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Chemical kinetic systems involving the first-order reactions are inves
tigated from the unified standpoint. Theorems are derived which are signifi
cant in the understanding of general properties of the first-order kinetic 
systems. A brief description is given for special type of kinetic graphs. 

С помощью унифицированного подхода исследуются химические 
кинетические системы, включающие реакции первого порядка. 
Выводятся теоремы, важные для понимания общих свойств кинетичес
ких систем первого порядка. Приводится краткое описание кинетичес
ких графиков особого вида. 

I. Introduction 

The main purpose of this work is to give a general and unifying viewpoint on 
chemical kinetic systems involving only first-order reactions. Formal aspects of 
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chemical kinetics were initiated to be studied at the beginning of this century by 
the well-known communication of Wegscheider [1] in which he demonstrated 
that the condition of vanishing of time derivatives of concentrations does not 
necessarily coincide with the thermodynamic equilibrium condition when there 
are several linearly independent reactions controlled by the mass-action law. It 
was demonstrated that the condition of vanishing of time derivatives of con
centrations coincides with the thermodynamic equilibrium conditions only if 
there are fulfilled special relations between the rate constants. 

This situation became known as Wegscheider's paradox, was invoked by 
Lewis [2] by his very general "law of entire equilibrium", which requires that 
every chemical reaction should be accompanied by its retroreaction, and that 
their rates are balanced at equilibrium. Applying this principle of detailed 
balance (in physics with an analogue in a principle of microscopic reversibility) 
we get that the rate of overall reaction—retroreaction pair vanishes at all 
equilibrium points. With this constraint it is not difficult to show [3—5] that the 
condition of equilibrium for systems controlled by the mass-action law always 
coincides with the condition of thermodynamic equilibrium in ideal mixtures, so 
Wegscheider's paradox is removed. It can be also shown that the free energy 
decreases with increasing time in all non-equilibrium states (i.e. it plays a role 
of a Lyapunov function known in the theory of dynamic stability of differential 
equations). Hence, the condition of detailed balance ensures a consistency of 
formal chemical kinetics with classical thermodynamics of closed systems of 
ideal mixtures. It was demonstrated by Horn and Jackson [6, 7] that these 
properties of chemical kinetic systems restricted by the detailed-balancing con
dition can be considerably generalized also for systems in which the condition 
is not required. Recently, formal aspects of chemical kinetics are under intensive 
studies [8, 9] of many reasearchers from different branches of physics, biology, 
ecology, and economics. Moreover, some results of formal kinetics belong 
between fundamental reasoning examples in non-equilibrium thermodynamics 
and synergetics. 

The present work is devoted to studies of formal aspects of closed chemical 
systems involving first-order reactions. We emphasize that many chemical kinet
ic systems involving the second and/or higher order reactions can be well 
approximated by the so-called pseudo-reactions when concentrations of some 
species (educts) are kept fixed (e.g. in biochemistry). This fact essentially enlar
ges impact and importance of obtained theoretical results for general kinetics. 
Furthermore, the formal chemical kinetics of first-order reactions can serve [6, 
7] as a prototype for an elaboration of methods applicable for systems involving 
reactions of higher orders (non-linear kinetics). The present work exploits very 
extensively the graph theory [10, 11]. Its approaches and notions belong between 
progressive elements of new viewpoints on formal chemical kinetics [9], they 
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make possible to formulate very easy many theoretical concepts and techniques, 
whereas their pure algebraic (or verbal) presentation is often clumsy or almost 
impossible. 

II. Kinetic system 

Let us study the following system of three first-order reactions 

R,: X,—• X2 

R 2 : x A x 3 (7) 

R3: X,—• X3 

The symbol R, denotes the first-order chemical reaction transforming an educt 
X, into a product X2, its rate is determined by a positive rate constant k]2, in a 
similar way there are interpreted R2 and R3. We postulate, if к0- = 0, then a 
reaction X, -• X, is not presented in the studied system. Since reactions X, -* X, 
are irrelevant for the dynamics of system, we put ku = 0; i.e. all "diagonal" rate 
constants are zero. The rate matrix assigned to a system composed of n species 
X,, X2,..., X„ is a square matrix (n, n) with entries kxj, К = (к0). For system (7) 
its form is 

/o kl2 кЛ 
K=[0 0 к2Л (2) 

\0 0 0 / 

Let är = {X„X2, ...,X„} be a species set, 0t = {R„ R2, ...,RJ с 3C x Ж be a 
non-empty subset of direct product SC x Ж, this set is called the reaction set. It 
contains only those ordered pairs of species from SC that are different, i.e. if 
Ra = (X„ Xj)eät, then / Ф]. We assign to each entity Ra = (X;, Xy) a positive 
rate constant ktj from the rate matrix K. The reaction set is composed of ordered 
pairs of species with positive rate constants 

Л = { (Х / ) Х,);^>0} (5) 

The kinetic system Ж is determined as an ordered triple 

X = (SC, 01, К) (4) 

where SC is the species set, ář is the reaction set, and К is the rate matrix; 
the kinetic system assigned to (1) is of the form: SC = {X,, X2, X3}, 0t = 
= {R, = (X,, X2), R2 = (X2, X3), R3 = (X,, X3)}, and the rate matrix is specified 
by (2). 
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1. Kinetic matrix 

The kinetic matrix corresponding to the kinetic system (4) is defined by [6] 

A = Q(K)= - d g (Ke) + KT (5) 

where KT is the transposed rate matrix, D = dg (d) is a diagonal matrix formed 
by the vector d = (rf,, d2, ..., dn)

T in such a way that Di} = */Д7> (5,, is the usual 
Kroneckeťs delta. Vector e in (5) is an /i-dimensional column vector composed 
of unit elements 

* = (1. К D r (6) 

