Preparation and properties of dialkylaminoethoxyazachalcones

A. BRÁDLEROVÁ, J. ĎURINDA, and E. MIŠÍKOVÁ

Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Komenský University, CS-832 32 Bratislava

Received 24 February 1982

Paper published on the occasion of the 30th anniversary of the foundation of the Faculty of Pharmacy, Komenský University, Bratislava

Twenty 2-, 3-, and 4-(2-dialkylaminoethoxy)azachalcones have been synthesized by alkylation of hydroxyazachalcone, prepared in advance, or by Claisen—Schmidt condensation of dialkylaminoethoxybenzaldehydes with methyl pyridyl ketone. Ultraviolet, infrared, and 'H-n.m.r. spectra were used to verify the identity of the prepared compounds and establish the geometrical isomerism and conformations. Preliminary tests for antimicrobial activity and acute toxicity have been carried out with some of the azachalcones prepared.

Синтезирована группа из двадцати 2-, 3- и 4-(2-диалкиламиноэтокси) азахалконов. Эти соединения были получены в результате алкилирования ранее приготовленного гидроксиазахалкона или конденсацией по Кляйзену–Шмидту диалкиламиноэтоксибензальдегидов с метилпиридилкетоном. Для идентификации полученных соединений и определения геометрической изомерии и конформации были использованы данные УФ, ИК и 'H-ЯМР спектроскопий. У некоторых полученных азахалконов ориентировочно была оценена антимикробиальная активность и степень острой токсичности.

Chalcones and their heterocyclic analogues have been the object of interest of organic chemists for a long time. These compounds are reactive and can serve as starting substances for series of further more complicated structures. Investigations in recent years have shown that many chalcones and azachalcones are interesting also from the point of view of their biological activity.

In the present work we have focused our attention on preparation of azachalcones with a base salt-forming group in the side chain, as compounds with presumed effect on cardiovascular system. The identity of the prepared azachalcones and their salts was verified, besides elemental analysis, by their u.v., i.r., and ¹H-n.m.r. spectra. Interpretation of the spectra helped also to establish the geometrical isomerism and conformations, which can be of essential importance from the view-point of pharmacological activity. Continuing the previous study of antimicrobial activity of azachalcones (insoluble in water) [1, 2], we made preliminary investigations about the activity of the newly prepared compounds which could be tested as water-soluble salts.

Experimental

The u.v. spectra of the synthesized compounds were measured on a Specord UV VIS (Zeiss, Jena) spectrophotometer in ethanol or methanol solutions at 200—800 nm using 0.1 or 0.2 cm silica cells. When the u.v. spectra were used to find the optimum time for the Claisen—Schmidt condensation, $10 \,\mu$ l of reaction mixture were withdrawn by a constriction micropipette at preset times.

The i.r. spectra were measured by the KBr technique (ca. 2 mg compound per 400 or 800 mg KBr) on a Perkin—Elmer 377 or a Specord IR 75 (Zeiss, Jena) spectrophotometer at 4000—400 cm⁻¹.

The ¹H-n.m.r. spectra of the solid bases of azachalcones were measured in deuteriochloroform on a Tesla BS 487 A spectrometer at 80 MHz using hexamethyldisiloxane as internal standard; the results were calculated to tetramethylsilane.

Protonization constants were determined potentiometrically on a PHM-26 (Radiometer, Copenhagen) apparatus with a G 202 C glass electrode and a saturated K 100 calomel electrode. The accuracy of measurements was pH ± 0.05 .

Acute toxicity was determined on white mice. Subcutaneously were injected 1 % solutions of the compounds tested, the mortality was checked after 24 h. Each dose was applied to two mice and the approximate limits for LD_{50} were estimated.

The antimicrobial activity was tested on standard strains of *Staphylococcus aureus*, *Escherichia coli*, and *Candida albicans*. Fire-clay rollers of 5 mm diameter were plunged into 1 % aqueous solutions of the compounds and the inhibition zone was expressed in mm.

