic analysis of phase equilibria in binary systems
forming neither compounds nor solid solutions in which one component forms
polymorphic “‘overeutectic’ modifications of the enantiotropic type is presen-
ted. A procedure is proposed which enables to determine the following
numerical values of quantities which are not accessible to the measurement at
equilibrium conditions:

— the hypothetical temperatures of fusion of the polymorphic modi-
fications,

— the hypothetic temperatures of transition points,

— the activities of the given component in hypothetical solutions having
composition and temperature corresponding to the hypothetical transition
points,

— the ratio of slopes of tangents to the curves of monovariant equilibrium
at the hypothetical transition points.

It was proved that the experimental data obtained for real transition points
are sufficient for total thermodynamic characteristic of phase equilibria in
regions which are not accessible to an equilibrium measurement.

OcymecTBieHO CHCTEMAaTHYECKOE TEPMOAWHAMHMYECKOE pPacCMOTPEHHE
¢$a3oBeIx paBHOBecHii B GMHApHBIX cHCTeMax Ge3 COeQMHEHMIl M TBEpAbIX
PacTBOpOB, B KOTOPLIX OfMH H3 KOMIIOHEHTOB 06pa3yeT NONMMOpGHbIE
«CBEPX3BTEKTHYECKHE» MONH(HKALMM IHAHTHOTPONHOrO Tvma. Beul pas-
paboTan XON onpejeNieHHs HyMEPHYECKHMX 3HaYeHWH CIefyIOIMX BelHuMH,
KOTOpbIE€ HEBO3MOXHO ONPENEIHTh B YCIOBHIX PaBHOBECHS :

— TMNOTETHYECKHX TEMIIEPATYp IUIaBJIEHHA NOMMMOP(dHBIX MopudHKa-
i 8

— IUNOTETHYECKHX TEMIEPATyp TOYEK Iepexona,

— aKTHMBHOCTEH KOMIIOHEHTOB B 'HIIOTETHYECKHX PacTBOPAX IIPH COCTaBe
H TeMIlepaType I'MIIOTETHYECKHX TOYEK mepexofa,

— OTHOLIEHHA YIJIOB HAKJIOHA KACATENLHBIX KPHBBIX MOHOB2PHAHTHOIO
PaBHOBECHS B TMIIOTETHYECKHMX TOYKAX Iepexofa.
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Bbulo [10Ka3aHO, YTO 3IKCHEPHMEHTaNbHble MAaHHbIE, MOJNYYEHHbIE IS
peanbHbIX TOYEK IMEpexofa, BMNOJHE [JOCTATOYHbI s TOJHOW TEPMOAM-
HaMHM4eCKOM XapaKTepUCTHKH (ha30BbIX paBHOBeCHit B 06NACTAX, B KOTOPbIX
HeJb3s NMOJy4YMTh PaBHOBECHbIE 3HAYEHHS BEJMYMH.

The phenomenon of polymorphism is wide-spread. Many substances with
polymorphic modifications are employed in technical praxis. Despite of that the
influence of polymorphic transitions on the character of phase diagrams of
corresponding systems has not been paid an adequate attention. Even in well-
-known monographs on phase diagrams as those by Ricci [1], Vogel [2],
Anosov et al. [3] the phase diagrams of the systems containing components with
polymorphic transitions are not treated systematically. Actually one can find in
literature only a small number of phase diagrams and these are explained
exclusively from the point of view of ‘“‘geometrical”’ thermodynamics. In this work
we shall apply another approach to this topic:

i) We shall present a systematic survey of phase diagrams with polymorphic
transitions and we shall classify them according to certain common features.

ii) Besides the geometrical analysis we shall present also the thermodynamic
analysis of the course of curves of monovariant phase equilibrium with special
attention to the neighbourhood of remarkable points in the phase diagrams.

Many of these points and parts of the curves are not accessible to the
experimental determination at equilibrium conditions. Despite of that it is possible
to apply for this type of phase diagrams the same approach as for the solidus—lig-
uidus equilibria. This thermodynamic analysis allows to derive a series of new
quantitative relationships which are important for a systematic forming of the
theory of phase equilibria in condensed systems of a given type.

