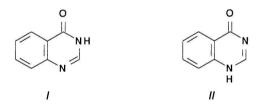
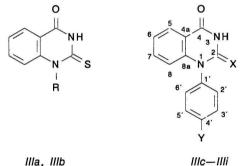
¹³C NMR Study of 1-Substituted 2-Thioxo-4(1*H*,3*H*)quinazolinones Employing the 1D and 2D Methods

^aJ. IMRICH, ^aT. BUŠOVÁ, ^aD. KOŠČIK, and ^bT. LIPTAJ


^aDepartment of Organic Chemistry, Faculty of Natural Sciences, P. J. Šafárik University, CS-041 67 Košice

^bDepartment of Physical Chemistry, Faculty of Chemical Technology, Slovak Technical University, CS-812 37 Bratislava

Received 27 December 1991


The ¹³C and ¹H NMR spectra of the title compounds and their 2-oxo analogue were studied by one- and two-dimensional methods COSY and INEPT. The chemical shifts were unambiguously ascribed to compounds under investigation and the coupling constants J(H,C) of the 4-quinazolinone ring system were determined by the 2D-J selective INEPT. Relationship between localization of the multiple bond in the diazine ring and the ¹³C chemical shift values is discussed. The obtained values allowed us to deduce the SCS increments of 2-thioxo-4(1H,3H)-quinazolinon-1-yl grouping on the aromatic ring.

The ¹³C NMR spectroscopy has successfully been used in the last decade for structure elucidation of compounds possessing the 4-quinazolinone ring system, as e.g. alkaloids [1, 2] and other biologically active substances [3]. The ¹³C spectra of 4(3H)-quinazolinones / were best examined; the known sedative 2-methyl-3-(2-methylphenyl)-4(3H)-quinazolinone (Methaqualone) also belongs to this group [2–7]. Less attention has been paid to 4(1H)-quinazolinones // [1, 2].

This paper presents the utilization of ¹³C NMR spectroscopy for structure confirmation of 1-substituted 2-thioxo-4(1*H*,3*H*)-quinazolinones and 2,4(1*H*, 3*H*)-quinazolinedione *IIIa*—*IIII*, having, in contrast to compounds *I* and *II*, no endocyclic multiple bond in the diazine ring of the quinazolinone.

Table 1. ¹³C NMR Chemical Shifts (δ) for Derivatives IIIa-IIIi

¹³C NMR spectra of quinazolinones of this type were studied in more detail only with 3-substituted 2,4(1*H*,3*H*)-quinazolinediones [8]. The controversial assignment of some carbon atoms [1, 8] prompted us to investigate the resolution of chemical shifts ¹³C, ¹H and coupling constants J(H,C), J(H,H) by the 2D-COSY correlation and the 2D-J selective INEPT in addition to the noise-decoupled and "offresonance" spectra.

Compound	C-2	C-4	C-5	C-6	C-7	C-8	C-4a	C-8a
Illa	174.7	157.5	127.0	123.8	135.1	115.5	117.7	139.9
IIIb	176.6	158.0	127.0	124.4	135.2	116.5	117.9	140.5
IIIc	176.4	157.9	126.5	123.6	134.4	116.3	116.9	142.8
IIId	176.1	157.9	126.5	123.8	134.4	116.2	116.9	142.5
Ille	176.0	158.0	126.6	123.7	134.5	116.1	116.9	142.5
IIIf	176.6	158.7	127.3	124.3	134.9	116.5	117.5	142.7
IIIg	176.2	158.7	127.0	124.3	135.1	116.6	117.2	142.6
IIIĥ	176.0	158.7	127.1	124.5	135.1	116.4	117.3	142.3
IIIi	149.7	161.7	126.9	122.2	134.4	115.0	115.1	142.7

Chemical shift values and coupling constants of compounds under study are listed in Tables 1–3, respectively and in Experimental. The ¹³C NMR spectra of compounds *IIIa–IIIh* contain a pair of

and oxo analogues was expressed by *Kalinowski* [10] by the equation

$$\delta_{\rm C-S} = 1.45 \ \delta_{\rm C-O} - 46.5$$
 (1)

Table 2. ¹³C NMR Chemical Shifts (δ) of the Substituent in Position 1 for Compounds *IIIa–IIII* and Calculated SCS Increments Z for 2-Thioxo-4(1*H*,3*H*)-quinazolinon-1-yl and 2,4(1*H*,3*H*)-Quinazolinedion-1-yl on the Aromatic Ring

