Structure of 2,5-dimethylhexane-2,5-diol at 293 K and of its dimer

^aL. ULICKÝ and ^bV. KETTMANN

*Department of Physical Chemistry, Faculty of Chemical Technology, Slovak Technical University, CS-81237 Bratislava

^bDepartment of Analytical Chemistry, Faculty of Pharmacy, Comenius University, CS-83232 Bratislava

Received 22 June 1989

Dedicated to Professor P. Kristian, DrSc., in honour of his 60th birthday

In the course of a photosynthesis of dimethylvinylmethanol two crystalline compounds were obtained as by-products and identified by X-ray crystallography as 2,5-dimethylhexane-2,5-diol and its dimer, 4,5-bis(2--hydroxy-2-propyl)-2,7-dimethyloctane-2,7-diol.

В ходе фотосинтеза диметилвинилметанола были получены в качестве побочных продуктов два кристаллических соединения, идентифицированные с помощью рентгеновской кристаллографии как 2,5--диметилгексан-2,5-диол и его димер, 4,5-бис(2-гидрокси-2-пропил)--2,7-диметилоктан-2,7-диол.

In the course of a photosynthesis of dimethylvinylmethanol [1], a number of by-products, mainly diols of varying length and structure, forms according to the reaction scheme

2-propanol + acetone + acetylene \rightarrow products

When the mother liquor (as obtained from the reaction mixture) was allowed to stand for a longer period of time, single crystals of the form of transparent thin plates appeared (compound *I*). After the mother liquor was extracted by ethanol and the solvent allowed to evaporate slowly at room temperature, other colourless prism-like crystals (compound *II*) were obtained. Elemental analyses were consistent with the formulae $C_8H_{18}O_2$ ($M_r = 146.2$) and $C_{16}H_{34}O_4$ ($M_r = 290.4$) for *I* and *II*, respectively. To identify and elucidate their crystal and molecular structures, crystals of both compounds were selected for X-ray single-crystal analysis, which confirmed the assumption that compound *I* is 2,5-dimethylhexane-2,5-diol and compound *II* 4,5-bis(2-hydroxy-2-propyl)-2,7-dimethyloctane-2,7-diol.

While the presence in the reaction mixture of compound *I* as arising from the 2-hydroxy-2-propyl radical and dimethylvinylmethanol by the reaction sequence

was expected, the presence of compound *II* was, to a certain extent, surprising and its formation can be explained by a recombination of radical *III*.

Experimental

As noted above, single crystals of I as obtained directly from the mother liquor were used for X-ray analysis. A crystal of the size $0.30 \times 0.25 \times 0.05$ mm was scaled in Lindemann glass capillary to avoid deterioration in air. Systematic absences of reflections 0k0 for k odd and h0/ for l odd, as determined by Weissenberg and precession methods, were consistent with space group P2₁/c. Data were collected at ambient temperature (293 K) by using P2₁ diffractometer and graphite-monochromated CuKa radiation ($\lambda = 1.5418$ Å). 1488 reflections were measured, of which 823 with $I > 2\sigma(I)$ were considered observed. Intensities were not corrected for absorption ($\mu = 0.87$ mm⁻¹). Accurate unit-cell parameters were obtained by least-squares refinement of 15 precisely centred reflections, having 20° < Θ < 45°, namely: a = 15.674(4) Å, b = 10.175(3) Å, c = 9.061(3) Å, $\beta = 91.22(2)^{\circ}$ (V = 1444.7(8) Å³). The measured density (by flotation) $D_{\rm m} = 1.01(1)$ Mg m⁻³, agrees with the calculated density $D_{\rm x} = 1.008$ Mg m⁻³ for Z = 6.

The structure was solved by direct methods using MULTAN 80 program [2] and refined by successive Fourier and block-diagonal least-squares methods. A difference Fourier map of partially refined structure revealed positions of all H atoms and the refinement continued on all positional parameters, anisotropic thermal parameters for non-H atoms and isotropic thermal parameters for H atoms. In final cycle R = 0.053 and wR = 0.049 for 823 unique observed reflections. Maximal and minimal heights in the difference Fourier map were 0.18 and 0.21 $e Å^{-3}$, respectively. Atomic scattering factors for neutral atoms were obtained from International Tables for X-Ray Crystallography (1974). All calculations (except MULTAN) were performed by a local version of the NRC system [3].

