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In this paper the process of a nonisothermal one-component sorption in 
a single adsorbent particle is studied. Nine models of various complexity are 
described making it possible to calculate the transients of average values of 
dimensionless adsorbate concentration and dimensionless temperature rise in 
particle during an adsorption process. It is shown that in most practical cases 
the model can be used in which both film resistances and intraparticle 
resistance against mass transfer are included. 

В этой статье разбирается процесс неизотермической однокомпонент-
ной сорбции в одной частице адсорбента. Описывается девять моделей 
различной сложности, позволяющих рассчитать временные зависимости 
средней безразмерной концентрации адсорбированного вещества и без­
размерного температурного повышения во время адсорбции. Указывает­
ся на то, что в большинстве практических случаев можно использовать 
модель, в которую включены сопротивления переходу вещества и тепло­
ты в пленке и внутричастичное сопротивление по отношению к переходу 
вещества. 

In the previous paper [1] we treated the isothermal models of a one-component 
sorption in a single adsorbent particle and presented some interesting features of 
orthogonal collocation solution results when compared with the exact results. The 
problem of nonisothermal sorption has recently attracted the attention of several 
authors [2—8]. A detailed analysis has been made by Brunovská et al. [5—8]. 
Their method of solution is apparently numerically satisfactory, but is not suited for 
practical use (for example in computation of packed bed adsorbers described by 
two phase models) because of a long computation time. It is the reason why we 
used the orthogonal collocation method for the solution of model equations. 
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Mathematical models 

The basic model (mass and heat balances) for a nonisothermal one-component 
sorption in a single spherical adsorbent pellet may be formally derived from the 
differential mass and energy balances of the adsorptive in a stream of carrier gas 
[5,9]. 

Эс (B2c2Bc\ Эа , . 

„ВТ / Э 2 7 \ 2 Э 7 \ . , Ва ... 

^в1=хЛв?+хв1с)н-лн^в1 (2) 

The two transport coefficients Def and Aer which are considered to be constant are 
composite properties that reflect the different transport mechanisms inside the 
complex pore structure. The initial and boundary conditions are 

я = fli 

c = cí atOŽJcžÄ forr = 0 (3) 
T=TX 

P ~ = 0 at* = 0 forŕ>0 (4) 

Tx-Dt*-0"* ( 5 а ) 

atx = R íor t>0 

U=£(r.-r, . .) (56) 
Л, and съ being properties of the bulk fluid phase; Tb and cb are generally functions 
of position in the reactor and of time. We shall regard them as known constant 
values Съ = c0 and Th = Ъ • hM and h are mass and heat transfer coefficients for the 
film that surrounds the pellet. Eqns (1—5) may be rendered dimensionless by the 
following substitutions [5] 

а — ах - c — cf c0— cf Def/ 
^ ö X - ß i Co-Ci а% — а\ R 

QQAT g(co-cf) *_ ( . 

Тхл:_ Aef(flfi-fli) R . _ Л м Д АЛ 
gCpDcí(c0 - cf ) A r Aef 

734 Chem. zvesti36(6) 733—744 (1982) 



ONE-COMPONENT SORPTION. II 

to obtain 

4?-V0-§S (?) 

ОТ о т 

The initial and boundary conditions are 

For the Langmuir isotherm 

and using transformations (6) and the following transformations 

a% — a\ aX(k — a%) 

ßs-fli ch(a% — a{) 

(— fid) Q (—Arid) / * \ 
a = ят; ŕ B l Q i i ( * ° 

we obtain 

(*) 

</ = 0 
O = 0 a t 0 á £ ^ l forr = 0 (P) 
0 = 0 

§ ? = § ? = 0 at | = 0 f o r r > 0 (10) 

| ^ = В / м ( 1 - О г = , ) (Па) 
a t £ = l f o r r > 0 

a=a>jřtP w 

(13) 

_ ľ(l-*i)<7, 1 1 aß© ( 1 A . 