In the first part of this series of papers we shall discuss the binary systems in
which neither solid solutions nor complex compounds are formed. The case when
one component forms two, three or four polymorphic modifications of enantio-
tropic type is dealt with in detail. A generalization of the obtained relationships for
unlimited number of polymorphic modifications is derived.

General laws valid in the systems of given type

Since the phenomenon of polymorphic transitions is connected with pure
components of the system, we shall discuss first briefly the laws valid for individual
substances.

A scheme of dependence of molar enthalpies of pure liquid substance A and its
solid polymorphic enantiotropic modifications on temperature is presented in
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THERMODYNAMICS OF PHASE EQUILIBRIA. 1

Fig. 1. The modifications are denoted A,, A,, As, efc. in direction of the decrease
of temperature.

4H""(A, /Ay
Fig. 1. Dependence of the molar enthalpy of

pure liquid substance A*' and of its solid r"(|A2/A3) ' T'(|A1)
polymorphic modifications A{* (i=1—4) ™ "
on temperature (P =const). T ‘A4/A3) T (A,/Az) —T

It holds that
HO' I(;‘\) - Ho s(An)= AH(A])
H*'(A)— H**(A;)= AH'(A,)

The symbols H**(A;) denotes the molar enthalpy of the pure solid i-th
modification of component A.

If the quantities H*'(A), H**(A;) do not depend on temperature or if the
considered temperature interval is sufficiently narrow (usually if it is less than
100 K) then it holds

AH'(A;)= AH'(A)) + AH"(A//A,) (1)
AH(A;) = AH‘(A1) + AH"(A:/A:) + AH“(Az/A3) (2)

or we can write generally that
k—1
AH'(A) = AH'(A))+ D, AH™(Ai/Aiv1) 3)
i=1

Dependence of the molar Gibbs energy of pure liquid substance A and its
polymorphic modifications on temperature is schematically plotted in Fig. 2. Five
curves G”'(A), G**(A)) (i=1—4) intersect in (g) =10 points. The intersections
of pairs G*'(A) and G”*(A;) correspond to the melting points of the i-th
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Fig. 2. Dependence of the molar Gibbs energy of pure liquid substance A*' and of its solid polymorphic
modifications A?* (i = 1—4) on temperature (P =const).

modification of substance A. However, only the first intersection (i =1) is acces-
sible to an equilibrium measurement.

The intersections of pairs G”*(A;) and G**(A;) correspond to the transition
temperatures at which a reversible transformation of modification A; into A; and
oppositely takes place. To equilibrium measurement are accessible only those
points for which it holds that j=i+1.

Let us consider the phase equilibrium which occurs in temperature interval
between the melting point of high temperature modification, ie. T'(A,) and
transition point T“(A,/A.) (Fig. 3). In this temperature interval the pure solid high

t
T (A1)

ir'a )
t
T"(a,/A,)

e

E
SEIIOITOI ][ TP

A B
Fig. 3. Isobaric phase diagram of the system A, (A;)—B forming neither compounds nor solid solutions.
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THERMODYNAMICS OF PHASE EQUILIBRIA. 1

temperature modification AY® coexists with solution which is saturated with
substance A. We shall denote this solution as A' and the corresponding curve of
monovariant equilibrium (i.e. the liquidus curve) as A'/A}*. Similarly the part of
liquidus of the component A in the temperature interval from T"(Ai/A;) to
T"(A2/As) will be denoted by the symbol A'/A%°, etc. (Figs. 4 and 5).

f
T'ap
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tr, |

T (a,/A))
£

[r'ia5]

tr,
T (AZ/A3)

A B

Fig. 4. Isobaric phase diagram of the system A, (A., A;)—B forming neither compounds nor solid
solutions.
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Fig. 5. Isobaric phase diagram of the system A, (A., As, A)—B forming neither compounds nor solid
solutions.
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For the slope k°(A,) of the tangent to liquidus curve A'/A?* at the point T'(A,)
it holds, regardless of the concrete shape of the functional dependence a(A)
= f[x(A)]

K(A) =%\[EST1:,))E  KS(B/A) 4)

In this “cryometric” relationship T°(A:) denotes the temperature of fusion of
modification A;, AH'(A,) is the molar enthalpy of fusion of modification A, and
k*(B/A) is the Stortenbeker’s correction factor. This factor equals the number of
species which are formed in the system of pure molten component A as a result of
addition of 1 molecule of substance B.

