Reaction of 2,4-Dichlorophenylglyoxylhydroximoyl Chloride with Amines as a Convenient Method for the Synthesis of Amide Oximes and Amides

L. JAROŠKOVÁ and Ľ. FIŠERA*

Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, SK-812 37 Bratislava

Received 10 November 1992

2,4-Dichlorobenzoylnitrile oxide (/) generated in situ from the title compound reacts with amines under the condition of 1,3-dipolar cycloaddition to afford the amide oximes /V and amides V. The ratio of /V and V depends on the structure of amine. Reaction of / with cyclic amines gave only /V. The reaction mechanism is briefly discussed.

In a previous work on 1,3-dipolar cycloaddition of 2,4-dichlorobenzoylnitrile oxide (/) to alkenes we reported the unexpected formation of amide oxime /Va and amide Va (see Scheme 1) by the treatment with allylamine [1]. The fact that the 2,4-dichlorobenzoyl building block is a characteristic feature of some

commercial agrochemicals [2] and drugs [3] and our current interest in nitrile oxides as intermediates for further studies forced us to explore the reaction of nitrile oxide / with amines.

The reactions are shown in Scheme 1 and the results are summarized in Table 1 and in Experimen-

CI—CO—C

CI

CI

Et₃ N

II

CI—CO—C = N—O

R—NH₂

III

CI

R

R

R

R

R

R

R

A — CH₂CH=CH₂
$$e$$
 — CH₂C₆H₅

b — CH(CH₃)₂ f — CH₂CH₂C₆H₅

c — C(CH₃)₃ g —

III

—N

 f —N

 f —N

 f —N

 f —N

Scheme 1

^{*}The author to whom the correspondence should be addressed.

Table 1. Physicochemical Data of Compounds IV and V

Compound Formula		M,	w _i (calc.)/%			w _i (found)/%			Yield ^a M.p.		\tilde{v}/cm^{-1}		
			С	Н	N	С	Н	N	%	℃	ν(C=O)	ν(OH)	v(NH)
IVb	C ₁₁ H ₁₂ Cl ₂ N ₂ O ₂	275.13	48.02	4.39	10.18	48.26	4.40	10.24	26	162-164	1705	3365	3150
Vb	C ₁₀ H ₁₁ Cl ₂ NO	232.11	51.74	4.78	6.03	51.71	4.69	6.10	15	122-123	1673	=	3330
IVc	C12H14Cl2N2O	289.15	49.84	4.88	9.68	49.90	4.90	9.42	20	180-182	1692	3590	3260
Vc	C11H13Cl2NO	246.13	53.67	5.32	5.69	53.55	5.37	5.74	38	157-160	1665	_	3390
IVd	C ₁₃ H ₁₆ Cl ₂ N ₂ O ₂	303.17	51.50	5.32	9.24	51.62	5.37	9.31	27	144-146	1690	3574	3389
Vd	C ₁₂ H ₁₅ Cl ₂ NO	260.16	55.39	5.81	5.38	55.43	5.77	5.34	14	95-96	1663	_	3449
IVe	C ₁₅ H ₁₂ Cl ₂ N ₂ O ₂	323.15	55.75	3.74	8.67	55.67	3.74	8.57	50	91-93	1688	3573	3401
Ve	C14H11CI2NO	280.13	60.02	3.95	5.00	59.95	3.94	4.96	21	128-129	1664	_	3440
IVf	C ₁₆ H ₁₄ Cl ₂ N ₂ O ₂	337.20	56.99	4.19	8.31	56.91	4.18	8.28	32	76—77	1686	3575	3410
Vf	C ₁₅ H ₁₃ Cl ₂ NO	294.17	61.24	4.45	4.76	60.97	4.19	4.66	17	88-89	1662	_	3445
IVg	C14H16Cl2N2O2	315.19	53.34	5.12	8.89	53.52	5.17	8.93	38	155—157	1688	3573	3372
Vg	C ₁₃ H ₁₅ Cl ₂ NO	272.17	57.35	5.55	5.14	57.41	5.51	5.21	44	114-115	1692	-	3397
IVh	C ₁₃ H ₁₄ Cl ₂ N ₂ O ₂	301.16	51.90	4.68	9.30	51.73	4.70	9.28	82	120-121	1705	3590,3173	3 –
IVi	C ₁₂ H ₁₂ Cl ₂ N ₂ O ₂	287.14							55	Oil	1688	3568,3330) —
IVj	C ₁₂ H ₁₂ Cl ₂ N ₂ O ₃	303.14	47.54	3.99	9.24	47.61	4.05	9.17	88	140-141	1690	3565	_
IVĸ	C ₁₇ H ₂₀ Cl ₂ N ₂ O ₃	371.25	54.99	5.43	7.54	55.00	5.51	7.58	75	137-138	1709,1688	3540	-