Dialkylaminoethoxybenzaldehydes were prepared after the procedure described in [3]. The oily products were purified by distillation under reduced pressure or by crystallization in the form of salts with hydrochloric or citric acid. The prepared compounds are presented in Table 1.

Dialkylaminoethoxyazachalcones

Method A

Into anhydrous ethanol (100 ml) containing metallic sodium (1.15 g) hydroxyazachalcone (0.05 mol) was added and the reaction mixture was shaken mechanically for 2 h at room temperature. Ethanol was distilled off and the solid red residue was washed with ether. To the solid substance toluene (100 ml) and N-(2-chloroethyl)dialkylamine (0.05 mol) were added and the reaction mixture was heated under reflux for 4 h. After cooling the solid portion was filtered off and toluene was distilled off under reduced pressure. From the oily or semi-solid products salts were prepared with hydrochloric or citric acid.

Table	1
-------	---

_

		Dialky	laminoeth	oxybenza	aldehydes				
		Formula	Calc	ulated/fo	ound	Yield	Salt	B.p./°C	
No.	Compound	M _r	% C	% H	% N	%	M.p./°C	Pa	<i>п</i> ₀ ℃
Ι	3-[2-(Dimethylamino)ethoxy]- benzaldehyde	C ₁₁ H ₁₅ N ₁ O ₂ Cl ₁ 229.71	57.51 57.38	7.02 6.94	6.09 6.23	64	Chloride 159—161	122—125/106	1.5325 25
II	4-[2-(Dimethylamino)ethoxy]- -3-methoxybenzaldehyde					63	Chloride	156/119	1.5588 21
III	4-[2-(Dimethylamino)ethoxy]- -3-ethoxybenzaldehyde	C ₁₃ H ₂₀ N ₁ O ₃ Cl ₁ 273.75	57.03 56.76	7.36 7.11	5.11 5.34	46	Chloride 131—133	144—146/79.9	1.543 22
IV	4-[2-(Diethylamino)ethoxy]- -3-methoxybenzaldehyde	C ₂₀ H ₂₉ N ₁ O ₁₀ 443.45	54.23 54.58	6.60 6.76	3.16 3.28	58	Citrate 123—126		
V	3-[2-(Diethylamino)ethoxy]- -4-methoxybenzaldehyde	C ₁₄ H ₂₂ N ₁ O ₃ Cl ₁ 287.78	58.59 58.80	7.73 7.69	4.88 4.79	64	Chloride 178—179		
VI	4-[2-(Diethylamino)ethoxy]- -3-ethoxybenzaldehyde	C ₁₅ H ₂₄ N ₁ O ₃ Cl ₁ 301.81	59.69 59.31	8.01 7.92	4.64 4.58	45	Chloride 142—143.5		
VII	2-[2-(Diethylamino)ethoxy]- -3-ethoxybenzaldehyde	C ₁₅ H ₂₄ N ₁ O ₃ Cl ₁ 301.81	59.69 60.07	8.01 8.08	4.64 4.50	60	Chloride 102—103		

٠

Method B1

In anhydrous pyridine (10 ml) dialkylaminoethoxybenzaldehyde (0.1 mol) was dissolved and methyl pyridyl ketone (0.1 mol) and diethylamine (0.1 mol) were added. The mixture was allowed to react at room temperature for several hours. In some cases (Table 2) the mixture was preheated on a water bath and then allowed to react at room temperature. The volatile compounds were removed and from the oily or semi-solid residue salts were prepared. When solid azachalcone was obtained, it was recrystallized from a suitable solvent.

Method B2

Methyl pyridyl ketone (0.1 mol) and dialkylaminoethoxybenzaldehyde (0.1 mol) were dissolved in anhydrous ethanol (10 ml) and piperidine (0.1 mol) was added as catalyst. The reaction mixture was allowed to stay at room temperature or heated under reflux. The optimum reaction time was found by using u.v. spectra. After the reaction was completed the mixture was worked up similarly as in the method B1. The prepared azachalcones are presented in Table 2.