The matrix dg (Ke) contains row summations of К 

L = dg (Jfc) = (L,) (7a) 

//= I A-, (7c) 
i= l 

Hence, the kinetic matrix can be expressed as follows 

A = - L + KT (8) 

Kinetic matrix of (1) is 

(9) 

It can be easily verified that g is a linear transformation 

Q{?LK) = XQ(K) (10a) 

g(K, + K2) = Q(Kt) 4- Q(K2) (10b) 

If /if, and K2 differ only in diagonal elements, then 

Q(K]) = Q(K2) (IOC) 

Furthermore, if D is a diagonal matrix, then 

AD = g(K)D = g(DK) (Wd) 

One of the most important properties of kinetic matrix is that its column 
summations are vanishing 

I ^ = o ( / = u /i) (ii) 
i= 1 
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The rank of A is ranged by 

1 <r(A)<n- 1 (12) 

The defect of A is determined by d(A) = n — r(A). There exist d = d(A) linearly 
independent vectors that are solution of the following homogeneous problem 

f[A = 0 (75) 

for / = 1,2, ..., d, where/ are elements of ^-dimensional null space (kernel) of 
AT 

2. Kinetic graph 

We assign to each kinetic system Ж — (ЭС, ář, К) an oriented graph [10, 11] 
(without loops and multiple edges) called the kinetic graph [12] 

G(X) = (ЭС, á?, <p) (14) 

where ЭС = {X,, Х2, ..., X,,} is a vertex set (species) and á? = {R,, R2, ..., Rw} is 
an edge set (reactions). Each edge Raeé% is expressed by the ordered pair of 
vertices X, and Xy from ЭС, Ra = (X,, X,), the vertex X, (Xy) is initial (terminal) 
of the given edge Ra. The mapping q>\ 0t -> (0, oo) assigns to each edge Rff = (X„ 
X,-) a positive number called the rate constant. Formally, 

We see that the concept of kinetic graph is very closely related to the kinetic 
system, it visualizes the abstract notion "kinetic system", e.g. for (1) we have 

(16) 

where edges are evaluated by rate constants. One can say that kinetic graph is 
induced by the rate matrix ЛГ, its dimension determines the number of vertices 
in G(Jf), the edge (X„ Xy) is presented in G(Jť) when the rate constantky from 
К is positive. We shall assume throughout this work that the kinetic graph is 
connected [10, 11], it contains only one component. If the kinetic graph is 
disconnected [10, 11], the corresponding kinetic system Ж may be separated in 
a few non-interacting subsystems which in forthcoming considerations are 
studied as independent kinetic systems with connected kinetic graphs. 
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3. Differential equations over kinetic graph [12—14] 

A concentration of a species X, is denoted by xf = Xj(t), where / is time-
-independent variable. The concentration vector x is determined as an я-dimen-
sional column vector with components x,-

х = (хьхъ ...,xn)
T (17) 

We study a kinetic system Ж = (SC, 01, q>) with kinetic graph 
G(Jľ) = (SC, ář, ер). Let us denote by Г+(Г) (ľ_(i)) a set of all vertex indices that 
are incident with edges outgoing (incoming) from (to) the vertex X,. For kinetic 
graph (16) these sets are: Г+(1) = {2, 3}, Г+(2) = {3}, Г+(3) = 0, Г (1) = 0, 
/1(2) = {1}, /1(3) = {1, 2}. We assign to each vertex X, a differential equation 
for time derivative of xit x,- = dxjdt, 

*,= -{ I *//}*/ + I kjpc, (18) 
ljer+(i) J jer-(i) 

where the first (second) term expresses the rate of annihilation (creation) of the 
species X,. We recall the property of K, its entries are vanishing if the corre
sponding edges are not presented at the kinetic graph, the first summation from 
circled brackets is equal to the entity /, determined by (7c) 

h= 1 kv= £kv (19a) 
jer+(i) 7=1 

Similarly, the second summation from the r.h.s. of (18) is essentially simplified, 
since ку = 0 for j$ /1(0 we get 

I fa- tkj,xj (19b) 
jer-(i) 7 = 1 

Introducing (19a—19b) in (18) we arrive at 

*i= -/Л+ £ fa (20) 

This system of linear differential equations determines the time evolution of 
kinetic system Ж for / > 0. The initial conditions of (20) are specified by 
concentrations at the time t = 0 

x(0) = *o = (*?, * i - ,*°) (21) 

where x? = x,(0). 
In the matrix formalism the system of differential equations (20) is of the 

form 
x = Ax [x(0) = x j (22) 
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The solution of this system of diflFerential equations is a standard task of the 
theory of linear differential equations, algebraically it leads to the determination 
of eigenvalues and corresponding strings of generalized eigenvectors of the 
kinetic matrix. 

Let us assume that the kinetic matrix A has/? different eigenvalues A,, A2, 
..., Ap, their multiplicities are determined by integers я,, пъ ..., np restricted by 
n} + n2+ + np = n. A general solution of (22) looks like this [15] 

x, = c,,(t) e v + cn_(t) e * + + cip(t) e * (23) 

where c^t) is a polynomial function of the time variable /, its order is not greater 
than rij— 1. For simple eigenvalue А, (л,- = 1) the entity <:,-,(/) is a constant. We 
shall not investigate a construction of these polynomial functions from (23); the 
main purpose of the work is a qualitative study of the solution of (22) based on 
algebraical properties of the kinetic matrix A. After simple integration of (22) 
and taking into account the formula (8) we get [4] 

x(t) = e-L'x0 + e~L9KTx(t -S)d3 (24a) 

or 

xit) = e"'"*? + t kj, ľ e-''\,.(/ - S) á9 (24b) 
j=\ Jo 

for / = 1, 2, ..., n. It will be demonstrated that this integral solution of (22) is 
very useful for our forthcoming qualitative theory. 