Compound	¹³ C Chemical shifts							SCS increments			
	C-1′	C-2′ C-6′	C-3′ C-5′	C-4′	CH2	CH3	Zı	Zo	Z _m	Zp	
Illa	1111-1				43.1	11.0	10		<u></u>		
IIIb	135.1	126.0	128.5	127.2	51.4						
IIIc	131.9	129.8	114.8	159.0		55.0	11.5	0.4	1.0	0.3	
IIId	136.7	128.2	129.9	138.0		20.1	11.3	- 0.3	0.8	0.2	
llle	139.3	128.6ª	129.5ª	128.4			10.8	-	-	- 0.1	
IIIf	138.2	130.3ª	130.9ª	134.3			11.7	-	-	- 0.6	
IIIg	138.9	131.4	133.0	122.1			11.4	0.7	1.2	- 1.0	
IIIĥ	145.2	131.1	125.4	147.4			10.7	1.8	2.2	- 0.7	
IIIi	128.5	130.0	115.0	159.2		55.2	8.1	0.6	1.2	0.5	

a) The values can be interchanged.

Table 3. Coupling Constants "J(H,C)/Hz of the Derivatives IIIc and IIIi

Locant		1	llcª	1111				
	H-5	H-6	H-7	H-8	H-5	H-6	H-7	H-8
C-2	0	0	0	0	0	0	0	0
C-4	4.2	b	b	Ь	4.1	b	b	b
C-4a	b	8.0	Ь	4.8	4.6	7.9	1.3	5.2
C-5	164.9	b	8.1	b	164.7	1.8	7.9	b
C-6	b	167.1	b	7.6	b	164.5	2.2	7.8
C-7	8.7	b	165.7	b	8.6	2.9	161.1	b
C-8	b	7.6	Ь	165.3	С	7.3	С	С
C-8a	7.7	Ь	9.5	Ь	7.5	1.5	9.4	1.5
	H-2′	H-3′	H-5′	H-6′	H-2′	H-3′	H-5′	H-6′
C-1'	2.9	9.5	9.5	2.9	2.7	9.3	9.3	2.7
C-2'	163.9	Ь	b	6.1	163.4	b	b	6.2
C-3'	b	162.6	5.3	b	Ь	162.4	5.3	b
C-4'	Ь	Ь	b	Ь	9.3	2.8	2.8	9.3
C-5'	Ь	5.3	162.6	b	b	5.3	162.4	b
C-6'	6.1	b	b	163.9	6.2	b	b	163.4

a) ${}^{2}J(H-3,C-2) = 1.9 Hz$; b) J(H,C) not estimated; c) The C-8 signals are overlapped by C-3' and C-5' signals.

signals with a high chemical shift value $\delta \approx 176$ and $\delta \approx 157$ corresponding to the thiocarbonyl C-2 and carbonyl C-4 carbons, respectively. Resolution of carbons C-2 and C-4 follows from the proton-coupled ¹³C spectra of IIIc and IIIi, in which the C-2 signal contains only J(H,C) coupling constant with the N-3 proton (IIIc), whereas the C-4 signal is a doublet with J(H-5,C-4) = 4.2 (4.1) Hz. The presence of C=S group signals at $\delta \approx 176$ provides an unequivocal proof for the thioxoguinazolinone and not the isomeric 2-imino-1,3-benzothiazine structure. for which the C-2 chemical shift value has to be by $\delta \approx 10$ lower [9]. On the other hand, the chemical shift value of C-2 for 2-oxo derivative IIIi δ = 149.7 is consistent with that reported by Petridou-Fischer [8] for 3-substituted 2,4(1H,3H)-quinazolinediones $(\delta = 149.8 - 150.2)$. Relationship between the thioxo

according to which the δ_{C-S} value 170.6 would correspond to δ_{C-O} value 149.7; as seen, this represents a one-order agreement with the C-2 chemical shifts of compounds *IIIa*—*IIIh*.

As known [2], the C-4 chemical shift value for 4quinazolinones indicates localization of the double bond in the diazine ring for 3*H* tautomer *I* and 1*H* one *II* at \approx 161 and \approx 168, respectively. Derivatives *IIIa*—*IIIh* (Table 1) disclose lower chemical shift values for C-4 (δ = 157.5—158.7) when compared with compounds *I* and *II*. Replacement of 2-C—S group by 2-C—O one (*IIIi*) resulted in the increase of C-4 chemical shift value to δ = 161.7, this being in a very good accordance with the appropriate C-4 value of the unsubstituted 2,4(1*H*,3*H*)-quinazolinedione (δ = 162.6) and its 3-substituted derivatives (δ = 161.5—162.2) [8]. As follows, the substitution effects from positions 1 and 3 of derivatives *III* are almost identical and negligibly low. It could be, therefore, concluded that the exocyclic 2-C=S group of derivatives *IIIa*—*IIIh* lowers the electron density at C-4 (mediated by the lone electron pair of N-3) in a lower extent than does the endocyclic N-1=C-2 bond of 4(3*H*)-quinazolinones *I*.