Results and discussion

For the preparation of dialkylaminoethoxyazachalcones two methods were applied (Scheme 1). The method B was shown to be more advantageous mainly when considering the saving of chemicals. The starting dialkylaminoethoxybenzal-dehydes were prepared by alkylation of the appropriate phenolates with N-(2-chloroethyl)dialkylamines in toluene for 4 h, which meant, in some cases, a shorter reaction time than reported in the literature. This method has proved to be suitable also for preparation of dialkylaminoethoxybenzaldehydes derived from vanillin and its derivatives which have not been described in the literature.

The Claisen—Schmidt reaction of the appropriate benzaldehyde with methyl pyridyl ketones was at the beginning carried out in pyridine (method B1) using diethylamine as catalyst. These conditions were chosen with regard to the works by *Durinda et al.* [2] and *Szücs et al.* [4] who prepared a large group of variously substituted pyridine analogues of chalcone by this method. Great difficulties with isolation of the final azachalcones led us to change the reaction medium. The use of ethanol was a success (method B2). In comparison with the method B1, the yields of the crude product and mainly its purity increased in most cases. The optimum reaction time in this procedure was controlled by the u.v. spectra. Heating the reaction mixture to the boiling point of the solvent (ethanol) and using piperidine as catalyst resulted in significant shortening of the reaction time in comparison with

Ta	ble	2
		_

No.	Compound	Formula	Cal	culated/fo	ound	- Method		action ime*	Yield	Form of azachal-	M.p./°C
	•	<i>M</i> , % C % H		% N		а	b	- %	cone	Solvent	
VIII	2-[2-(Dimethylamino)ethoxy]- -3'-azachalcone	C24H28N2O9 448.50 C18H20N2O2 296.31	59.01 58.77 72.96 73.05	5.78 5.94 6.80 6.79	5.73 5.65 9.45 9.30	B1 B2 B2	2	48 36	68 79 82	Citrate Base	85—88 Ethanol 84—87 Cyclohexane
IX	2-[2-(Dimethylamino)ethoxy]- -4'-azachalcone	C ₁₈ H ₂₁ N ₂ O ₂ Cl 332.83 C ₁₈ H ₂₀ N ₂ O ₂ 296.31	64.95 64.63 72.96 73.22	6.36 6.61 6.80 6.58	8.41 8.50 9.45 9.32	B1 B2 B2	2	48 36	64 84 83	Chloride Base	167—168 Ethanol 58.5—60 Heptane
X	3-[2-(Dimethylamino)ethoxy]- -3'-azachalcone	C ₂₄ H ₂₈ N ₂ O ₉ 448.50	59.01 58.86	5.78 5.51	5.73 5.63	B1	_	48	41	Citrate	80––83 Methanol
XI	4-[2-(Dimethylamino)ethoxy]- -3'-azachalcone	C18H20N2O2 296.31	72.96 73.30	6.80 7.14	9.45 8.93	Α			17	Base	79—80 Petroleum ether
		C ₂₄ H ₂₈ N ₂ O ₉ 488.50	59.01 59.23	5.78 5.98	5.73 5.68	B1 B2	_	48 36	71 68	Citrate	159—161 Methanol
XII	4-[2-(Dimethylamino)ethoxy]- -4'-azachalcone	С₂₄H₂кN₂O₅ 488.50	59.01 59.52	5.78 6.10	5.73 5.99	Α	_		38	Citrate	178—179 Methanol
		C ₁₈ H ₂₁ N ₂ O ₂ Cl 332.83	64.95 64.92	6.36 6.47	8.41 8.15	B1	_	48	79	Chloride	226—230 Ethanol
		C ₁₈ H ₂₀ N ₂ O ₂ 296.37	72.95 72.90	6.80 6.87	9.45 9.39	B2	_	36	87	Base	70—71 Hexane