The relationship (4) which determines the shape of liquidus curve A'/AY* in the
vicinity of melting point T'(A;) has been denoted as the Ist criterion of ther-
modynamic consistency [4] (abbreviation CTC I). It is often used for calculation of
the quantity AH'(A,).

The curves of monovariant equilibria A'22A%* (i=1—4) intersect in the
transition points Q(A./A,). If there are three or more polymorphic modifications of
given component in a system we obtain in the corresponding phase diagram two
types of sets of transition points (Fig. 5): real Q(A;/A;) for j=i+ 1 and hypotheti-
cal Q(Ai/A)) for j= i+ 2 which are not accessible to an equilibrium measurement.

It can be proved [5] that the composition coordinate of a transition point
Q(Ai/A)) is related with the Stortenbeker’s correction factor by the relation

xs[Q(A/A;)] - K(B/A)=~const (5)

This relationship is fulfilled the more precisely the smaller is the mole fraction of
component B in the transition point Q(A./A;). Therefore this relation can be used
for determination of numerical value of the quantity k*(B/A) [6].

For the course of liquidus curves A'/A?* and A'/A?* (whether they are real or
hypothetical) in the vicinity of the transition point Q(A:/A;) the so-called IIIrd
criterion of thermodynamic consistency (CTC 1II) must be fulfilled [4]

AH""*(A)) - k(A))=AH"" (A) - k(A)) (6)

AH""*(A;), AH"**(A,) are the changes in partial molar enthalpy for processes
A?*—A'and A?*— A' at the point Q(A./A;). The result of these processes is the
formation of the same (it does not matter if real or hypothetical) solution the
composition and temperature of which correspond to the transition point
Q(Ai/A)); k(A)), k(A,) are the slopes of tangents to the liquidus curves A'/Af*
and AVA%* at the point Q(A/A,).
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THERMODYNAMICS OF PHASE EQUILIBRIA. 1

It holds

AH'"*(A))=H"(A)-H"(A)=
=[H'(A) - H*(A)] +[H*'(A) — H*(A))]

where H'(A) is the partial molar enthalpy of component A in saturated solution,
H®*'(A) is the molar enthalpy of pure liquid component A. H**(A)) is the molar
enthalpy of the pure solid i-th polymorphic modification of component A.

If we can neglect the temperature dependence of enthalpy of phase transition
AH®"**(A)) it holds

AHY*(A)=AHZ '(A)+ AH* "**(A)= AH> '(A)+ AH'(A)  (7)

For solutions the behaviour of which is not very far from ideality eqn (6 ) reduces
to the relationship (8)

AH'(A) - k(A))=AH'(A)) - k(A)) (8)

For the course of liquidus curves A'/A$* and B'/B** in the vicinity of the eutectic
point E (Fig. 5) the relationship derived by Dodé and Hagége [7, 8] holds. This
relationship has been denoted as CTCII [4]

x(A)- AH"*(A,) - k(A;)=x(B) - AH"**(B) - k(B) (9)

x(A), x(B) are the mole fractions of components A and B at the point E,
AH""*(A;), AH"**(B) are the changes of partial molar enthalpy connected with
processes A{"*—A' and B**—>B' at this point; k(A:), k(B) are the slopes of
tangents to liquidus curves A'/A?* and B'/B** at the point E. If the behaviour of
solutions is not very far from ideality, a simplified form of the CTC II can be used

x(A)- AH'(A)) - k(A;)~x(B) - AH'(B) - k(B) (10)

For a total thermodynamic description of the phase equilibria‘in the systems in
question expressions for determination of several parameters are to be derived.
The parameters are:

1. temperature of fusion T*(A;) of the i-th modification of component A (i=2),

2. temperature T"(A/A;) corresponding to hypothetical transition points
Q(A/A)),

3. activity of component A in solutions corresponding to the hypothetical
transition points,

4. ratio of the slopes of tangents to the curves of monovariant phase equilibrium
A'/A?* at the hypothetical transition points.
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Special laws valid in the systems of given type

1. The system A, (A;)—B

There is only one real transition point Q(A:/A;) in this system. It is identical with
the intersection point of the liquidus curve A'/AY* (it is the liquidus curve of the
high temperature modification of A) and the liquidus curve A'/A%* (it is the curve
corresponding to the low temperature modification of substance A) (Fig. 3).