a) Yields of the isolated compounds.

tal. The commercially available 2,4-dichloroaceto-phenone was chlorinated and then nitrosated to give 2,4-dichlorophenylglyoxylhydroximoyl chloride (//). 2,4-Dichlorobenzoylnitrile oxide (/) was generated in situ from // and triethylamine in ether at 0 °C. Reaction of / with the corresponding amine /// at 0 °C gave amide oximes /Vb—/Vg and amides Vb—Vg. The NMR analysis of the crude mixture permitted determination of the ratio of the products /V and V present in the original reaction mixture (Table 2). The mass ratio of amide oximes /V and amides V strongly de-

chromatographically separated, and each amide oxime *IV* and amide *V* could be obtained in pure form.

The assignments of the structure of the isolated products were made on the basis of the spectroscopic data. ¹H and ¹³C NMR spectra show the conservation of the alkyl moiety R from the starting amine *III* in both isolated compounds *IV* and *V*. The presence of strong absorption bands of C=O and OH groups indicated that the derivatives *IV* were the open-chain *N*-substituted amide oximes. The amides *V* show the strong absorption of C=O and NH groups

Table 2. Mass Ratio of Amide Oximes IV and Amides V

Amine	IIIa	IIIb	IIIc	IIId	IIIe	IIIf	IIIg
IV : V	72 : 28	75 : 25	33 : 67	72 : 28	72 : 28	72 : 28	50 : 50

pends on the structure of amine *III*. In the case that R is primary alkyl the ratio was 72 : 28 in favour of amide oximes *IVa*, *IVd*—*IVf*. On the other hand, cyclohexylamine gave an equimolar mixture of *IVg* and *Vg* and *tert*-butylamine gave even the corresponding amide *Vc* as the major product (33 : 67). In contrast to acyclic amines the reaction of nitrile oxide *I* with cyclic amines *III* gave exclusively amide oximes *IVh*—*IVk*, as single products. The crude residue was

whereas the typical absorption bands of OH group in the IR spectrum are missing.

The typical mechanism involved in a generation of the 1,3-dipole, namely nitrile oxide *I* which reacted with amine *III* by 1,3-addition providing amide oxime *IV* depends on the experimental conditions (Scheme 2). With regard to the steric configuration of compounds *IV*, it should be noted that the synthesis according to Schemes 1 and 2 gives only one

Scheme 2

of the two possible stereoisomers. The second possible stereoisomer has not been detected in the crude reaction mixture even by ¹³C NMR spectroscopy. Only in the case of *IVj* and *IVk* the ¹³C NMR spectrum of the raw reaction mixture showed doubling of signals, indicating the presence of both stereoisomers.

Surprisingly, in contrast to all up-to-now investigated reactions of nitrile oxides with amines [4—6], in conformity (the compound Va) with our previous work [1] as has been aforementioned we have isolated the anomalous product, namely, amide Vb-Vg, which is not conform with 1,3-addition product. Presumably under this reaction condition the amino group can be reacted with difunctionalized compound I at the carbonyl group forming the second addition product VI and this adduct VI is then stabilized by elimination of fulminic acid (Scheme 2).