The governing eqns (7—11) and (Í4) are representecj by a set of strongly 
nonlinear coupled parabolic differential equations which aye coupled to the fluid 
phase mass and energy balances through boundary conditions (lla9 lib). This 
complicated model, however, is difficult to treat numerically and one is interested 
in using a model which is as simple as possible. In scr ibing most sorption 
processes, intraparticle temperature gradients may be neglected [8]. We integrate 
(8) over the pellet volume to obtain 
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í^=3/.JIf» +3f' |ii <riHW,.,4M?v (») 
the boundary condition ( l ib ) which contains unknown temperature 0^=i can be 
used in the modified form 

(HL—** < W > 
Villadsen and Michelsen [9] recommended to compensate, for the use of larger 

temperature driving force by using a smaller value of Bi 

Eqn (16) is inserted into (15) to give a simplified form of heat balance 

d@ — . г1Э<7 , 

Some further simplification of the model is possible for large values of film transfer 
coefficients. These are equivalent to small changes in driving forces across the film. 
Boundary conditions (11a) and (lib) for large BiM and Bi, respectively, have the 
form 

0 ^ = 0 a t ? = 1 f o r r - ° < 1 9 b ) 

Table 1 lists mathematical formulations of nine different models, which can be 
obtained by the application of various simplifications. Model N1, in which all 
transport resistances are included, is the most complicated. In model N2 only the 
intraparticle transport resistances are included and in N3 only the film resistances 
against the heat and mass transport are dominant. In models N4—N9 various 
combinations of transport resistances inside the particle and in the film, respec­
tively, are included. 

Analysis of the nonisothermal models 

All models listed in Table 1 are represented by the set of two strongly nonlinear 
coupled differential equations. They need to be solved numerically. An approxi­
mate analysis based on a linear driving force representation of the mass transfer 
rate equation was developed by Cbihara et al. [2], while a solution in terms of the 
moments of the uptake curves was obtained by Kočířík et al [3]. Brunovská et al. 
solved, in recent papers, some models from Table '1 [5—8]. In paper [5] a detailed 
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Table 1 

Mathematical formulations of nine nonisothermal models 

Model Model equations Boundary conditions 

N1 

Эт Эт 

Зт Эт 

N5 

Эг Эт 

BQ /ЭСК dq 
т э7=3(э|)г.,-5-т 

d<9 /Э6К dq 

dT vSf/u-i dT 

analysis of N2 is presented. A finite-difference method based on explicit-implicit 
procedure is proposed to approximate this set of equations. The equations are 
solved for a case of strong adsorption accompanied by significant heat generation 
effects. It is shown that for molecular diffusion intraparticle temperature differ­
ences may be of the order of magnitude 10—50°C. The next paper [6] is concerned 
with an analysis of N5 with finite values of film transfer coefficient for heat 
transport. For higher values of Bi overheating of the particle occurs, which is 
followed by a cooling process. On the other hand, for low values of Bi, the particle 
behaves "isothermally" and for a long time the temperature inside the particle does 
not change. The high temperature of the particle results in a slow adsorption 
process. In paper [7] an approximation is described making it possible to calculate 
temporal temperature and adsorbed amount profiles during an adsorption process 
in a single pellet for N8. The profiles calculated from models N8 and N5 are 
compared and it is shown that, for a majority of operating systems, the simplified 
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model can be used and approximates very well the results obtained from the exact 
model N5. An experimental study has been made of temperature profiles incident 
within a zeolite adsorbent particle in the course of adsorption of л-heptane [8]. The 
results of this work indicate that the overheating of an adsorbent particle is a very 
rapid process which is followed by a slow cooling of the hot particle. Experimental 
data are compared with predictions calculated from model N8. A numerical 
analysis of models [4—7] as well as experimental observations [4, 8] indicated that 
for many practical problems the internal diffusion resistance will dominate the 
external film resistance for mass transfer, whereas the external film resistance will 
dominate the internal resistance for heat transfer. Under certain conditions the 
internal and external resistances in the mass transport may be of equal magnitude. 

Solution and computing methods 

In the previous paper [1] the method of orthogonal collocation has been used for 
the solution of isothermal models in connection with the Runge—Kutta—Merson 
technique to solve the resulting ordinary differential equations. In this paper the 
same solution and computing methods are being used to solve the set of differential 
equations of N6 and N8. The heat balance in N6 and N8 has the form (18) and for 
a small value (ô = 0.00012 in experimental conditions in [8]) it can be rewritten as 

^ = - 3 L H ^ 0 + 3 ( ! ^ = I (20) 

which is the form of the heat balance from [7]. For the equilibrium isotherm 
q = q(Q, Ô) we obtain 

Model equations (20, 21) with boundary condition (11a) or (19a) respectively can 
be transformed by using formulas for the gradient V and for the Laplace operator 
V2[9] 