The activity of substance A in saturated solution having composition and
temperature of the point Q(A,/A;) can be calculated from a simplified form of the -
LeChatelier—Shreder equation

In a[A, Q(A/AL)]= AH;AI) ) [T'(IA,) - T"(All/Az)] (1)
In a[A, Q(A/AL)]= AH;gAZ) ’ [T‘(IAZ) - T"(A11/ Az)] (12)

The quantity T'(A.), which cannot be measured at equilibrium conditions, cannot
be calculated from eqn (12) as well because we do not know the quantity a(A).
Therefore we proceed in such a way that we eliminate the term In a[A, Q(A//Az)]
from eqns (11) and (12). After rearrangement we obtain

AH'(A;) - T'(A)) - T"(AJAY)

t =
T'(A2)= AH'(A)) - T"(A/Az) + AHY(AV/A,) - T'(Ay) (£33
and after introducing the relation (1) we get
f T . f . tr
T'(Az)=[AH (A))+ AH"(A/A2)] - TY(A)D) - T"(AL/A2) (14)

AH(A) - T (A/A)+ AH (A A) - T(A)

All quantities which appear on the right side of eqn (14) can be measured at
equilibrium conditions.

2. The system A, (A,, A;)—B

In this system (Fig. 4) the following quantities can be obtained by measurement
at equilibrium conditions: T*(A;), T"(A:/Az), T"(A2/As), and parameters of the
points Q(A./Az), Q(A2/As).

a) Calculation of T'(A), i=2,3

The temperature of fusion T*(A.) of the modification A2 * can be calculated from
eqns (13) and (14). The temperature of fusion T%(A;) of modification A3 * at the
point Q(A./As) can be determined after elimination of the term In a[A, Q(A2/As)]
from the equations
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In a[A, Q(A2/A5)]= AH;A’) . [r(kz) T Alz ; Aa)] (15)
i al, QAN =478 [ s e e
Then it follows
_ AH (A;) ) T((Az) ) T'(Az/ A3)

T(A)= A5 Ay - T (Ad Ay + AH (A Ay - T'(AD) (17)

or, after using eqns (1) and (2),

T'(As)=

_ [AH‘(A]) + AI'I"(A]/A:) + AH'(Az/A:«;)] : T‘(Az) ) T"(Az/Aa) (18)

= [AH'(A,) + AH (A/A,)] - T (A As) + AH (A As) - T'(Az)

The quantity T'(A) can be substituted into eqn (18) from eqn (14). Then after
rearrangement we obtain

[AH'(A) + AH"(A/AY) + AH(A/AY)] - T(A) - T(AVAY) ..

T(A)= M+N+U

(A/As)
(19)

where M = AH'(A))- T"(A/A;) - T"(A2/As),
N = A}:{“(Al/Az) N T(A]) . Tr(Az/Aa),
U = AH"(Az/Ag) g T(A]) ¢ T“(AllAz)

b) Calculation of the temperature T7(A,/A;) corresponding to the hypothetical
transition point Q(A,/Aj)

The quantity T"(A./As) which is to be determined occurs in the following
equations

In a[A, Q(A/Aj)]= AHI‘gAI) ) [T‘(IA,) - T"(P}l/As):\ (20)
In a[A, Q(A/AS)]= AH;-‘(»Aa) ’ [T‘(t%;) B T"(All/Aa)] )

After elimination of the expression In a[A, Q(A,/A;)] we obtain

AH'(As) — AH'(A)] - T(A) - T(As)
AH(As) . T'(A]) - AH(A]) ° T'(A3)

T"(A]/Aa) = [ (22)

Dividing the numerator and denominator of this equation by the p;oduct
T'(A)) - T'(As) we obtain the expression
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AI‘I’(A:&) - AH(AI)
AS(A;)— AST(A))

T"(A/As) = (23)
The quantities AS'(A;)=AH'(A;)/T(A:) are the molar entropies of fusion of
modification A;. From Fig. 1 it follows that AH'(A;)> AH'(A,). Because T"(A;-
/A3)>0, it must hold with respect to eqn (23) that also AS(A;)> AS'(A,). We
shall prove the validity of this inequality also in another way. It holds that