Single crystals of II were obtained by crystallization from ethanol and were quite stable in air. The structure is monoclinic, space group C2/c [4]. To determine the melting point, differential thermal analysis was undertaken by using DSC DuPont 1090 apparatus; weighed amount used 3.55 mg, rate 10(N2) (CER. 0.815); program Interactiv DSC V3.0.

Results and discussion

The asymmetric unit of the structure of *I* contains half molecule (A) occupying a centre of symmetry and the other molecule (B) lying in a general position. Both molecules, along with the atom numbering, are depicted in Fig. 1, atomic coordinates of non-H atoms are given in Table 1, their thermal parameters in Table 2, while Table 3 lists bond lengths and angles. The crystal structure is identical to that of 2,5-dimethylhexane-2,5-diol at 110 K [5], but their molecular structures differ significantly, the main difference being a shortening of the C(3)—C(3') bond in molecule A (1.461(3) Å) and of the C(7)—C(8) bond in molecule B (1.442(4) Å) as compared to the corresponding values of 1.525(5)

Fig. 1. A perspective drawing of both crystallographically independent molecules (A and B) of compound I.

Table 1

Final atomic coordinates $(\times 10^4)$ with e.s.d.'s in parentheses and equivalent isotropic thermal parameters $(B_{eq}/Å^2)$

Atom	x	У	Ζ	B_{eq}
C(1)	813(2)	2893(3)	8798(4)	8.02
C(2)	963(1)	4364(3)	8828(2)	4.71
C(3)	464(1)	5073(3)	10017(3)	6.37
C(4)	786(2)	4922(3)	7297(3)	7.41
O(1)	1839(1)	4619(2)	9207(2)	5.77
C(5)	2127(2)	-1399(3)	8010(3)	7.74
C(6)	2854(2)	-475(2)	7634(3)	5.52
C(7)	3404(2)	-104(3)	8970(3)	6.43
C(8)	3013(2)	634(3)	10135(3)	6.45
C(9)	3577(1)	1101(2)	11462(2)	4.56
C(10)	4228(2)	2118(3)	11038(3)	6.72
C(11)	3433(2)	-1115(3)	6475(3)	8.14
C(12)	3992(2)	-37(3)	12302(3)	6.04
O(2)	2510(1)	722(1)	7012(2)	5.43
O(3)	3000(1)	1694(2)	12501(2)	5.26

R	=	4/3	5	5	R.,	ā.	ā
eq		., 0	4	4	~ 1	-1	

Table 2

Coefficients of anisotropic temperature factors (×10⁴). E.s.d.'s are given in parentheses. Temperature factor is of the form

Atom	B ₁₁	<i>B</i> ₂₂	B ₃₃	<i>B</i> ₁₂	<i>B</i> ₁₃	<i>B</i> ₂₃
C(1)	75(2)	129(4)	347(7)	3(4)	56(6)	-64(8
C(2)	37(1)	122(3)	166(4)	15(3)	- 8(3)	-49(6
C(3)	48(1)	171(4)	223(5)	25(5)	33(4)	-62(7
C(4)	61(2)	215(5)	220(5)	39(5)	- 30(4)	- 9(8
O(1)	39(1)	181(3)	181(3)	11(3)	-15(2)	-80(5
C(5)	86(2)	157(4)	249(6)	-41(5)	- 57(5)	-13(8
C(6)	69(1)	99(3)	171(4)	- 8(4)	- 76(4)	6(6
C(7)	68(2)	141(4)	205(5)	42(4)	- 59(4)	-49(7
C(8)	68(2)	157(4)	187(4)	39(4)	-12(4)	- 37(7
C(9)	50(1)	111(3)	128(4)	-12(3)	13(3)	-21(6
C(10)	54(1)	182(4)	225(5)	-21(4)	53(4)	0(8
C(11)	103(2)	157(5)	236(6)	85(5)	-32(5)	- 84(8
C(12)	70(1)	133(4)	173(4)	39(4) -	- 37(4)	30(7
O(2)	67(1)	86(2)	184(3)	9(2)	- 48(2)	15(4
O(3)	59(1)	109(2)	170(2)	4(2)	44(2)	15(4