,

No.	Compound	Formula	Calc	ulated/fo	ound	- Method	Reaction time*		Yield	Form of azachal- –	M.p./°C
140.	Compound	<i>M</i> _r	% C	% H	% N	-	а	b	- %	cone	Solvent
XIII	2-[2-(Dimethylamino)ethoxy]-	$C_{20}H_{30}N_2O_4Cl_2$	55.43	6.97	6.46	Α	_	_	45	Chloride	158—162
7111	-3'-azachalcone	433.39	55.50	6.76	6.39	B 1	_	48	52		Ethanol
		C26H32N2O9	60.46	6.24	5.42	B2		48	75	Citrate	144—145
		516.55	60.24	6.50	5.31	B 2	2		77		Methanol
XIV	2-[2-(Diethylamino)ethoxy]-	C26H32N2O9	60.46	6.24	5.42	B 2		48	61	Citrate	159—161
	-4'-azachalcone	516.55	60.86	6.50	5.61	B 2	2	_	64		Methanol
XV	3-[2-(Diethylamino)ethoxy]-	C26H32N2O9	60.46	6.24	5.42	B 1	1	48	48	Citrate	112-115
	-3'-azachalcone	516.55	60.68	6.50	5.34	B 2		48	68		Methanol
						B 2	2				
XVI	3-[2-(Diethylamino)ethoxy]-	C26H32N2O9	60.46	6.24	5.42	B1	1	48	56	Citrate	168-170.5
711	-4'-azachalcone	516.55	60.58	6.48	5.30	B2		48	69		Methanol
		510.55	00.00	0.10	0.00	B2	2		71		
XVII	4-[2-(Diethylamino)ethoxy]-	$C_{20}H_{25}N_2O_2$	74.05	7.46	8.63	A		_	17	Base	43-45
Avn	-3'-azachalcone	324.43	74.20	7.65	8.51	B2		48	86		Petroleum ethe
		$C_{20}H_{28}N_2O_3Cl_2$	58.48	7.20	6.61	B2	2		89	Chloride	172-180
		415.37	57.83	6.89	6.74						Ethanol
XVIII	4-[2-(Diethylamino)ethoxy]-	C26H14N2O10	58.42	6.41	5.24	Α		_	34	Citrate	116-119
	-4'-azachalcone	534.57	58.88	6.53	5.29	B 1	_	48	42		Methanol
					10 U.S.S.	B2	_	48	91		
						B2	2		87		
XIX	4-[2-(Dimethylamino)ethoxy]-	$C_{19}H_{22}N_2O_3$	69.92	6.79	8.58	B2	4	_	69	Base	98—101
	-3-methoxy-3'-azachalcone	326.40	69.76	6.98	8.43	B2		120	75		Heptane
XX	4-[2-(Dimethylamino)ethoxy]-	$C_{19}H_{22}N_2O_3$	69.92	6.79	8.58	B2	3		79	Base	108-110
767	-3-methoxy-4'-azachalcone	326.40	69.65	7.10	8.49	B2	_	120	81		Heptane

.

No.

XXI

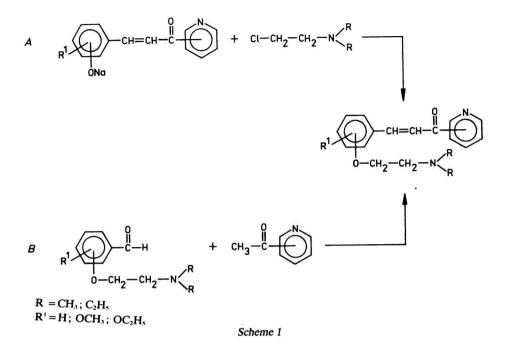
Reaction Calculated/found Form of Formula time* Yield Compound - Method azachal-M, % % C % H % N b а 4-[2-(Dimethylamino)ethoxy]- $C_{20}H_{24}N_2O_3$ 70.57 7.11 8.23 **B**2 3 84 Base -3-ethoxy-3'-azachalcone 340.43 70.44 7.35 8.14