EXPERIMENTAL

Melting points are not corrected. ¹H and ¹³C NMR spectra of deuterochloroform solutions were measured with Varian VXR 300 instrument, tetramethylsilane being the internal reference. ¹H NMR spectra of the raw reaction mixture were recorded on a Tesla BS 487 C (80 MHz) spectrometer. IR spectra were taken with Philips analytical PU 9800 FTIR spectrometer.

The progress of the reaction was monitored by thinlayer chromatoraphy on silica gel, impregnated by a fluorescence indicator (λ = 254 nm). 2,4-Dichlorophenylglyoxylhydroximoyl chloride (II) was prepared according to Ref. [7] by treating α -chloro-2,4dichloroacetophenone by butyl nitrite in anhydrous ether in the presence of bubbling gaseous hydrochloric acid and the corresponding amines were purchased from Fluka and Aldrich.

Amide Oximes IV and Amides V

Triethylamine (13 mmol) in ether (30 cm³) was added to a stirred solution of 2,4-dichlorophenyl-glyoxylhydroximoyl chloride *II* (10 mmol) in ether (30 cm³) at 0 °C within 1 h. Then the corresponding amine *III* (10 mmol) was added during 1 h to this solution and the resulting mixture was stirred overnight at room temperature. The separated triethyl-ammonium chloride was filtered off, the filtrate was concentrated under diminished pressure, dried, and the products were separated by chromatography on a silica gel column and purified by crystallization.

N-(1-Methylethyl)-2,4-dichlorobenzoylamide oxime (*IVb*). ¹H NMR spectrum, δ : 8.03 (br s, 1H, OH), 7.26—7.40 (m, 3H, H_{arom}), 4.85 (d, 1H, NH, J = 9 Hz),

4.28 (m, 1H, CH), 1.21 (d, 6H, $2 \times CH_3$). ¹³C NMR spectrum, δ : 188.37 (s, C=O), 149.23 (s, C=N), 135.76, 132.68, 130.29, 129.78, 126.81 (C_{arom}), 45.09 (d, CH), 24.66 (q, CH₃).

N-(1-Methylethyl)-2,4-dichlorobenzamide (*Vb*). 1 H NMR spectrum, δ: 7.21—7.51 (m, 3H, H_{arom}), 6.18 (d, 1H, NH, J = 7.2 Hz), 4.25 (m, 1H, CH), 1.17 (d, 6H, 2 × CH₃). 13 C NMR spectrum, δ: 164.87 (s, C=O), 136.43, 133.76, 131.39, 131.00, 129.84, 127.39 (C_{arom}), 42.39 (d, CH), 22.52 (q, CH₃).

N-(1,1-Dimethylethyl)-2,4-dichlorobenzoylamide oxime (IVc). 1 H NMR spectrum, δ: 7.30—7.44 (m, 3H, H_{arom}), 1.42 (s, 9H, 3 × CH₃). 13 C NMR spectrum, δ: 184.35 (s, C=O), 149.32 (s, C=N), 137.10, 135.82, 132.72, 130.46, 129.91, 126.84 (C_{arom}), 52.76 (s, C(CH₃)₃), 31.50 (q, CH₃).

N-(1,1-Dimethylethyl)-2,4-dichlorobenzamide (Vc). ¹H NMR spectrum, δ: 7.27—7.43 (m, 3H, H_{arom}), 1.39 (s, 9H, 3 × CH₃). ¹³C NMR spectrum, δ: 171.38 (s, C=O), 138.06, 134.92, 133.40, 131.40, 130.26, 127.04 (C_{arom}), 53.15 (s, C(CH₃)₃), 31.34 (q, CH₃).

N-(2,2-Dimethylpropyl)-2,4-dichlorobenzoylamide oxime (*IVd*). ¹H NMR spectrum, δ: 8.41 (br s, 1H, OH), 7.26—7.39 (m, 3H, H_{arom}), 5.09 (t, 1H, NH), 3.32 (d, 2H, CH₂, J = 6.6 Hz), 0.94 (s, 9H, 3 × CH₃). ¹³C NMR spectrum, δ: 188.06 (s, C=O), 149.99 (s, C=N), 136.99, 135.67, 132.72, 130.27, 129.76, 126.74 (C_{arom}), 54.50 (s, C(CH₃)₃), 32.29 (t, CH₂), 26.92 (q, CH₃).