[AH'(As)> AH'(A))]: T'(A1)>0

- s

And further it holds also
T'(A5)<T(A))

and therefore

i ol U

____ZA;{(‘X?; = AS‘(A3)>—A;"EX‘;) (25)

Combining the inequality (24) with eqn (25) we confirm the validity of the
relation

AS'(A5)> AS'(A) (26)
The temperature T"(As) which occurs in eqn (22) is not accessible to measurement

at equilibrium conditions. We can, however, to eliminate this quantity using
eqn (19). After rearrangement we obtain the relationship

F(A]/A:;) =

_[AH"(A1/A) + AH"(Ad/As)] - T*(Ar/AY) - T*(Az/As)

(27)

at the derivation of eqn (27) we used the expression

which is identical with eqn (2).
All quantities which occur on the right side of eqn (27) are accessible to
experimental determination at equilibrium conditions.
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c) Calculation of the activity of component A at the point Q(Ai/A;)

If we know value of the quantity T"(A,/As), the activity (respectively its
logarithm) can be determined from eqn (20)

In a[A, Q(A/As)] =
_AH(A) _ AHY(A)-[TY(A) - TY(A))]

R [AH(Ay)— AH(AD]- T'(A) - T'(As) (28)
Eqn (28) can be rearranged to the form
_ [uUTA)-1/T'(A)]
In a[A, Q(AY AN = g1/ AH (A = 1 AH (AD] L)

If we substitute for T°(A;) from egn (19) into eqn (28), we obtain
In a[A, Q(A]/Ag)] =

__AH'(A) V+2Z (30)
TR-T(A) [AH(A/A)+ AH (AJAS)] T (AJA,) T"(Az/A)

Here
V=AH"(A//Az) - T*(A2/A5) - [T (A1/Az2) — TH(A))]
Z= AH“(A:/A;) * T“(Al/Az) = [Tr(Az/A:;) = T(A1)]
d) Determination of ratio of the slopes of tangents to the curves of phase
equilibrium at the hypothetical transition point Q(A:/As)

For solution of this problem we shall use a simplified form of the CTC III. If the
system A, (A2, A;)—B is not very far from ideal behaviour then for each transition
point the following relations are valid

Q(Al/Az): AH(Al) : kllz(Al) = AH(A2) : kl/z(A2) (31)
Q(A/As): AH'(A,) - k'°(Ar) = AH'(As) - k'*(As) (32)
Q(A2/As): AH'(Az) - K*°(Az)= AH'(As) - K*7(As) (33)

From equilibrium measurement we can determine the slopes of tangents to the
liquidus curves A'/A?*, and A'/A?'* at the point Q(A,/A;). We can determine this
quantity also for liquidus curves A'/A%* and A'/AY* at the point Q(A2/A,). The
ratio of parameters k(A;) and k(As) at the point Q(A,/A;) which cannot be
determined at equilibrium can be obtained from eqn (32)

k'?(A,)) _AH'(As)
k'*(As) AH'(A,)

From eqn (33) we obtain for AH'(A;)

. (34)
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AH(A;) * kzlJ(Az)

AH' (A5)= kz/s( As) (35)
and for AH'(A;) we obtain according to eqn (31)
L2

AH(Ay = AH(A) - K7(A) (36)

kl/Z(AZ)

After inserting AH'(A,) from eqn (36) into eqn (35) and from that into eqn (34)
we obtain

kl/3(A1) _ kl/Z(Al) . k2/3(Az)
k1/3(A3) - kl/2(A2) k2/3(A3)

(37)

respectively
Kl/3=K1/2 . KZ/J (38)

K" denotes here the ratio of the slopes of tangents at given transition point
Q(Ai/A)). It follows that it is possible to calculate this parameter in a hypothetical
transition point Q(A,/As) on the basis of knowledge of the analogous parameters
at the real transition points Q(A:/A;) and Q(A2/A;). It should be pointed out that
it is not necessary to know the changes in enthalpy of the corresponding phase
transitions.