III. Qualitative theory 

This section is devoted to the qualitative features and properties of solutions 
of the fundamental differential equation (22). The used theoretical approach is 
fully based on simple algebraic properties of the kinetic matrix A without 
necessity of an implementation of additional physicochemical assumptions. 

1. Conservation laws 

The kinetic matrix A has at least one nontrivial solution of the homogeneous 
problem (75). A solution denoted by/ can be constructed in an explicit form 
by making use of the property (77) (column summations of A are vanishing) 

/ = e = (l, l,..., l ) r (25) 
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For d > 2 there exist further nontrivial vectors/, /3,... ,/,, but their explicit form 
already depends on actual values of entries of the kinetic matrix. 

Multiplying differential equation (22) from the left side by the vector/^ (for 
/ = 1, 2, ..., d) we get 

fix = 0 (26) 

where the relation (13) was used. Its integration gives the /-th conservation law 

f[x = со,- (27) 

The integration constant <#, is unambiguously determined by initial condition 
(21) 

со,=/[х0 (28) 

Without loss of generality of our considerations we can assume that the initial 
concentration vector JC0 from (77) is "normalized" as follows 

eTx0 = *? + * ? + + x°n = 1 (29) 

Since the vector/, is identical with the vector e (see eqn (25)), the first conserva
tion law is 

eTx = xx + x2 + + xn = 1 (30) 

for each t ^ 0. This conservation law has very important physical interpretation, 
the summation of concentrations assigned to individual species X, from the 
kinetic system Ж is unit for each t ^ 0. It is a specific manifestation of the mass 
conservation law, but we have to emphasize that its validity immediately follows 
from the algebraic property (77) of the kinetic matrix A. Further conservation 
laws (27) for / = 2, 3, ..., d are not of such generality, their actual form depends 
on the kinetic matrix A. 

For illustration, let us study the kinetic graph 

(31a) 

the corresponding kinetic matrix being 

'-кХ2-кхъ 0 0N 

A = ( kn 0 0 I (31b) 
ku 0 0, 
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The rank of A is r (A) = 1, then for defect we have d(A) = 3 — 1 = 2 . The matrix 
A has two linearly independent solutions of (13) 

/, = (1, 1, l)r (32a) 

f2 = (0,*,з, -kvf (32b) 

Introducing these two vectors in (27) we get the following two conservation laws 

x] + x2 + x3 = 1 (33a) 

^13-^2 ^12-^3 = ^13-^2 — ^12-^3 (jJU) 

for each / ^ 0. 

2. Non-negativity of concentration vector 

A vector a = (а,, д2> •••> я„)г wiH be called non-negative [7] if all of its com
ponents are non-negative (af^0 for / = 1,2, .. .,л), formally a ^ 0. In an 
analogous way we define positive vector, negative vector, etc. Generalization of 
this simple terminology may be done also for matrices. 

We shall start from an assumption that the initial concentration vector x0 is 
non-negative, дг0 ^ 0. We have to prove that the concentration vector x(t) is also 
non-negative for each t ^ 0 

JC(0) = J C 0 ^ 0 = > X ( 0 ^ 0 (34) 

Assuming x*j > 0, from (20) it follows that the time derivative л:;(0) may be either 
positive or negative; if x*} = 0, then x,(0) is non-negative, x,(0) ^ 0. Hence, if the 
initial vector x0 ^ 0 is non-negative, then there exists such small positive number 
s that for all 0 < t < e the concentration vector x(t) is non-negative. Now, let 
us assume that x^t) is a component of the concentration vector which first 
passes from positive to negative values; this means that for a time t0 > 0 we have 
xi(to) — 0. Following (24b), the concentration JC,(0 c a n vanish for some finite t0 

only if at least another one concentration Xj(t) (j Ф i) is negative for the time t0. 
But this is in a contradiction with our initial assumption that xf(t) is the first 
concentration to be negative, hence all concentrations should be non-negative. 

Conservation law (30) and the non-negativity property (34) can be linked at 
the more general property 

JC0 > 0 and eTx0 = 1 => x(t) ^ 0 and eTx(t) = 1 (35) 

for each t ^ 0. This immediately implies that all concentrations are ranged by 

0 < jcf-(0 < 1 (36) 

for each i = 1, 2, ..., n and / ̂  0. 
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If the kinetic graph G(Jť) is strongly connected [10] (for an arbitrary pair of 
vertices X, and X, there exist two directed paths going from X, to X,- and from 
X, to X,) the above result (35) can be presented in a stronger form, a non-nega
tivity of the initial concentration vector implies its positivity for each t 5s 0 

JCO^O and eTx0= 1 => jc(r) > 0 and eTx(t) = I (37) 

It can be proved also by making use of the integral solution (24b), for strongly 
connected kinetic graph each vertex X, is coincident with a vertex X, such that 
the oriented edge (X„ X;) exists; hence for each / we have an indexy such that 

3. Properties of solution at t = 0 [13, 14] 

The vertex set ЭС can be decomposed in two disjoint subsets Ж0 and 3C+ 

Ж = аГ0и&+ (38a) 

äTo = {X/eäT; JC? = 0} (38b) 

ЭС+ ={X f .eaT; x ? > 0 } (38c) 

The subset $Г0 (3C+) is composed of those vertices for which initial concentra
tions are vanishing (positive), e.g. if X , G ^ 0 then JC- = 0. We assign to each vertex 
XjE2ľ0 a positive integer xh it expresses the length of the shortest path from Ж+ 

to X,; if such a path does not exist we put x,= oo. The above definition of 
integers Xj is naturally extended also for vertices X , E # * + , we put x, = 0. For 
illustration, let us study the following kinetic graph 

x 9 xR 

x1«—» 