VQ(I)=^A(I,J)Q(T) (22) 
J=\ 

N+l 

V2Q(Í)=*ZB(I,J)Q(J) (23) 
J=\ 

into the form 

f(Q(J), 0 ) ^ = %B(I, J) Q(J)-g(Q(T), 0)^ (24) 

1=1, ...,N 
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and 
N+l 

B/M(1 - Q(N+1)) = 2 A(N+1, /) Q(J) (25a) 
J=\ 

or 
Q(N+1) = 1 (25b) 

The unknown boundary ordinate is eliminated from the system of equations by the 
equation 

N+l 

2A(N+I,J)Q(J) BÍM 

°(N+V=~BiM + A(N+l,N+l) + BiM + A(N+l,N+l) < 2 6 ) 

which is inserted into each of eqns (24). Thus we obtain a system of N equations 
for the N interior values of Q and the mean temperature of the pellet 

fT = ^(Q,ě) (27) 

Eqn (20) can be rewritten, by using formulas (22) and (26), into the symbolic 
form 

^ f = F ( 0 , ©) (28) 

Eqns (27, 2S) represent the set of the N+ 1 ordinary differential equations which 
are solved under the initial conditions 

Ilo atT=0 (29) 

The set of ordinary differential equations was integrated by the Runge—Kut-
ta—Merson method. The transients of the mean internal concentrations in both 
phases Q and q, respectively, were obtained by the Radau quadrature summation 
formula 

Q=^W(I)Q(I) 
i=\ 

N+l 

q=^W(I)q(I) 

(30) 

where q(I) = q(Q(I), в). 
Elements A (I, /), B(I, J), W(I) were computed by the programs listed in [9]. In 

this case the weighting function (1 — %2)ai;2ß with a = 0 and ß = 1/2 has been used. 
The approximation order N of the orthogonal polynomials was tested with 
N=l, 2, . . . ,7,8. N = 7 proved to be sufficient to obtain differences only in the 4th 

Chem. zvestí36(6) 733-744 (1982) 7 3 9 



P RAJNIAK. A. BRUNOVSKÁ, J. ILAVSKÝ 

digit as compared with the higher approximation. The method of orthogonal 
collocation in connection with the Runge—Kutta—Merson technique was com­
pared with an explicit-implicit finite difference method from [7] for model N6. For 
the same degree of accuracy (N=7) less than l/20th of the computation time was 
required. The use of a more sophisticated integration technique would have 
permitted larger time steps and produced results even more favourable to the 
collocation technique. 

Results and discussion 

Computation results are plotted in Figs. 1—4. In Figs. 1—3 some transients of 
average values of dimensionless sorbate concentration in particle q, dimensionless 
gaseous phase concentration Q, and of dimensionless temperature of particle are 
drawn for various values of parameter BiM for model N6. Solutions are compared 
with the solution of N8 for the same parameters. The differences between both 
models are significant only for low values of BiM. For 20<B/M<20000 within 
which one will normally expect parameter values to be within physically realistic 
conditions the differences between both models are small. The measured concen-

1.0 | 1 1 1 1 1 1 1 1 1 1 1 г 

Fig. 1. Transients of q for models N6 and N8. 

Xl =0.7;ß = 03*a = 10; ô = 0.05;w = 3. 
/, Z 3,4. Model N6; 5. model N8. 

L Я/м = 0.1; 2. В/м= 1; 3. В/м= 10; 4. BiM = 100. 
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Fig. 2. Transients of Q for models N6 and N8. 
к,=О.7;0 = О.З;а = 1О;о = О.О5;<у = 3. 

7,2,3,4. Model N6; 5. model N8. 
/. B/M = 0.1 ; 2. B/M = 1; 3. B/M = 10; 4. B/M = 100. 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 3. Transients of 0 for models N6 and N8. 
к, =0.7; 0 = 0.3; a = 10; 0 = 0.05; w = 3. 