N-(2,2-Dimethylpropyl)-2,4-dichlorobenzamide (*Vd*).
¹H NMR spectrum, δ: 7.24—7.56 (m, 3H, H_{arom}), 6.53 (t, 1H, NH), 3.23 (d, 2H, CH₂, J = 6.0 Hz), 0.98 (s, 9H, 3 × CH₃).
¹³C NMR spectrum, δ: 165.54 (s, C=O), 136.37, 133.77, 131.18, 131.14, 129.80, 127.30 (C_{arom}), 51.25 (s, C(CH₃)₃), 32.01 (t, CH₂), 27.26 (q, CH₃).

N-Benzyl-2,4-dichlorobenzoylamide oxime (IVe). ¹H NMR spectrum, δ: 8.48 (br s, 1H, OH), 7.26—7.35 (m, 8H, H_{arom}), 5.40 (t, 1H, NH), 4.68 (d, 2H, CH₂, J = 4.2 Hz). ¹³C NMR spectrum, δ: 188.02 (s, C=O), 149.95 (s, C=N), 139.29, 137.18, 135.39, 132.77, 130.38, 129.76, 128.63, 127.49, 127.47, 126.75 (C_{arom}), 47.33 (t, CH₂).

N-Benzyl-2,4-dichlorobenzamide (*Ve*). ¹H NMR spectrum, δ: 7.25—7.69 (m, 8H, H_{arom}), 6.51 (t, 1H, NH), 4.66 (d, 2H, CH₂, J = 5.4 Hz). ¹³C NMR spectrum, δ: 165.82 (s, C=O), 137.47, 136.93, 132.75, 131.52, 131.46, 130.09, 129.84, 127.90, 127.78, 127.58 (C_{arom}), 44.38 (t, CH₂).

N-(2-Phenylethyl)-2,4-dichlorobenzoylamide oxime (/Vf). 1 H NMR spectrum, δ: 7.21—7.36 (m, 8H, H_{arom}), 5.17 (m, 1H, NH), 3.72 (m, 2H, CH₂), 2.88 (m, 2H, CH₂). 13 C NMR spectrum, δ: 187.83 (s, C=O),

33

150.01 (s, C=N), 138.54, 137.26, 132.85, 131.26, 130.60, 129.80, 128.81, 128.71, 128.63, 126.69, 126.55 (C_{arom}), 44.88 (t, CH₂), 37.96 (t, CH₂).

N-(2-Phenylethyl)-2,4-dichlorobenzamide (Vf). ¹H NMR spectrum, δ: 7.23—7.55 (m, 8H, H_{arom}), 6.31 (br s, 1H, NH), 3.73 (m, 2H, CH₂), 2.95 (m, 2H, CH₂). ¹³C NMR spectrum, δ: 165.44 (s, C=O), 138.54, 136.65, 133.37, 131.45, 131.18, 129.97, 128.81, 128.71, 127.43, 126.67 (C_{arom}), 41.31 (t, CH₂), 35.37 (t, CH₂).

N-Cyclohexyl-2,4-dichlorobenzoylamide oxime (IVg). ¹H NMR spectrum, δ: 7.26—7.40 (m, 3H, H_{arom}), 3.87 (m, 1H, CH), 1.15—1.98 (m, 10H, $5 \times CH_2$). ¹³C NMR spectrum, δ: 188.04, (s, C=O), 149.20 (s, C=N), 137.17, 135.55, 132.81, 130.48, 129.82, 126.83 (C_{arom}), 51.84 (d, CH), 35.00 (t, CH₂), 25.45 (t, CH₂), 24.79 (t, CH₂).