\ X7 

The initial concentration vector is specified by JC0 = (0, 0, 0, 0, 0, x°6, x°), where 
x°6 and Xy are positive components. The subsets 2C0 and SC + from (38) are 
#o = {X„ X2, X3, X4, X5} and %+ = {X6, X7}. We assign to each vertex Х{еЖ0 

an integer xh it specifies the length of the shortest path from &+ to X„ we get 
x, = oo, x2 = 4, x3 = 2, x4 = 3, x5 = 1, x6 = 0, xn = 0. For instance, the shortest 
path from 2ľ+ to X2 is a sequence of vertices and edges X7—X5—X3—X4—X2, 

(.39) 
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its length is equal to 4. For the vertex X, there does not exist a path from 3C+ 

to X,, hence x, = oo. Finally, the vertices X6 and X7 belong to 3F+, therefore 
*6 = *7 = 0 . 

Applying this terminology we can prove in an analogous way as (34) that for 
a given initial state JC0 (the decomposition 3C = 3C§u % + xs> determined by x0) 
concentrations x,(t) for each / ^ 0 are either zero or positive depending on the 
value of the integer x, 

x. = oo => *,(/) = 0 (40a) 

x,- < oo => x,(t) > 0 (40b) 

Physical interpretation of this result is very simple. Concentrations x,(t) assigned 
to those species (vertices) XJE&Q that are not reached by an oriented path from 
2C+ to X, (Xj = oo) must be vanishing. There does not exist a mass flow (a path 
on kinetic graph oriented from 3ľ+) for their "deviation" from initial zero 
values. 

The coefficients x,- are proper tool for description of concentrations at the 
time / = 0. Let us investigate the kinetic system Ж with given initial concentra
tion vector x0. At the neighborhood of time t = 0 each concentration xf(t) is an 
infinitely small entity of the order xf 

*,(')-> f\ (for /->0) (41) 

where v,- is a positive constant. In order to prove (41) there is sufficient to show 
that time derivatives up to the order x{ — 1 are vanishing for t = 0 

^ ( 0 ) = 0 ö > = l , 2 , . . . , x , - l ) (42) 

The first time derivative of x,-(t) at t = 0 is determined by the relation (22), its 
straightforward generalization offers 

JC(W)(0) = Anx(0) = Anx0 (43a) 

or in the component formalism 

x}">(0) = X (Л V ° (43b) 
j 

The matrix element (Ап)и has very simple interpretation in the framework of 
graph theory [10], it corresponds to all possible paths (with possible repetition 
of edges) which are oriented from X, to Xy. We are looking for a path with the 
shortest length, hence a repetition of edges is not permitted. From these simple 
considerations we deduce that the integer n from (43b) is equal to the coefficient 
x,- assigned to the vertex X,; we have proved the condition (42) from which 
immediately follows (41), the positiveness of constants u,- we get from (40). 
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4. Equilibrium concentration vector 

Let us investigate the integral solution (24b) for / - • oo. Since there exist 
exponential functions with negative exponents and moreover the concentrations 
are ranged by (36), for an arbitrary small e > 0 we have such a time 
T = T(e) > 0 that 

t>T^\xi(t+r)-xi(t)\<£ (44) 

for each i = 1,2, ...,n and г > 0. This means that the concentration JC,(0 for 
t P 0 is tending to a constant value and its time derivatives are vanishing for 
tpO 

lim x(t) = 0 (45) 
t -* X 

Equilibrium concentration vector of the kinetic system Ж is defined as a limit 
value of the concentration vector for t -• oo 

lim x(t) = x (46) 

/-» X 

Introducing (45) and (46) in (22) we get 

Ax = 0 (47) 
The equilibrium concentration vector JČ is determined as a nontrivial solution 
( í ф 0) of the homogeneous problem (47), it must simultaneously satisfy the 
condition (35) 

i ^ 0 and eTx = 1 (48) 

For r(A) = n — 1 the equilibrium concentration vector is determined by (47) 
unambiguously (the null space if A is 1-dimensional). If r (A) ^ n — 2 (i.e. 
d(A) ^ 2) the dimension of null space of A is greater than or equal to 2, this 
means that in order to construct the equilibrium concentration vector x we have 
to use further conservation laws determined by vectors/2,/3, ...,fd. 

For illustration let us construct the equilibrium concentration vector for the 
kinetic system specified by the graph (31a), solving (47) we get 

x = (0, a, ß)T (49) 

where a, ß are arbitrary non-negative constants. The vectors / , and f2 are 
determined by (32a—32b), the equilibrium concentration vector is 

i = L Къх\-кп(х\-\)^ knx°-kn(xl-l) -

\ k]2 + k]3 kn + ^i3 
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What is the physical interpretation of obtained theoretical results? An arbi
trary kinetic system is tending for / -> oo to an equilibrium concentration vector 
with vanishing time derivatives of all its components. Sustained concentration 
oscillations are not, a priori, permitted. Only damped oscillations can occur and 
they are damped by an exponential factor e_flf', where a > 0. Therefore, the 
kinetic systems (closed and involving only first-order reactions) can be verbally 
characterized as "quasi-thermodynamic", they are spontaneously tending to 
equilibrium state. For r(A) = n — 1 these equilibrium states are determined 
unambiguously, whereas for r (A) ^ n — 2 they depend on initial concentration 
vectors (Fig. 1). 

r(A) = n-1 r(A)*n-2 

Fig. 1. Schematic trajectories of differential equations (22). For r(A) = n — 1 the equilibrium state 
(terminus of trajectory) is determined unambiguously. All trajectories end at the same equilibrium 
point independently of their initial states. For r{A) ^ n — 2 equilibrium states are not determined 

unambiguously, the trajectory terminus depends on its initial state. 