Table 2 (Continued)

XXII	4-[2-(Diethylamino)ethoxy]-	$C_{27}H_{36}N_2O_{11}$	57.44	6.42	4.96	B2		48	91	Citrate	86-87
	-3-methoxy-3'-azachalcone	564.58	57.40	6.69	4.70	B2	2	_	85		Ethanol
XXIII	4-[2-(Diethylamino)ethoxy]-	$C_{21}H_{26}N_2O_3$	71.16	7.40	7.90	B 2		48	75	Base	101-103
	-3-methoxy-4'-azachalcone	354.45	70.93	7.23	7.86	B2	2		72		Heptane
XXIV	3-[2-(Diethylamino)ethoxy]-	$C_{21}H_{28}N_2O_3Cl_2$	59.16	6.62	6.57	B2	4		93	Chloride	180-184
	-4-methoxy-3'-azachalcone	426.36	59.35	6.90	6.37						Ethanol
XXV	3-[2-(Diethylamino)ethoxy]-	$C_{27}H_{34}N_2O_{10}$	59.33	6.27	5.12	B2	2		91	Citrate	191.5—193
	-4-methoxy-4'-azachalcone	546.57	59.69	6.56	5.29						Methanol
XXVI	4-[2-(Diethylamino)ethoxy]-	$C_{22}H_{28}N_2O_3$	71.71	7.66	7.60	B2	4	—	84	Base	78-81
	-3-ethoxy-3'-azachalcone	368.48	72.03	7.79	7.37						Hexane
XXVII	2-[2-(Diethylamino)ethoxy]-	$C_{22}H_{29}N_2O_3Cl$	65.25	7.22	6.91	B2	2.5		90	Chloride	158-162
	-3-ethoxy-3'-azachalcone	404.93	64.98	7.06	7.09						Ethanol

* Reaction time in h; a) boiling; b) room temperature.

M.p./°C


Solvent

89-90

Heptane

cone

DIALKYLAMINOETHOXYAZACHALCONES

the reaction proceeding at room temperature (Table 2). The yields and the purity of the compounds prepared at room temperature and at increased temperature were similar.

The prepared dialkylaminoethoxyazachalcones were oily or solid compounds. The solid compounds were purified by crystallization from suitable solvents (Table 2), the oily azachalcones were isolated in the form of salts with hydrochloric or citric acid and purified by crystallization. Attempts to purify these compounds by distillation under reduced pressure led to their decomposition. To optimize the

1 a	Ыe	5

Compound	Protonization constant						
Compound -	1st degree	2nd degree					
VIII	7.82	3.47					
IX	7.65	3.32					
XII	7.80	3.38					
XXVI	8.45	3.46					