3. The system A, (A, As, Ay)—B

One liquid phase L and four solid phases A{* form together (g) =10 coexisting

pairs. Four are of the type L/A{* and they correspond to melting points of the four
polymorphic modifications. Six pairs of the type Ai/A; (i=1—3, j=2—4, j—i=1)
correspond to the transition points Q(A,/A;). Only four of these ten characteristic
points are accessible to equilibrium measurement, viz. T'(A;), Q(A1/Az), Q(A:-
/As), and Q(Aa/A4) (Fig. 5).

a) Calculation of T'(A)), i>1

The temperature of fusion T%(A;) of the modification A; can be determined
using eqn (14) and the temperature T"(A;) from eqn (19). The temperature of
fusion T"(A4) can be determined similarly as in the preceding section. For the point
Q(As/A.) it holds

In a[A, Q(As/AL)]= AH;AS) : [T‘(lAg) T A13 ; A4)] (39)
el oA =48 [ -] o)
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Using eqn (3) we can write after rearrangement

T(A)=

_[AH'(A+ AH"(AJA)) + AH"(A,/A) + AH"(A/A)] - T'(A,) - T"(As/As)
T[AH(A) + AH*(A,/A,)+ AH"(A,/A,)] - T*(A/A)+ AH(A,/A,) - T'(A,)

(41)
We can substitute for T(A;) from eqn (19) and thus

(ZAH) - T(A)) - T"(A/A) - T(AL/As) - T"(As/AL)

T{(A)= 2

(42)

where
SAH=AH'(A\)+ AH"(A//Az)+ AH"(A2/As) + AH"(As/As)

Z=AH'(A)) - T"(A/As) - T"(A2/As) - T"(As/AL) +
+ AH"(A/A) - T'(A)) - T"(AL/As) - T"(As/AL)+
+ AH"(A2/As) - T'(A)) - T"(AV/AS) - T(As/A) +

+ AH"(As/AL) - T'(A) - T'(A/AL) - T'(AL/As)

b) Calculation of the temperatures T"(Ai/A;) at the hypothetical transition
points Q(A/A);)

The value of T“(A./As) can be calculated from eqn (22) or from eqn (27).
T"(A2/As) can be determined in the following way. From the simplified form of the
LeChatelier—Shreder equation we can write for the activity a(A) at the point
Q(A2/A,) either

in alA, Q(A/A)] =277 [r(lAz) ~ T ATAD ) 5]
or
in afA, Q(A/A)) = 2HA). [r(lm) - r'(,«l,/m)] (#4)
Solving these equations we obtain
T(As/As) = [AH'(A)— AH'(A2)] - T'(As) - T'(AW) (45)

Substituting T'(A,) from eqn (14) and T'(A.) from eqn (42) we obtain after
rearrangement
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T (A A)=

_ [AH"(Az/A;) + AH'(A:;/A.,,)] ¢ T’(Az/Ag) * TY(A3/A4)
T AHY(AJAs) - T (As/AL)+ AH(AS/AL) - T*(AL/AS)

The quantity T"(A,/As) can be determined in the following way. Again we
calculate the activity of component A at the point Q(A/A.) using the simplified
form of the LeChatelier—Shreder equation. We obtain expressions similar to eqns
(43) and (44). After elimination of the term In a[A, Q(A./A.)] we find

AH‘(A‘;)“— AH(A:)] . T(Ax) ) T’(A-z)
AH(A.t) ° 'T‘(Al) - AH(A]) ° T(A4)

T'(A.) can be substituted from eqn (42). From eqn (3) it further follows that

The expression for T"(A,/As) results in
. _(ZAH) - T"(A//A2) - T(AS/As) - T"(As/AY)
T"(A/As) = Ui ViZ (48)
where SAH = AH"(A\/Az)+ AH"(A2/As)+ AH"(As/AL)
U= AH"(A//A;) - T"(A2/As) - T"(As/AY)
V=AH"(A:/As)- T"(A/A2) - T"(As/AL)
Z=AH"(As/AL) - T"(A/A2) - T"(A/As)

(46)

T"(Al/A«a) = [

(47)

c) Calculation of the activity of component A in solutions corresponding to
hypothetical transition points

The quantity a(A) at the point Q(A/As) can be calculated from eqn (30). For
the quantity In a[A, Q(A,/A,)] in hypothetical solution it holds

AH'(A) [r'(AZ/A.,) = T'(Az)]
R T*(A./AL) - T'(AY)

