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Some more complicated systems were formed by parallel arrangement of 
I Щ \ ' * * • 

autocatalytic blocks of the type A - > B - > C o r A - > B - » C - > D i n a n ideally 
stirred flow reactor. For one of them the tristability was evidenced at a dis­
continuous change in flow rate. This model represents a simple kinetic model 
for tristability. 

В идеально перемешиваемом проточном реакторе из автокаталити-
I * i i * * 1 

ческих блоков типа А -• В -* С или А -> В -• С -* D были с помощью 
параллельного упорядочения составлены более сложные системы. 
У одного из них демонстрировалась тристабильность при дискон-
тинуальном изменении проточных скоростей. Данная система пред­
ставляет собой простую кинетическую модель тристабильности. 

Several authors [1] have experimentally found kinetic systems which in an 
ideally stirred flow reactor show the bistable behaviour depending on the flow 
rate. Besides chemically little realistic models [2—9], some simple and chemi­
cally realistic models [10] have been put forward for the bistable behaviour. These 

i ; 1 

models are based on simple autocatalytic blocks of the type A -• В -• С or 
i 7 T > 

A -> В -> С -• D which can be arranged in the following ways 

i * * » i i ? 1 I ?—n 
A - > B - + C - > D A B C->D<7 A - > B - > C - * D 

The aim of this study has been to combine always two such bistable blocks 
for forming the more complicated systems which could be able to show the 
multistable, and especially the tristable behaviour. As a matter of fact, the 
tristable systems have already been described experimentally in few cases [1, 11], 
but an appropriate theoretical model has not been found yet. 
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Theoretical 

We have chosen four kinetic systems SI, S2, S3, and S4 as models. Their 
stoichiometry and graphical representation is given subsequently. 

The outlet of all components in the systems is designated by dotted line while 
the inlet of the starting component L is marked by dashed line, the bold arrow 
means a very fast step which is in line with the Bodenstein principle. Reagent P 
is present in pseudoconstant concentration and is not denoted in the schemes. 
The products of its transformation S, W, Z, R, T are also not denoted. 

System SI 

.••̂  

1 L + P = A + T 
2 A + P = B + S 
3 B + P = C + S 
4 A + С = 2B 
5 L + C = A + B 

6 L + P = Q + Z 
7 M + Q = 2N 
8 L + Q + P = M + N + R 
9 N + P = Q + S 

System S2 
A' 
L 

r^ * 1 

L 

1 1 
1 

1 L + P = C + W 
2 L + P = Q + Z 
3 L + C = A + B 
4 L + Q + P = M + N + R 

5 A + С = 2B 
6 M + Q = 2N 
7 B + P = C + S 
8 N + P = Q + S 
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System S3 

1 L + P = C + W 
2 L + P = Q + Z 
3 L + С = 2A 
4 A + С = AC 
5 AC + P = 2C + S 

A 
i 

AC H I 
4 

1 
•• c 

I =-

M ^ 

L*Q 

t 
••* ] 

6 L + Q = LQ 
7 LQ + P = M + N + R 
8 M + Q = 2N 
9 N + P = Q + S 

System S4 

/ 
2 
3 
4 
5 

L + P = C + W 
L + P = Q + Z 
L + С = LC 
A + С = AC 
LC + P = A + C + S 

5' 
6 
7 
8 
9 

AC + P = 2C + S 
L + Q = LQ 
LQ + P = M + N + R 
M + Q = 2N 
N + P = Q + S 

The reason for construction of systems S3 and S4 containing adducts LQ, AC 
or LC, LQ, AC is as follows: If system SI or S2 were to be made by different 
oxidation numbers of a certain element and particles L, A, B, C, M, N, Q should 
be different, the existence of seven oxidation numbers would be necessary, which 
could be put into life with difficulties. On the other hand, for systems S3 and S4 
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the existence of six oxidation numbers is sufficient because adducts have been 
taken into consideration. For instance, if we consider the permanganate oscilla­
tor for which the tristability was found experimentally some time ago [11], 
particles L, M, A, N, C, Q ought to represent the oxidation numbers 7, 6, 5, 4, 
3, 2 and agent P acts in step 7 of systems S3 and S4 as oxidant and in other steps 
as reductant. 

For all these systems we calculated the stationary concentrations of in­
dividual reaction components as functions of flow rate by using different com­
binations of rate constants of particular steps and simultaneously we ascer­
tained the stability of individual parts of the corresponding curves. 