The H-5 to H-8 chemical shifts were assigned unequivocally by the 2D-COSY experiment. Then, by means of the selective 1D-INEPT [11], it was possible to attribute undoubtedly the resonances of carbons C-5 to C-8 of the guinazoline ring system to Illi and Illc (Table 1). Chemical shifts of these carbons are virtually independent either of the substituent in position 1, or of the replacement of 2-C=S group by the 2-C=O one; they well correspond with the values for C-5 to C-8 of 3-substituted 2,4(1H,3H)-guinazolinediones [8]. Comparison of chemical shifts of carbon C-8 of IIIa-IIIi with that of 4(3H)-quinazolinones I shows that the former resonates at lower δ values (\approx 116) than the latter (≈ 124-127) [2]. This finding evidences the existence of N-1 nitrogen of an amino type with a great shielding effect on C-8 [12] in derivatives Illa-Illi in contrast to an imino type N-1 with the lower shielding effect on C-8 [13] in derivatives /.

The chemical shift values of the considerably polarized C-4a=C-8a bond of Illa-IIIh correspond better with those of 4(1H)-guinazolinones II ($\delta \approx 120$ for C-4a, $\delta \approx 141$ for C-8a) than of 4(3H)-quinazolinones / ($\delta \approx 120$ for C-4a, $\delta \approx 149$ for C-8a) [2]. This can probably be due to an analogous interaction of the amine nitrogen N-1 with the aromatic system of 4-quinazolinone so with derivatives // [2] as with our compounds IIIa-IIIi. The C-8a chemical shift value is, therefore, a further localization indicator of the double C=N bond in the 4-quinazolinone ring. Table 3 presents the $^{n}J(H,C)$ coupling constants of derivatives IIIi and IIIc as obtained with the 300 MHz spectrometer by 2D-J selective INEPT experiment [14]. The C-4a and C-8a carbon signals are split by spin-spin interactions with four protons H-5 to H-8 confirming thus regularity of their identification. The experimental chemical shift values for C-2 and C-8a, which are in line with those reported in [8], let us conclude that assignments of C-2 (δ = 140.4) and C-8a (δ = 150.7) chemical shifts for 2,4(1H,3H)quinazolinedione and its 3-(2-phenylethyl) derivative given in paper [1] have to be revised and these assignments should be done in an opposite order.

Signals of C-5 to C-8 carbons are split always by spin-spin interactions with three protons of the quinazolinone ring. The experimental section also presents the J(H,H) coupling constants between hydrogens H-5 to H-8 for derivatives *IIIi* and *IIIc*. These values are in a good accordance with those (J(H,C) [7] and J(H,H) [15, 16]) for quinazolines and

extend them by the hitherto not published J(H,C)long-range constants. The ¹³C SCS (substituent chemical shift) increments *Z* of the 2-thioxo-4(1H,3H)-quinazolinon-1-yl substituent at the benzene ring (Table 2) were calculated from chemical shifts of carbons of the aromatic ring in position 1 of derivatives *IIIc*—*IIIh*. The average values of the calculated increments *Z* (± the standard deviation) are as follows: $Z_{ipso} = 11.2 \pm 0.4$, $Z_{ortho} = 0.7 \pm 0.9$, $Z_{meta} = 1.3 \pm 0.6$, $Z_{para} = -0.3 \pm 0.5$. The ¹³C SCS increments for 2,4(1H,3H)-quinazolinedion-1-yl grouping presented in Table 2 for derivative *IIIi* have an approximative value only (with regard to one compound considered), but still they are close to values for 2,4(1H,3H)-quinazolinedion-3-yl ($Z_i = 7.2$, $Z_o = 0.5$, $Z_m = 0.2$, $Z_p = -0.5$ [8].