N-Cyclohexyl-2,4-dichlorobenzamide (*Vg*). ¹H NMR spectrum, δ: 7.26—7.78 (m, 3H, H_{arom}), 5.50 (d, 1H, NH), 3.69 (m, 1H, CH), 0.82—2.03 (m, 10H, 5 × CH₂). ¹³C NMR spectrum, δ: 162.00 (s, C=O), 138.63, 132.77, 130.82, 130.50, 127.39, 127.09 (C_{arom}), 52.54 (d, CH), 34.74 (t, CH₂), 29.68 (t, CH₂), 25.15 (t, CH₂), 24.63 (t, CH₂).

N-Piperidinyl-2,4-dichlorobenzoylamide oxime (IVh). ¹H NMR spectrum, δ: 8.48 (br s, 1H, NH), 7.24—7.32 (m, 3H, H_{arom}), 3.23 (s, 4H, $2 \times CH_2$), 1.56 (s, 6H, $3 \times CH_2$). ¹³C NMR spectrum, δ: 189.98 (s, C=O), 151.58 (s, C=N), 137.38, 136.49, 133.06, 130.70, 129.74, 127.13 (C_{arom}), 49.18 (t, CH₂), 26.25 (t, CH₂), 24.29 (t, CH₂).

N-Pyrrolidinyl-2,4-dichlorobenzoylamide oxime (IVi). ¹H NMR spectrum, δ: 7.28—7.58 (m, 3H, H_{arom}), 5.02 (br s, 1H, OH) 3.60—3.92 (m, 4H, 2 × CH₂), 3.03—3.37 (m, 4H, 2 × CH₂). ¹³C NMR spectrum, δ: 183.57

(s, C=O), 157.56 (s, C=N), 137.87, 135.18, 132.84, 130.69, 130.16, 126.97 (C_{arom}), 52.39 (t, CH₂), 33.44 (t, CH₂).

N-Morpholinyl-2,4-dichlorobenzoylamide oxime (IVj). ¹H NMR spectrum, δ : 7.27—7.53 (m, 3H, H_{arom}), 3.77 (t, 2H, OCH₂), 3.70 (t, 2H, OCH₂), 3.45 (t, 2H, NCH₂), 3.15 (t, 2H, NCH₂). ¹³C NMR spectrum, δ : 188.26 (s, C=O), 157.84 (s, C=N), 137.64, 134.86, 133.60, 131.31, 129.74, 127.20 (C_{arom}), 67.17 (t, OCH₂), 65.94 (t, OCH₂), 48.36 (t, NCH₂), 46.16 (t, NCH₂).

N-(2,2,6,6-Tetramethyl-4-oxopiperidinyl)-2,4-di-chlorobenzoylamide oxime (IVk). 1 H NMR spectrum, δ: 7.24—7.42 (m, 3H, H_{arom}), 2.70 (d, 2H, CH₂, J = 14.8 Hz), 2.48 (d, 2H, CH₂). 13 C NMR spectrum, δ: 210.34 (s, C=O), 193.30 (s, C=O), 154.50 (s, C=N), 137.83, 135.85, 131.73, 129.88, 129.63, 126.43 (C_{arom}), 58.24 (t, CH₂), 54.43 (t, CH₂), 31.57 (q, CH₃), 30.12 (q, CH₃).

REFERENCES

- 1. Jarošková, L. and Fišera, Ľ., Chem. Papers 46, 238 (1992).
- Matocsy, G., Nádasy, M., and Adriska, V., Pesticide Chemistry, p. 409. Akadémiai Kiadó, Budapest, 1988.
- Boyle, F. T., Riley, J. F., and Wilson, R. G., in Recent Trends in the Discovery, Development and Evaluation of Antifungal Agents. (Fromthing, R. A., Editor.) P. 131. Prous, J. R. Publishers, Barcelona, 1987.
- Bandiera, T., Albini, F. M., and Albini, E., J. Heterocycl. Chem. 24, 1597 (1987).
- Grundmann, C. and Frommeld, H. D., J. Org. Chem. 31, 157 (1966).
- Caramella, P. and Finzi, P. Y., Chim. Ind. (Milan) 48, 963 (1966).
- Tegeler, J. J. and Diamond, C. J., J. Heterocycl. Chem. 24, 697 (1987).

Translated by L. Fišera