For solving the stationary states the corresponding kinetic equations were 
annulled and the system of algebraic equations thus formed was transformed in 
the dependence of one chosen relative stationary concentration of component С 
c°(C) = [C]°/a on flow r a t e / = v/(a V) where v is the rate of feed of solution of 
the component L present in concentration a into reactor of volume V. The roots 
of this algebraic equation were sought for every chosen level / by using the 
method of halving of the interval on a digital computer. In some cases, a high 
precision of calculation had to be used because the flow branch in the systems 
S3 (Figs. 2a, b) or S4 possessed a pair of roots which differed from each other 
as far as on the eighth decimal place and one of them had physical meaning 
while the other corresponded to negative concentration. 

The stability of individual branches was so determined that the corre­
sponding system of kinetic equations was integrated numerically by the Run­
ge—Kutta method by using an automatically chosen length of step and initial 
conditions corresponding always to the calculated stationary values for all 
reaction components except one. For this one reaction component the initial 
value was put either a little lower or a little higher than the calculated stationary 
concentration and it was examined by integrating whether this concentration 
approached the stationary value or receded from it in the course of time. The 
first case indicates stability of the investigated branch whereas the second one 
corresponds to instability. 

Results and discussion 

In Fig. 1 are the results obtained for the systems SI and S2, which are valid 
also for the system S4 and in Fig. 2 are results obtained for the system S3. As 
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for systems SI and S2, we can obtain the/—c° relationships between the flow 
rate and relative stationary concentration of component С which are of different 
form according to the choice of rate constants. We can derive them qualitatively 
from the basic geometrical formation given by contact of two beaks. Individual 
types may be obtained graphically by using different types of breaking and 
separation of particular branches. The equation of the f—c° relationship for 
system S4 is identical with the/—c° equation obtained for system S2, owing to 
which system S4 does not bring anything new. 

Two types of the/— c° relationship (Figs. 2a, b) appeared for system S3, one 
with closed curve (isole), another without it. 

The type of diagram in Figs. 1 and 2 is determined by the fact which of both 
parallel subsystems LAC or LMQ prevails in temporal development of the 
system at low rates, which depends on the choice of rate constants of individual 
steps. In cases represented in Figs. \a, с subsystem LAC prevails while in case b 
it is subsystem LMQ. In Fig. 2a subsystem LMQ prevails and conversely it is 
subsystem LAC that prevails in Fig. 2b. The stable parts of individual branches 
are drawn in full lines and the instable branches in dashed lines. 

It is obvious from the figures that a sufficiently great discontinuous change 
in flow rate makes possible to get inside the closed curve and as the case may 
be, to reach its stable branch (which would not be attainable at a continuous 
change in flow rate) and thus to produce a conditioned tristable system. As the 
flow rate changes discontinuously during experimental investigation of the 
systems in an ideally stirred flow reactor, such conditioned tristable systems may 
appear. For this reason, the calculations of behaviour of the kinetic system were 
so performed for the chosen model systems that the corresponding stationary 
concentrations were chosen as the initial ones for a certain value of flow rate. 
Then the value of flow rate was changed for reaching the required level and the 
system was solved by the Runge—Kutta method. The results are represented in 
Figs. 1 and 2 by means of dotted and dashed arrows which give the magnitude 
of the change in flow rate and the direction in which the system tends towards 
a certain stable branch. 

Thus it results in cases in Figs, la, b, and c, i.e. for the systems SI and S2, 
resp. S4 that the continuous as well as discontinuous changes in flow rate always 
lead to equal branches and the system manifests only bistable behaviour. On the 
other hand, conveniently great discontinuous changes in flow rate in the system 
S3 (Fig. 2b) result in tristable behaviour owing to which this system represents 
a simple kinetic model of tristability at appropriate values of rate constants. 
Otherwise it is bistable (Fig. 2d). 
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Fig. 1. Variation of relative stationary concentration of component С with relative flow rate/ 
a) System SI, relative rate constants: /:, = k2 = k6 = 10~\ k4 = 10, k5 = ks = 1, k-, = 0.5. 

b) System S2, k{=k2= 10"2, k3 = k4 = k5 = 5, kb = 10. 
c) System S2, kx=k2= 10~2, k^ = k5 = 5, k4 = k6= 10. 

Stable branch, instable branch, changes in/and tendency of develop­
ment of the system. 
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Fig. 2. Variation of relative stationary concentration of component С with relative flow rate/. 
System S3, relative rate constants: a) kx= k2= 10~\ k3 = kA = k6 = k% = 10. b) /:, = k2= 10"3, 

k) = k4= 10, k6 = ks = 5. Denotation of lines as in Fig. 1. 
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