We can substitute for T(A,) from eqn (14) and for TV(A./As) from eqn (46).
Further we can utilize the relation

AH'(Az)= AH"(A,) + AH"(A/A,)

In a[A, Q(A:/AL)] =

After rearrangement we obtain

M-N 1

In a[A, Q(A/AY)] = R[AH"(A,/As)+ AH"(As/AL)] U

(49)

where

M=[AH"(AJ/As)+ AH"(As/AJ)] - [AH"(A)) - T"(A/A2) +
+ AH"(AI/AZ) & T(A])] L Tf(AzlA:;) Tr(A3/A4)
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N=[AH"(A)+ AH"(A1/A5)] [AH (A2l As) - T*(As/A) +
+ AH“(A:;/A.g) * Tr(Az/A;;)] 2 T‘(A]) " TT(AI/AZ)
U= T‘(A]) ¢ Tr(Al/Az) . Tr(Az/Ag) . T'(A3/A4)

It follows again that all quantities present on the right side of eqn (49) are directly
measurable, i.e. experimentally accessible.

For the quantity In a[A, Q(A./A.)] in the hypothetical solution which corre-
sponds to the point Q(A,/A,) it holds
AH'(A)) T"(Ai/A)—T'(Ay)

R TY(A//AL) - T'(AY)

or, after substitution for T"(A:/As) from eqn (47)
In a[A, Q(A/AJ)] =

_AH'(A) _ AHY(A) [T(A)-T(A))]
R [AH(A.)-AH(A)]- T'(A) - T(As)

In a[A; Q(A/AL)] =

(50)

respectively
[1/T(A) — 1/ T'(AJ)]

In a[A, Q(A//AJ)]= R[1/AH'(A,)—1/AH'(AJ)]

(51)

In eqns (50) and (51) there is no quantity related to the transition points
Q(A/A);). If we substitute into eqn (50) for T*(A.) from eqn (42) we obtain after
rearrangement

In a[A, Q(A/AL)]=

_AH(A) M+N+U
RT(A)) ZAH - T"(A/A2) - T*(A/AS) - T*(As/As)

(52)

where
M= AH"(A//Az) - T"(A2/As) - T"(As/AL) - [T"(A1/A2) — T'(A)))]
N=AH"(A:/A;) - T"(Ai/Az) - T(As/AL) - [TY(A2/As)— T'(A))]
U= AH"(As/As) - T(Ar/As) - T(Ad/As) - [T*(As/As) — T'(AY)]
ZAH = AH"(A/Az)+ AH"(A2/As) + AH"(As/AL)

d) Determination of ratio of the slopes of tangents to the curves of phase
equilibria at the hypothetical transition points Q(A./A;)

For the point Q(A./A,) the relations (37) and (38) hold. Using the simplified
form of CTCIII we obtain for the ratio in question calculated at the point
Q(A,/A.) the following equations

Q(AL/As): AH(AL) - k*°(Az)= AH'(As) - K**(As) (33)
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Q(Az/A4): AH‘(Az) & k2/4(A2) = AH‘(AA) g kZ/d(A4) (53)
Q(As/A): AH'(A3) - K™(A5)= AH'(AL) - k¥*(A.) (54)
Then from eqn (53) it follows

(A2 _ AH'(A)
K**(As)~ AH'(Ar)

(35)

The quantity AH'(A.) can be determined from eqn (54) and the quantity AH'(A;)
from eqn (33). After substituting into eqn (55) we obtain after rearrangement

k2/4(A2) _ k2/3(A2) k3/4(A3)

k2/4(A4) = k2/3(A3) : k3/4(A4) (56)
which can be written also in the form
K2/4 = K2/3 . K3/4 (57)

It remains to determine the ratio of the slopes of tangents to liquidus curves at the
“internal” hypothetical transition point Q(A./A,). \

For solution of this problem we shall use the value of this ratio at real transition
points Q(A,/Az), Q(A2/A;), and Q(Ais/A,) (Fig. 5). These quantities are deter-