5. Pseudo-Lyapunov function 

Very general approach for the construction of Lyapunov function was sug
gested by Horn [6], his technique has strong limitation — it is applicable only 
for kinetic systems with strongly connected graphs. Recently, Yablonskii et al. 
[16] introduced the so-called pseudo-Lyapunov function (which is only con
tinuous, standard Lyapunov function should be also smooth, i.e. its time deriva
tive is continuous), they did not present a proof of a negativeness of the first time 
derivative on intervals of its smoothness. 

Let us define the so-called l r norm of a vector a = (al9 аъ ..., an)
T 

\a\ = Z N 
i - 1 

The following three properties are satisfied 

\a\ 5*0 ( = 0 only for a = 0) 

\aa\ = \a\\a\ 

(51) 

(52a) 

(52b) 
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\a + b\ ÍS \a\ + \b\ (52c) 

where a is a complex number. Pseudo-Lyapunov function is determined as 
follows [16] 

L(0 = |jcCr) - i | = I |-v,(/) - x,\ 
/ = 1 

Applying (52a) and (52c) we get 

0 ^ L(0 ^ 2 (for each t ^ 0) 

lim L(0 = 0 

(53) 

(54a) 

(54b) 

Pseudo-Lyapunov function is a positive and continuous function, for t -• oo it 
asymptotically tends to zero. The basic property of this function is its monoto
nous decreasing for increased time t (Fig. 2) 

L(r + r) < L(r) (for r > 0) (55) 

Ut)k 

Fig. 2. Illustrative plotting of the pseudo-Lyapu-
nov function L(r) defined by (53), at the time 
points f = f|, /:, ty its first time derivatives do 
not exist (though the function is continuous for 

each / ̂  0). 

The function L(t) is interpreted as a ''distance" (in 1, metrics) between the point 
x(t) lying on trajectory of differential equation (22) and the equilibrium point 
x (terminus of the trajectory). Following (55) this distance is monotonously 
decreasing and vanishing for t -• x (for x = x). 

Let us have a set of points {t0 = 0, tb гъ ..., tai ...} on time axis, they are 
determined in such a way that for ta_, < t < ta (a = 1,2,...) the differences 
л,(0 — Xj from (53) have the same sign, this sign may be changed only at the 
points t = ta for a = 1, 2, Let the time t be ranged by /e_, < t < ta, then the 
relation (53) is 

L(0 = I ©,[*,(/) - x] 

where the coefficients <y, are 

ГУ, 
1 (for JC,(í) > *,) 

- 1 (for x,{t) < i,) 

(J6e) 

(56Z>) 
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The time derivative of L(r) for a time ta_, < / < ta is 

Ш = t coMt) (57) 
i= 1 

Applying (20) and after simple algebraic manipulations we arrive at 

Ш = í k0{a>fl>j - 1 ) ф , ( 0 - x] (58) 

Since for an arbitrary kinetic system there exists at least a pair of indices i and 
j such that kjjCOilXjit) — x] is positive and ((OfiOj — 1) is negative, the right-hand 
side of (58) must be negative 

Ш < 0 (59) 

The time derivative of L(/) is vanishing only if x, = Jc,- for all ľ s (taking place for 
/-•oo). Hence, we have proved that the pseudo-Lyapunov function for 
ta_, < / < ta is monotonously decreasing, at the point t = ta (for a = 1, 2, ...) 
the time derivative does not exist. Since it is continuous, the pseudo-Lyapunov 
function should be monotonously decreasing on the whole positive time axis 
(Fig. 2). 

The pseudo-Lyapunov function L(t) may be simply generalized also for two 
trajectories xA(t) and xB(t) of the same kinetic system Ж where their initial 
points are different 

LAB(0 = M O - *B(0I = t l*ŕ(0 - *ľ(OI (60) 
1 = 1 

In a completely analogous way as above one can prove that this function is 
monotonously decreasing 

LAB(f + i) < LAB(f) ( r > 0 ) (61) 

and 

lim LA B(0 = | i A - *BI (62) 
f-* x 

where JČA (xB) is an equilibrium state of the trajectory xA(t) [JCB(0]- F ° r 

r(A) = n — 1 these equilibrium points are identical, xA = i B , the pseudo-Lyapu
nov function is asymptotically vanishing for /-• oo. For r (A) ^ n — 2 equi
librium concentrations depend on the initial condition, then it asymptotically 
tends to | i A — i B | > 0 for t -• oo. Summarizing the obtained results, the distance 
(in 1, metrics) between two points from the trajectories xA(t) and xB(t) monoto
nously decreases to |xA — i B | for /-» oo. 
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Finally, let us define this special form of the pseudo-Lyapunov function 

MO = |x̂ (OI = t l*№l (63) 
i= 1 

for p = 1,2,..., where xf\t) ls Ле /?-th time derivative of the concentration 
vector. Generalizing (20) by induction we get xip + l) = Ax^\ where JC(0)(/) = x(t) 
is original concentration vector. This pseudo-Lyapunov function is continuous 
and monotonically decreasing to zero 

L,(/ + r ) < L,(/) (64a) 

lim L.(t) = 0 (64b) 
/ - • X 

Hence, single parameters of curvature monotonically decrease and asymptotic
ally tend to zero. 

IV Special forms of kinetic graph 

For some special forms of kinetic graph qualitative properties of studied 
systems can be proved in much more stronger form than for general kinetic 
systems with unrestricted graphs (considered in the previous third section). 