 $T = \exp\left[-(B_{11}h^2 + \dots + B_{12}hk + \dots)\right]$

Atoms	Distances	Atoms	Angles			
Molecule A						
C(1)—C(2) (C(2)—C(3) C(3)—C(3') C(4)—C(2) C(2)—O(1)	1.516(4) 1.526(3) 1.461(3) 1.520(4) 1.431(3)	C(1)-C(2)-C(3) C(1)-C(2)-C(4) C(3)-C(2)-C(4) C(3)-C(2)-C(1) C(1)-C(2)-O(1) C(4)-C(2)-O(1) C(2)-C(3)-C(3')	113.4(2) 109.1(2) 112.4(2) 104.4(2) 109.3(2) 107.9(2) 117.6(2)			
Molecule B						
C(5) - C(6) $C(6) - C(7)$ $C(7) - C(8)$ $C(8) - C(9)$ $C(9) - C(10)$ $C(6) - C(11)$ $C(9) - C(12)$ $C(6) - O(2)$ $C(9) - O(3)$	1.522(4) $1.519(3)$ $1.442(4)$ $1.552(3)$ $1.510(4)$ $1.546(4)$ $1.524(3)$ $1.442(3)$ $1.450(3)$	$\begin{array}{c} C(5)-C(6)-C(7)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-C(9)\\ C(8)-C(9)-C(10)\\ C(5)-C(6)-C(11)\\ C(10)-C(9)-C(12)\\ C(5)-C(6)-O(2)\\ C(7)-C(6)-O(2)\\ C(11)-C(6)-O(2)\\ C(8)-C(9)-O(3)\\ C(10)-C(9)-O(3)\\ C(12)-C(9)-O(3)\\ \end{array}$	112.9(2) $118.0(2)$ $117.9(2)$ $112.9(2)$ $110.2(2)$ $111.4(2)$ $109.5(2)$ $107.6(2)$ $108.1(2)$ $106.1(2)$ $108.3(2)$ $104.9(2)$			

Table 3 Bond distances (Å) and angles (°) with e.s.d.'s in parentheses

and 1.533(5) Å in the low-temperature structure. Coincident with this is a widening of the C(2)—C(3)—C(3') (117.6(2)°), C(6)—C(7)—C(8) (118.0(2)°), and C(7)—C(8)—C(9) (117.9(2)°) bond angles vs. the corresponding values of 115.0(3)°, 115.6(3)°, 115.5(3)° in the structure at 110 K.

An explanation of the above facts is at present rather difficult. As mentioned above, compound I is extremely unstable at room temperature and, for this reason, *Helmholdt* and *Reynaers* [5] elucidated its structure at 110 K. Based on the analysis of the thermal parameters, the latter authors came to the conclusion that the molecules of I cannot be regarded as rigid bodies, implying that the compound is thermally unstable even at relatively lower temperatures. A similar behaviour exhibits 2,5-dimethyl-3-hexene-2,5-diol at 113 K as reported by *Ruy*sink and Vos [6]. The latter compound crystallizes as a trans form in Pbcn and as a mixture of cis and trans forms in P1. The lengths of the unsaturated bonds, which are of interest here, are 1.326 Å in the orthorhombic structure and 1.338 and 1.344 Å in the triclinic structure for trans, resp. cis forms, all values being consistent with a pure $C(sp^2) = C(sp^2)$ double bond [7]. The bond angles about the double bond are 127.4° and 134.9° in the *trans* isomer and 132.5° and 132.1° in the *cis* isomer.

In contrast, the structure of a tetrahydrate of *I* with monoclinic symmetry, space group P2₁/c, has been reported to be stable even at room temperature [8]. The length of the central bond in this structure is 1.534(3) Å, a value typical for a $C(sp^3)$ — $C(sp^3)$ single bond.

From the above it follows that the central bond (C(3)-C(3') in A and C(7)-C(8) in B) in the title compound I at ambient temperature is intermediate between $C(sp^3)-C(sp^3)$ single and $C(sp^2)=C(sp^2)$ double bonds. Other features characterizing the crystal and molecular structures of I are very similar to those in the related structures cited above. This, of course, holds for both the hydrogen-bonding pattern and molecular packing, the latter being the closest one according to *Kitaigorodskii* [9].

Fig. 2. A perspective view of the molecular structure of II, showing the atom-numbering scheme.

Fig. 3. A projection of the crystal structure of *II* along the y axis. \bigcirc C, \bigcirc O, \bigcirc H.