EXPERIMENTAL

Synthesis of compounds III was published elsewhere [17]. The ¹³C and ¹H NMR spectra of hexadeuterodimethyl sulfoxide solutions were measured with a Tesla BS 567 (25 MHz for ¹³C) and Varian VXR-300 (75 MHz for ¹³C; 300 MHz for ¹H) spectrometers at room temperature (IIIb, IIIc, IIIf-IIIi) and 90 °C (IIIa, IIId, IIIe). Chemical shift values in the ¹H and ¹³C NMR spectra were determined from the DMSO- d_6 signal (δ = 39.4 for ¹³C and δ = 2.50 for ¹H) against that of TMS. Measurement conditions (25 MHz): Spectral width 7600 Hz, 30° pulse, relaxation interval 3 s, 8 K; (75 MHz): 18 000 Hz, 30°. 3 s. 32 K: (300 MHz): 6000 Hz. 45°. 3 s. 16 K. Selective pulses employed in the selective 1D-IN-EPT and selective 2D-J INEPT experiments were realized by means of a soft rectangular pulse with a $\gamma B_2/2\pi = 25$ Hz amplitude.

1-(4-Methoxyphenyl)-2-thioxo-4(1*H*,3*H*)quinazolinone (*IIIc*)

¹H NMR spectrum, δ: 8.05 (dd, 1H, H-5, $J_{5,6}$ = 7.8 Hz, $J_{5,7}$ = 1.5 Hz), 7.35 (dd, 1H, H-6, $J_{6,7}$ = 7.5 Hz), 7.61 (m, 1H, H-7, $J_{7,8}$ = 8.6 Hz), 6.45 (d, 1H, H-8), 7.13 (m, 2H, H-2', H-6'), 7.27 (m, 2H, H-3', H-5'), 3.85 (s, 3H, CH₃O), 12.79 (s, 1H, NH).

1-(4-Methoxyphenyl)-2,4(1*H*,3*H*)quinazolinedione (*IIIi*)

¹H NMR spectrum, δ: 8.04 (dd, 1H, H-5, $J_{5,6}$ = 8.0 Hz, $J_{5,7}$ = 1.7 Hz), 7.22 (dd, 1H, H-6, $J_{6,7}$ = 7.1 Hz), 7.53 (m, 1H, H-7, $J_{7,8}$ = 8.4 Hz), 6.51 (d, 1H, H-8), 7.13 (m, 2H, H-2', H-6'), 7.31 (m, 2H, H-3', H-5'), 3.85 (s, 3H, CH₃O).

REFERENCES

- 1. Dreyer, D. L. and Brenner, R. C., *Phytochemistry* 19, 935 (1980).
- 2. Bhattacharyya, J. and Pakrashi, S. C., *Heterocycles* 14, 1469 (1980).
- 3. Blumenstein, M., Ross, J., and Rothchild, R., Spectrosc. Lett. 23, 189 (1990).
- Singh, S. P., Parmar, S. S., Stenberg, V. I., and Akers, T. K., J. Heterocycl. Chem. 15, 53 (1978).
- 5. Brine, G. A., Coleman, M. L., and Carroll, F. I., *J. Heterocycl. Chem.* 16, 25 (1979).
- 6. Singh, S. P., Parmar, S. S., and Farnum, S. A., J. Heterocycl. Chem. 16, 649 (1979).
- Spassov, S. L., Atanassova, I. A., and Haimova, M. A., Magn. Reson. Chem. 23, 795 (1985).
- 8. Petridou-Fischer, J. and Papadopoulos, E. P., J. Heterocycl. Chem. 19, 123 (1982).
- 9. Dzurilla, M., Forgáč, O., Kutschy, P., Kristian, P., Koščik,

D., and Imrich, J., Collect. Czech. Chem. Commun. 52, 989 (1987).

- 10. Kalinowski, H. O. and Kessler, H., Angew. Chem. 86, 43 (1974).
- 11. Uhrín, D. and Liptaj, T., J. Magn. Reson. 81, 82 (1989).
- Pretsch, E., Clerc, T., Seibl, J., and Simon, W., Tables of Spectral Data for Determination of Organic Compounds. Springer-Verlag, Berlin, 1983.
- Naulet, M. and Filleux, M. L., Org. Magn. Reson. 7, 326 (1975).
- 14. Jippo, T., Kamo, O., and Nagayama, K., *J. Magn. Reson.* 66, 344 (1986).
- 15. Long, S. A. and Memory, J. D., *J. Magn. Reson.* 44, 355 (1981).
- 16. Cassidei, L. and Sciacovelli, O., *J. Magn. Reson.* 44, 340 (1981).
- Koščik, D., Kutschy, P., Dzurilla, M., Šurkalová, I., and Imrich, J., Chem. Papers, in press.

Translated by Z. Votický