Fig. 6. Part of the phase diagram of the system A, (A., A;, A;)—B corresponding to the composition

interval from eutectic point to pure substance A. The diagram is presented as a projection of

intersection of five surfaces representing molar Gibbs energies G**(A:)={(T), (i=1—4) and
G*'(A)=f[T, x(A)).
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mined by eqns (31), (33), and (54 ), respectively. Using a procedure similar to the
former one we obtain for this case the following relation

kl/4(A') _ kIIZ(AI) ) k2/3(A2) ) k3/4(A3)
klM(A4) - k!lZ(Az) k2/3(A3) k3/4(A4)

(58)

which can be written also as
Kll4= KI/Z . K2/3 . K3/4 (59)

As it follows from Fig. 6 the phase diagram (if component A has four polymorphic
modifications) of a binary system A—B corresponds to the orthogonal projection
of surfaces representing the quantities G**(A)=f(T) and G'(A)=£(T, x),
(i=1—4) on the basic plane (7, x).

4. The system A, (A, ..., A,)—B

The thermodynamic analysis of phase diagram of the systems in question can be
generalized for the case when the component A forms an arbitrary number of
polymorphic enantiotropic modifications.

a) Calculation of T'(A))

These considerations are based on coordinates of the transition point Q(A:/A..1)
which can be determined experimentally at equilibrium conditions. This point
corresponds to the intersection of two liquidus curves A'/A?*and A'/A?%. We shall
apply the Le Chatelier—Shreder equation to these points which gives

In a[A, Q(A/A)] =H[T(A:), AH'(A)] (60)
In a[A, Q(A/Ai)]=£[ T (Ai+1), AH (A1) (61)

As we know the quantities AH'(A,) and AH"(A./A...) are accessible to a direct
measurement. Thus using eqn (3) we are able to determine the value of an
arbitrary quantity AH'(A)).

From eqns (60) and (61) we shall further eliminate the term containing the
activity of component A. After rearrangement we obtain (the enthalpic terms are
not written for the sake of simplicity)

T(Aw) =H[T(A))] (62)

Therefore it follows that for determination of the quantity T(A..,) it is sufficient to
know the quantity T*(A;). Since the relation (62) holds for all values of i, starting
from i =1, and because the quantity 7T(A,) is experimentally accessible eqn (62)
gives a recursion formula for determination of an arbitrary temperature of fusion of
the (i+ 1)th polymorphic modification of component A.
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b) Calculation of the temperature T"(A./A;) and the activity a[A, Q(A:/A))] at
an arbitrary transition point Q(A/A)), j—i=2

Let us apply the LeChatelier—Shreder equation to the figurative point Q(A -~
/A;). We obtain the following relations (the enthalpic terms are omitted)

In a[A, Q(A/A))] ={[T'(A), T"(A/A))] (63)
In a[A, Q(A/A)] =f[T'(A;), T*(A/A))] (64)

The quantities T'(A;) and T'(A;) can be obtained in the same way as in the
preceding paragraphs. Then we have the set of two equations ((63) and (64 )) with
two variables (viz. In a[A, Q(Ai/A);)] and T"(A./A;)) which can be therefore
unambiguously determined.

c) Determination of ratio of the slopes of tangents to the curves of phase
equilibrium at an arbitrary hypothetical transition point Q(Ai/A;), j—i=2

For the determination of ratio of the slopes of tangents at the hypothetical
transition point Q(A;/A;) we shall use the data which are experimentally acces-
sible, namely Q(A:/Ai+1), Q(Ais1/Aisz2), ..., Q(Aj-1/A;). For all these points it
holds

AH(Ai+|) _ k:/(Hl)

AF(A) ko= K (65a)
AH(A“‘Z) — G+
AH (AL~ K (65b)
AH' (A1) o omrims
AH(A, )~ K (63y)
AH(AI) — rG-11j
AHGA, D K (652)

After multiplying the left and right sides of eqns (65a—z) we obtain after
rearrangement

AH(A/‘2= i(i+1) | i+1)/(i+2) j—1)/j
AFF(A) K K ... KY

which can be written also as
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AH{(AI)_i—I il(i+1)

AR (A)~ LK (66)
Applying the simplified form of the CTC III to the point Q(A;/A;) we obtain the
general law

AH'(A)) _ ki’ _

AH(A) K7™ K" (67)

Comparison of eqns (66) and (67) gives the final relationship
j—1
Ki/j=l_[ Ki/(H-l) (68)

i
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