Molecular structure of II with the atom numbering is shown in Fig. 2. The molecule lies on a twofold axis of symmetry, the axis passing through the mid-point of the C(12)—C(12') bond. Apparently the compound is a dimer of I. Projection of the structure onto (010) is shown in Fig. 3, the H-bonding interactions being indicated by broken lines. Bond lengths and angles are listed in Table 4.

Bond lengths are comparable to those generally found in other hexane- and hexenediols with the average values of 1.441, 1.540, and 1.517 Å for C—O, C—C (backbone), and C—CH₃ (terminal) bonds, respectively. The C—C—O bond angles range from 103.5(3)° to 110.9(3)° being on average lower than the C—C—C bond angles (108.8(3)°—121.2(2)°) in accordance with the structures of hexanediols. The angular expansions over a normal tetrahedral value may be ascribed to steric effects resulting from the linkage of two monomeric units of *I*.

In contrast to the structure of 2,7-dimethyl-2,7-octanediol tetrahydrate [10], compound *II* utilizes only one hydrogen-bonding interaction for the packing,

Atoms	Distances	Atoms	Angles
C(1)—O(11)	1.438(4)	C(13)—C(1)—C(14)	110.2(3)
C(1)-C(12)	1.560(5)	C(13)—C(1)—C(12)	112.3(3)
C(1)-C(13)	1.533(5)	C(13)-C(1)-O(11)	106.0(3)
C(1)-C(14)	1.502(6)	C(12)-C(1)-C(14)	115.1(3)
C(12)-C(24)	1.548(4)	C(12)—C(1)—O(11)	104.2(3)
C(2)-O(21)	1.444(4)	O(11)-C(1)-C(14)	108.6(3)
C(2)—C(22)	1.516(6)	C(1)-C(12)-C(24)	114.7(3)
C(2)-C(23)	1.519(6)	O(21)-C(2)-C(22)	108.0(3)
C(2)-C(24)	1.534(5)	O(21) - C(2) - C(23)	103.5(3)
		O(21)C(2)C(24)	110.9(3)
		C(22)-C(2)-C(23)	112.7(3)
		C(22)-C(2)-C(24)	112.6(3)
	-	C(23)-C(2)-C(24)	108.8(3)
		C(12)-C(24)-C(2)	121.2(2)

Table 4

Bond distances (Å) and angles (°) with e.s.d.'s in parentheses for compound II

Fig. 4. DSC diagram of compound II.

namely the length of $O(11)\cdots O(21)$ is 2.741(3) Å and the angle of O(11)— $H(11)\cdots O(21)$ is 173(3)°, thus producing zigzag chains parallel to [100].

As mentioned above, the crystals of compound *II* are quite stable and well soluble in polar solvents, such as ethanol and water. To examine its thermal behaviour, differential thermal analysis was undertaken (Fig. 4). As evident, a solid-state phase transition occurs at 227.2 °C (the transition is visualized by a change of prism-like to plate-like crystals); on further heating, the compound melts at 272.2 °C and decomposes at 282.2 °C. A relatively small endothermal effect associated with the solid-state transition (9.5 J K⁻¹ kg⁻¹) is consistent with a lowering of symmetry due to the formation of the high-temperature structure. The combined thermal effect associated with melting and decomposition is 117.9 kJ mol⁻¹.

References

- 1. Valko, L., unpublished results.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J. P., and Woolfson, M. M., A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data. Universities of York, England, and Louvain, Belgium, 1980.
- 3. Ahmed, F. R., Hall, S. R., Pippy, M. E., and Huber, C. P., J. Appl. Crystallogr. 6, 309 (1974).
- 4. Sivý, P., Ulický, L., and Kettmann, V., Acta Crystallogr., C 45, 535 (1989).
- 5. Helmholdt, R. B. and Reynaers, H., Acta Crystallogr., B 32, 2243 (1976).
- 6. Ruysink, A. F. and Vos, A., Acta Crystallogr., B 30, 1997 (1974).
- 7. Bodor, G., Bendowitz, A. I., and Post, B., Acta Crystallogr. 23, 482 (1967).
- 8. Jeffrey, G. A. and Shen, M. S., J. Chem. Phys. A24, 390 (1972).
- Kitaigorodskii, A. I., Organicheskaya kristallografiya, p. 128. Izd. Akad. Nauk SSSR, Moscow, 1955.
- 10. Jeffrey, G. A. and Mastropaolo, D., Acta Crystallogr., B 34, 552 (1978).

Translated by V. Kettmann