Spectral characteristics of dialkylaminoethoxyazachalcone	es
---	----

			τ	JV				IR/c	- ¹		'H-NMR		
Compound	λ _{max I} nm	ε·10 ⁻³	λ _{max II} nm	ε·10 ⁻³	λ _{max III} nm	ε·10 ⁻³	δ(C—H) trans	v(C=O) s-cis	v(C=C)	v _{as} (COC)	δH _a	δH _β	I _{a. ß} Hz
VIII	240	11.0	312	10.1	345	12.0	980	1655	1590	1270	7.78	8.09	16.0
IX	238	10.8	303	9.6	356	10.4	992	1653	1595	1248	7.66	8.04	15.7
X	245	7.3	308	9.8									
XI	244	13.7	-		347	25.8	991	1655	1585	1258	7.30	7.80	15.5
XII	240	14.4			350	20.9	990	1665	1595	1250	7.31	7.88	16.3
XIII	239	9.2	312	11.0	345	12.0	986	1665	1592	1244			
XIV	235	12.4	307	11.5	352	13.1	982	1661	1584	1240			
XV	sh		310	15.0			994	1658	1595	1250 1265			
XVI	248	10.0	310	15.2			996	1660	1594	1259			
XVII	237	9.0	275	5.0	342	24.0	1001	1661	1604	1254	7.30	7.78	16.
XVIII	233	7.0	280	5.0	342	17.0	993	1668	1593	1262			
XIX	242	11.6	259	12.2	364	18.9	988	1665	1587	1257	7.31	7.76	15.
XX	sh		263	9.65	370	17.1	982	1660	1580	1257	7.23	7.74	15.
XXI							983	1660	1592	1269	7.23	7.72	15.
XXII	227	15.2	270	11.5	360	8.4	980	1662	1580	1262			
XXIII	sh		262	3.7	374	17.2	983	1661	1590	1265	7.22	7.74	15.
XXIV	249	13.8	318	7.9	357	20.1	996	1667	1609 1582	1268			
XXV	239	12.5	260	sh	364	18.5	996	1656	1588	1267			
XXVI	247	sh	261	13.5	370	22.0	980	1663	1596	1267	7.30	7.79	15.
XXVII	sh		303	10.7			990	1669	1604 1591	1274	7.51	8.18	15.:

conditions for the preparation of salts, protonization constants were established with some chosen compounds (Table 3).

The identity of the prepared compounds was verified, besides elemental analysis, by u.v., i.r., and 'H-n.m.r. spectra (Table 4). Evaluation of the spectra helped to determine geometrical isomerism and conformations, too. The u.v. spectral data, the band in the i.r. spectra around 990 cm⁻¹, corresponding to bending vibrations of hydrogens of the vinylene group in *trans* arrangement [5, 6], and the characteristic signals of the AB system of these hydrogens with coupling constant around 16 Hz in the 'H-n.m.r. spectra [7—10] indicated a *trans*-geometrical arrangement.

In the i.r. spectra aborption bands characteristic of carbonyl and vinylene groups can be observed at 1700-1600 cm⁻¹. This fact was utilized in determination of conformation isomers (mutual positions of C=O and C=C double bonds). Mutual relation of intensities of these bands and their distance [11, 12] indicated that in solid state s-cis conformers predominated. This assumption was proved also by the results of 'H-n.m.r. spectra utilizing the ASIS effect [8, 9]. The difference in the values obtained, for instance, with the compound XI in deuteriochloroform and hexadeuteriobenzene was for H_a + 22.4 Hz, for H_b - 5.6 Hz indicating s-cis conformation after [8, 9]. The ASIS effect was used also for determination of synor anti-periplanar position of nitrogen in pyridyl against oxygen in carbonyl with 3'-azachalcones. The difference in the values obtained in deuteriochloroform and hexadeuteriobenzene was for H-2' -5.6 Hz and for H-5' +24.8 Hz pointing to preferred syn-periplanar position of these elements. This result is in agreement with the data in [9] for 3'-azachalcone. The results presented above were proved also by detailed conformation analysis of basic azachalcones by quantum chemical PCILO method [13, 14].

Preliminary tests for acute toxicity were carried out with most of the final azachalcones. It was found that the compounds with a side chain in the position 2 were most toxic and the 4-substituted azachalcones were least toxic (Table 5).

In many previous papers [1, 15] dealing with preparation and properties of variously substituted azachalcones also the antimicrobial activity of these compounds was evaluated. All azachalcones tested were little soluble in water and antimicrobially not or little active. We assumed that by introducing a substituent, thus making the salt water-soluble, the antimicrobial activity would increase. Though the activity of the prepared dialkylaminoethoxyazachalcones has not increased significantly, all azachalcones showed, contrary to the previously tested compounds, the inhibition zone against gram-positive bacteria (*Staphylococcus aureus*), some also against gram-negative bacteria (*Escherichia coli*) and yeasts (*Candida albicans*) (Table 5).