1. Acyclic kinetic graph 

The acyclic kinetic graph does not contain oriented cycles. For kinetic systems 
determined by such graphs we are able to solve differential equations (22) in a 
compact analytical form [12]. One of the fundamental properties of acyclic 
graphs is that the vertices can be labelled in such a way that for each directed 
edge (X,, Xj)eJl we have / <j [10]. The vertex classified as the source (sink) 
should be indexed by 1 (n). Illustrative examples of acyclic graphs are (16) and 
(31a), where the vertices were already labelled in accordance with the above-
-mentioned property. As a consequence of this labelling of vertices is that the 
corresponding kinetic matrix is triangular, its entries above the main dia
gonal are zero. Eigenvalues of the kinetic matrix A are determined by 
det (A - A) = ( - 1)"(A + /,)(A + / 2 ). . . (A + /J, where -/, are diagonal entries 
of A determined by (19a) 

A,= -/, (i = 1 , 2 , . . . , л) (65) 

Hence, for an acyclic kinetic graph the eigenvalues of A are determined by its 
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diagonal elements, their multiplicity is, in general, unit. A solution of (22) will 
be looked for in the form (cf. eqn (23)) 

*/( ' )= t Nipz~lpt ( i = l , 2 , . . . f / i ) (66) 
P=\ 

where Nip are constant coefficients and the summing index p is ranged by 
1 < p < i (since the kinetic graphs are acyclic one can simply verify that Nip = 0 
for p = i + 1, / + 2,..., n). In order to simplify our forthcoming considerations 
we shall assume that the studied kinetic graph contains only one source (a vertex 
indexed by 1 and which is incident only with outgoing edges). Furthermore, we 
assume that the initial concentration vector is JC0 = (1, 0, ..., 0) r, i.e. at the time 
t = 0 the concentration of x, is unit while remaining vertices are zero. The 
differential equation (22) for x, gives x] = — lxxu and x,(0) = 1, then we get 
x, = e ' 

Nu = 1 (67) 

Introducing (66) in (20) we arrive at 

»* = Г-гЪк№ (68) 

for / = 1, 2, ...,« and p = 1,2, ..., / — 1. This relation is determined only for 
/ Ф p, diagonal coefficients Nu (for / = 2, 3,..., n) are constructed by making use 
of the initial condition x,(0) = 0 (for / = 2, 3, ...,«) 

p = \ 

Relations (67) to (69) are useful for recurrent determination of coefficients Nip. 
At the first step we calculate coefficients Nip for vertices that are adjacent by an 
edge to the source X,. At the next (second) step we calculate these coefficients 
for forthcoming new vertices that are adjacent to previous ones, and so on. 

The outlined purely algebraic approach for the construction of coefficients 
Nip is essentially simplified by making use of the graph-theory notions. This is 
based on the observation [12] that the coefficient Nip is simply equal to the sum 
of coefficients N]p\ where Л^} is assigned to an oriented path directed from the 
source X, to the vertex X,; coefficients N]'^ are expressed by simple algebraic 
formula. Hence, the solution of differential equations (22) for acyclie kinetic 
graph is transformed to a procedure involving only simple graph-theory con
siderations over corresponding kinetic graph. 

The pseudo-Lyapunov function (53) for kinetic systems with acyclic kinetic 
graph can be transformed in a smooth form (the first time derivative is con-
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tinuous). For simplicity, let us assume that the kinetic graph contains only one 
sink X„ (a vertex incident only with incoming edges). Then the equilibrium 
concentration vector is x = (0. 0 0. \)T The pseudo-Lyapunov function (53) 
is essentially simplified as follows 

L(i) = x}(t) + x2(t) + + *„_,(/) - (x„(t) - 1) (70) 

Applying the first conservation law (30) we get 

L(/) = 2 - 2xn(t) (71) 

The time derivative of л„(/) assigned to the source X„ should be positive (this 
immediately follows from (20) due to /„ = 0) 

Ut) = -2x„(t) ^ 0 ( = 0 for / - oo) (72) 

We have demonstrated that the pseudo-Lyapunov function (53) for kinetic 
systems with acyclic graph is smooth and asymptotically vanishing for / -• oo, 
i.e. it has all attributes of standard Lyapunov functions. 

2. Strongly connected kinetic graph 

In section 111.2 we have proved that for kinetic systems with strongly connec
ted graphs the concentration vector should be positive (cf. eqn (37)), since this 
property is satisfied for each / > 0. the equilibrium concentration vector should 
be also positive, .v > 0. The positiveness of equilibrium concentration vectors 
offers very important approach how to construct the Lyapunov function for 
kinetic systems with strongly connected graphs. 

Let us define the diagonal matrix 

D = dg (x) (73) 

which is nonsingular and its inverse matrix D~] does exist. The matrix differen
tial equation (22) can be transformed in the form 

ý = A'y (74) 

where y = D~]x. A' = D~]AD. and the initial condition is specified by 
y0 = y(0) = D~]x0. The equilibrium vector of (74) is determined by 

y = D-]x = e = (\,\,...,\)T (75) 

where 

lim y(t) = ý = e (76) 
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Let us define a Lyapunov function as follows [6] 

L(/) = хтф) = t xi(p{y) (77) 
/ = I 

where q>(y) is a column vector with components q>(y), <p(y) = ((р(У\), ..., (p(y,))T, 
and (p( ) is an arbitrary positive, smooth and convex function. The first time 
derivative of (77) is 

Ш = xT dg (<j>(y))ý = eT dg (ф(у)) g(DK)y (78) 

where the property (lOd) was used. We shall demonstrate that the derivation 
Ĺ(í) is non-positive (vanishing only for y = ý = e) 

L(t)^0 (=0 for t -юо) (79) 

This means that the function L(t) is applicable as a criterion of the "quasi-ther-
modynamic" behaviour of kinetic systems with strongly connected graphs. 