U2,3, 4. Model N6; 5. model N8. 
1. B/M = 0.1 ; 2 B/M = 1; 3. B/M = 10; 4. B/M = 100. 
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ч - /r -

0.8 - /' 

// 

0.6 - / 
// 

// 

0.4 - / 

0.2 - / 

/ Fig. 4. Transients of q for models 12 and N8. 
" / " Isothermal model 12, ô = 0.00012, к, = 0.908; 

oo i_ | | | nonisothermal model N8, ô = 0.00012, 
0.0 0.1 0.2 0.3 if *, = 0.908, co = 25, a = 14.37, ß = 0.157. 

tration transients from [8] are drawn in Fig. 4 together with computed results for 
parameters recommended in [8] for nonisothermal model N8 and those for 
isothermal model 12 from [1]. From Fig. 4 it is evident that the concentration 
dependence in the particle may be computed with relative deviation less than 6% 
by the isothermal model. 

Conclusion 

Computation showed that the orthogonal collocation method is also suitable for 
solving mathematical models of nonisothermal one-component sorption. Conclu­
sions about collocation solution accuracy are quite similar to those obtained with 
isothermal nonlinear models [1]. From the figures presented in this paper it may be 
deduced: 1. the major mass transport resistance is distributed as diffusional 
resistance inside the pellet; 2. the high thermal effects have only little influence on 
the concentration transient for parameters presented here. 

Finally we can say that the most sophisticated model for one-component sorption 
in a single particle is N6, in which both film resistance and intraparticle resistance 
against mass transport are included. In most practical cases the less general model 
N8 is also good though it is hardly less complicated than model N6 from the 
mathematical and data points of view. When one is interested only in concentration 
transient, or when a priori estimation of parameters Bi and Lw is complicated, 
isothermal models И or 12 from [1] can be used with accuracy, satisfactory for 
chemical engineering problems, for parameters presented here. 
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Symbols 

a adsorbate concentration in particle molnr3 

ö; initial adsorbate concentration 
in particle molm"3 

a% monolayer capacity in the Langmuir 
isotherm m o l m - 3 

a% equilibrium adsorbate concentration molm - 3 

A(I, J) differentiation weight from eqn (22) 
B(I, J) differentiation weight from eqn (23) 
Bi Biot number for heat transfer 
Bi modified Bi defined by eqn (17) 
BiM Biot number for mass transfer 
Вцл modified BiM defined by eqn (17) 
c adsorptive concentration 

in the gaseous phase m o l m - 3 

cb adsorptive concentration 
in the bulk flow m o l m " 3 

c? equilibrium initial adsorptive 
concentration mol m~3 

cx=R adsorptive concentration 
at the particle surface m o l m - 3 

c0 constant adsorptive concentration 
in the bulk flow m o l m - 3 

Cp specific heat of sorbent J k g _ 1 K _ 1 

D e f effective diffusivity m 2 s - 1 

f, g functions from eqn (24) 
F function from eqn (28) 
Fx vector of functions from e q n (27) 
h film heat transfer coefficient J m~2 s"1 K" 
hM film mass transfer coefficient ms"1 

(-Я«,) heat of adsorption Jmol-1 

К equilibrium parameter in the 
Langmuir equation P a - 1 

Lw modified Lewis number 
N number of internal collocation points 
p partial pressure of adsorptive Pa 
q dimensionless adsorbate 

concentration in particle 
q average dimensionless adsorbate 

concentration 
Q dimensionless adsorptive concentration 

in the gaseous phase 
Q average dimensionless adsorptive 

concentration 
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a . , = Q(i)= 

<?(/) 

Q 
R 
9L 
t 
T 

т, 
Tb 

т,.я 
Щ1) 

X 

ß 

Ô 

e 

в 
0?=, = 6>(1) 

в 
Xu x2 

Acf 

Q 

£ 
T 

-- Q(N+ 1) dimensionless concentration at the 
particle surface 
dimensionless concentration at 7-th 
collocation point 
column vector with Q(T) elements 
radius of particle 
gas constant 
time 
temperature 
initial temperature 
temperature in the bulk flow 
temperature at the particle surface 
Radau quadrature weight from eqn (30) 
space coordinate 
dimensionless adsorption energy 
dimensionless adiabatic temperature 

dimensionless parameter defined 
by eqn (6) 
porosity of particle 
dimensionless temperature rise 
dimensionless temperature rise 
at the particle surface 
average dimensionless temperature rise 
dimensionless parameters defined 
by eqn (13) 
effective thermal conductivity of 
sorbent particle 
density of sorbent particle 
dimensionless space coordinate 
dimensionless time 

m 
Jmol-'K"' 
s 
К 
К 
К 

к 
m 

JnrV'K-
kgnr3 
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