With some azachalcones the effect on the heart activity in vitro and in vivo was evaluated. These results will be published in our next paper.

		Acute toxicity	Antimicrobial activity										
Compound	Salt	Estimate of LD ₅₀ mg kg ⁻¹	Sta	Staphylococcus at		Escherichia coli			Candida albicans				
		ing Kg	x	sx	$\pm \delta \bar{x}$	x	sx	$\pm \delta \bar{x}$	x	sž	±δx		
VIII	Chloride	50—100	9.4	0.245	1.36	0			0				
	Citrate	50—100											
IX	Chloride		16.6	0.245	1.36	8.2	0.200	1.11	6.6	0.245	1.36		
XII	Chloride	200-400	12.4	0.245	1.36	8.4	0.245	1.36	6.0	0	0		
	Citrate	>600											
XIII	Chloride	<50	12.6	0.400	2.20	8.6	0.245	1.36	0				
	Citrate	<50											
XIV	Chloride	50100											
	Citrate	100-200	11.0	0.316	1.75	6.8	0.583	3.23	0				
XV	Citrate		8.8	0.374	2.07	7.4	0.245	1.36	0				
XVI	Citrate	100—300	14.2	0.200	1.11	7.4	0.245	1.36	0				
XVIII	Citrate	>600	6.8	0.374	2.07	0			0				
	Chloride	200-400											
XXII	Chloride	500600	6.0	0	0	0			0				
XXIII	Citrate		6.0	0	0	0			0				
XXIV	Chloride	200-400	7.4	0.245	1.36	0			0				
XXV	Citrate		6.8	0.374	2.07	0			0				
XXVII	Chloride	200-400											

Table 5

References

- 1. Durinda, J., Szücs, L., Heger, J., and Georch, D., Farm. Obzor 42, 59 (1973).
- 2. Ďurinda, J., Szücs, L., Krasnec, L., Heger, J., Špringer, V., Kolena, J., and Keleti, J., Acta Fac. Pharm. Univ. Comenianae 12, 89 (1966).
- 3. Rorer, W. H., Fr. 1447522 (1966); Chem. Abstr. 66, 37639d (1967).
- 4. Szücs, L., Ďurinda, J., Krasnec, L., and Heger, J., Chem. Zvesti 20, 817 (1966).
- 5. Tsukerman, S. V., Zh. Obshch. Khim. 32, 2677 (1962).
- Tsukerman, S. V., Kutulia, L. A., Nikitchenko, V. M., and Lavrushin, V. F., Zh. Obshch. Khim. 33, 3180 (1963).
- 7. Tsukerman, S. V., Orlov, V. D., Yatsenko, A. I., and Lavrushin, V. F., Teor. Eksp. Khim. 6, 67 (1970).
- 8. Cussac, M., Boucherle, A., and Pierre, J. L., Bull. Soc. Chim. Fr. 1974, 1427.
- 9. Ďurinda, J., Habilitation Thesis. Faculty of Pharmacy, Komenský University, Bratislava, 1977.
- 10. Orlov, V. D., Tsukerman, S. V., and Lavrushin, V. F., Vop. Stereokhim. 1, 89 (1971).
- 11. Tsukerman, S. V., Izvekov, V. P., Rozum, Yu. Ts., and Lavrushin, V. F., Khim. Geterotsikl. Soedin. 1968, 1011.
- 12. Tsukerman, S. V., Nikitchenko, V. M., Bugay, A. I., and Lavrushin, V. F., Zh. Strukt. Khim. 10, 486 (1969).
- 13. Liptaj, T., Mlynárik, V., Remko, M., Ďurinda, J., and Heger, J., Collect. Czech. Chem. Commun. 46, 1486 (1981).
- 14. Remko, M., Durinda, J., and Heger, J., J. Mol. Struct. 72, 197 (1981).
- 15. Annigeri, A. C. and Siddapa, S., Indian J. Chem. 1, 459 (1963).

Translated by A. Kardošová