Let us study the so-called renormalized rate matrix K' = DK from (78), its 
entries are 

Kj = Щ (80) 

We assign to this matrix a kinetic graph denoted by G'(Jť), which has the same 
"topology" as the original graph G(JT), they are different only in the evaluation 
of edges. Each edge (X„ X;) from G'(X) is evaluated by the renormalized rate 
constant ky. The graph G'(X) satisfies very important property which will be 
essential in our considerations, for each vertex X, (/ = 1, 2, ..., n) the sum of 
evaluations of incoming edges is equal to the sum of evaluations of outgoing 
edges 

ÍK= Í K (si) 
7 = 1 j=\ 

This relation is a consequence of (47) applied for kinetic systems with strongly 
connected graphs. 

We have to emphasize that not all renormalized rate constants are indepen
dent, they are restricted by (81). Minimal number of independent renormalized 
rate constants will be determined by a procedure specified below. Since the 
graph С(Ж) is strongly connected, each its edge belongs to a cycle [10]. We 
construct for С(Ж) a minimal set of cycles C,(Jf), C2(Jľ), ..., Ср(Ж) in such 
a way that each cycle contains an edge which is not contained in other cycles. 
If we have such a cycle for which each edge is contained in other cycles, then this 
cycle should be omitted as redundant. In Fig. 3 are shown cycles of the graph 
<7PO, minimal sets of cycles are {C,(JT), C2(Jľ)} and {СЪ(Ж), С4(Ж)}, respec
tively. We assign to each cycle С,(Ж) a positive coefficient £,, its value is 
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unambiguously determined by the evaluation of the edge occurring merely in 
this cycle С,(,Ж). In the case that there exist more of such edges than one, we 
choose arbitrary of them. Let (X,.. XJ be the selected edge, then g{ = xrkrs. Each 
edge in G\X) is evaluated by the sum of coefficients c, assigned to cycles in 

сл(х) c2(X) c3(x) cu(x) 

cy{x) • c2(x) c3(X) • cu(x) 

Fig. 3. A kinetic graph G'(Jf') can be constructed from the original graph G{Jf) if evaluations of 
edges are changed by renormalized rate constants A:-,: for all vertices of G'(J?') the condition (81) 
should be fulfilled. For graph G'(Jr') four different cycles C,_^(^") can be constructed. Coefficients 
с,- are determined by two independent ways, the first (second) one corresponds to cycles Cx(Jf) and 

СЛЖ) (Cy(.W) and C4(Jf")). 

which the corresponding edge is appearing. In fact, we have constructed a 
minimal set of independent renormalized rate constants evaluating edges in 
G'{X)\ the condition (81) is automatically fulfilled as a,result of the construc
tion of coefficients £•• The matrix of renormalized rate constants may be ex
pressed as follows 
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К = I Ж (82) 

where К] is the adjacency matrix [10] of cycle СДЖ), its element (AQ^ is equal 
to 1 (0) if the edge (X,, Xť/) is contained (not contained) in the cycle C^JT). The 
result (82) is of great importance for our proof of the property (79), we note that 
the proved formula is a consequence of strong connectivity of the kinetic graph 
G(X). 

Let us assume that the kinetic graph is composed of one cycle denoted by 
C,(JT), then 

К = ^K\ (83) 

In this simplest case all renormalized rate constants are the same and equal to 
the coefficient £,. Assume that the indexing of vertices was carried out in such 
a way that edges (X„, X,) and (X,, X /+ ,) (for / = 1,2 n — 1) form the graph 
G(X), introducing (83) in (78) we get 

L(t) = ^eTdg(<i>(y))Q(K\)y 

= &Ф(У1*У2 v„) (84a) 

where 

Ф(>'и У* -,Уп) = <P(Vi)0'„ - У\) + Ф()Ч2){У\ - Уг) 

+ +Ф(Ун)(Уи-1-Уп) (84Ь) 

Defining the Lyapunov function (77) we have postulated a convexity of (p( •), i.e. 
its first derivative ф(-) should be monotonously increasing function, then one 
can prove [7] by a mathematical induction an inequality 

Ф{Ух, y29 - - M У n) ^ 0 ( = 0 for v, =y2= = yn) (85) 

where the equality of all "concentrations" v, is fulfilled for cyclic system only for 
equilibrium state yx = v2 = = yn = 1. Inserting (85) in (84a) we get the fol
lowing condition for kinetic systems represented by simple cyclic graph 

L ( / X 0 ( = 0 for y = y = e) (86) 

which is in accordance with the relation (79). Applying this specific result there 
is easy to prove the relation (79) fulfilled for general strongly connected kinetic 
graphs. Introducing (82) in (78) we get the time derivative L(t) expressed by a 
sum of time derivatives of Lyapunov functions constructed for single cycles 
C,pO from G(X) 

L(t) = t Ш (87) 
i= 1 
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where every term satisfies separately the inequality (86), hence we have proved 
(75), which was to be demonstrated. Summarizing, for kinetic systems with 
strongly connected graphs there exists broad class of positive Lyapunov func
tions which are in the course of time evolution of system monotonously convexly 
decreasing and vanishing in the equilibrium state. 

3. Symmetrizable kinetic matrix [3—5] 

Kinetic systems with symmetrizable kinetic matrix are special case of those 
systems that are represented by strongly connected graphs. This is the reason for 
what we shall not study Lyapunov functions, their functional form is formally 
contained at (77) introduced for systems with strongly connected kinetic graphs. 

A kinetic system with symmetrizable kinetic matrix is specified by the follow
ing two conditions: 

1. The rate matrix is sign symmetrical, for an arbitrary pair of indices either 
first or second condition should be fulfilled 

ки>0=>кл>0 (88a) 

£.. = 0=>Jt,7 = 0 (88b) 

2. There exists such a diagonal positive matrix R = dg (r„ r2, ..., rn) that 

RK = KTR (89a) 

or in the component formalism 

rhu = г/сл (89b) 

for each pair of indices. 
Since the matrix R from (89a) is positive, it should be nonsingular and matrices 
R±]/2 do exist. We transform (22) in the form 

z = A'z (90a) 

where 

A =R],2AR/2 (90b) 

z = R l2x (90c) 

Symmetrized kinetic matrix A' is similar with original (symmetrizable) matrix A, 
their eigenvalues should be identical. Matrix elements of A' are 

A'„ = A„=-l, (91a) 
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where, for the construction of last relation, eqn (89b) was used. Matrix A' is 
negatively semidefinite, its eigenvalues are real and non-positive. Let 
/ = (/,, /2, ..., t У be an arbitrary column vector, then 

f A't = X t^tj = -X rt + 1 (А-Л)'2«, = 

= - K ' . 4 2 - ' A ľ ) : ^ o (92) 

We have proved that the matrix A' is negatively semidefinite. Since the matrices 
A and A' are similar, the matrix A should be also negatively semidefinite and its 
eigenvalues are real and non-positive. This means that for kinetic systems with 
symmetrizable kinetic matrix any type of concentration oscillations is strictly 
forbidden. 

For kinetic systems with symmetrizable kinetic matrix the rate constants are 
restricted by the so-called Wegscheider's conditions [1]. Assume that a kinetic 
graph G(X) contains two cycles С(Ж) and C'pT) which are formed from p 
edges (p ^ 3), and these edges are incident with the same vertex set composed 
of p vertices. Their existence is ensured by the condition (88a) and they are of 
the opposite orientation. Let cycles C(X) and C'(X) be formed of sequence of 
p vertices and p edges: X,, — Xa — — Xip — X,-, and X,, — X,̂  — — X/2 — 
— X,,. Applying the condition (89b) to these cycles we get Wegscheider's con
ditions [1] 

^/1/2^/2/3 • • • kiPi\
 = kankán . . • knip (93) 

Similar conditions can be constructed for all pairs of cycles with opposite 
orientations and induced by the same set of vertices. Summarizing, in order a 
kinetic system be determined by the symmetrizable kinetic matrix all rate con
stants should fulfil conditions (93) constructed for each pair of cycles with 
opposite orientation. 

In the forthcoming part of this subsection we demonstrate two kinetic sys
tems which satisfy conditions (88) and (89). Let us consider a kinetic system 
which satisfies the condition (88) and its kinetic graph contains merely cycles of 
the length two. For these systems an existence of the matrix R is ensured by 
solving the condition (89b). For example, let us study a kinetic graph 

k 1 2 Jc2 3 
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From (89b) we get 

ľ j /C 12 = 7*2^2 h ^2^23 = ^3^32 

then 

Kj\ К32 ^21^32 

From this simple illustrative example we see that for kinetic systems with 
symmetrizable kinetic matrix and with graphs involving merely cycles with the 
length two, an existence of R is ensured in such a way that the homogeneous 
system of equations (89b) is solvable and resulting elements /*, are positive. 

As a second example of systems with symmetrizable kinetic matrix we shall 
study systems satisfying the so-called condition of detailed balance. These sys
tems are determined by the condition (88) (i.e. their kinetic matrices are sign 
symmetrical) and single components of equilibrium concentration vector 
x = (x,, x2, ..., xn)

T and rate constants ki} satisfy the condition of detailed bal
ance 

x/cy = Xjkji (94) 

For these systems the matrix R is identical with a diagonal matrix D 

R = D = dg(xl,x2,...,xn) (95) 

The requirement of detailed balance ensures simple construction of the symme
trized kinetic matrix A', and moreover, Wegscheideťs conditions are now an 
immediate consequence of the detailed balance. 

V. Conclusion 

We have demonstrated that an arbitrary closed kinetic system of first-order 
reactions asymptotically tends to an equilibrium state in which all time deriva
tives of concentrations are vanishing. An equilibrium state for r (A) = и — 1 is 
determined unambiguously, it does not depend on initial concentrations. If the 
rank of kinetic matrix satisfies r (A) ^ n — 2, then an equilibrium state is not 
determined unambiguously, it depends on initial concentrations. These kinetic 
systems have infinitely many equilibrium states, their actual form is dependent 
on initial concentrations. Sustained concentration oscillations are for closed 
kinetic systems involving first-order reactions strictly forbidden. 

We have defined the so-called pseudo-Lyapunov function, which is con
tinuous, positive, and monotonously vanishing for t -• oo. It can be interpreted 
as a measure of distance (in 1,-metrics) between a concentration vector and the 
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equilibrium state. If a kinetic system has a strongly connected graph, then we 
can define a standard Lyapunov function which is not only continuous but also 
smooth for each positive time (in contrast to the pseudo-Lyapunov function 
which is not in general a smooth function). In a telling way, kinetic systems are 
kkquasi-thermodynamiď\ they are spontaneously tending to an equilibrium 
state. As a special case of kinetic systems with strongly connected graphs we have 
studied systems with symmetrizable kinetic matrix. These systems are closely 
related to thermodynamic closed systems of ideal mixtures in which first-order 
reactions are running. We have proved that for systems with symmetrizable 
kinetic matrix even damped concentration oscillations cannot occur (eigen
values of the kinetic matrix are non-positive). 

In the course of our theoretical study we have used extensively the graph-
-theory formalism. It offers very simple and straightforward formalism how to 
present many concepts and notions, whereas their pure algebraic theory is very 
clumsy. 

Though we have been mainly focused on chemical systems, the elaborated 
theory might be of general validity [9] for different arrays of physics, biology, 
ecology, and economics, the time evolution of these systems is described by 
similar differential equations with those used in chemical kinetics. Moreover, 
many concepts are immediately applicable [6, 7] for a theoretical study of 
nonlinear systems involving chemical reactions of higher than first order. 
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